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What is non-coding RNA (ncRNA)?

RNA molecules that are not translated into proteins
Size range from 20 to1000’s of nucleotides in length
Significantly gained scientific interest since 1990’s

Originally thought as intermediates or accessories in protein 
biosynthesis

Little was known of their importance
Majority of research and funding towards protein coding RNA  (messenger 
RNA)

Improved scientific methods and sequencing techniques
Led to the discovery of novel functions 
Led to further classifications of RNA

Discovery of ten of thousands of ncRNA expressed in human cells
more ncRNA’s expressed in human cells than protein coding RNA’s.



Function of ncRNA?

Structural, regulatory and catalytic 
molecules of protein biosynthesis

Maturation of mRNA, tRNA and rRNA

X-chromosome inactivation in mammals

Gene regulation



Types of ncRNA

Transfer RNA (tRNA)
~73 – 93 nucleotides in length

Function
Transfer specific amino acid to 
ribosomal site during protein 
synthesis (translation)

Specialized L-shape structure
Allows tRNA to “dock” onto ribosomal 
site for amino acid transfer



Types of ncRNA (cont.)
Ribosomal RNA (rRNA)

Primary constituent of ribosomes
Ribosomes primary role is to assemble polypeptides from amino acids 
(translation)
Ribosomal proteins combined with rRNA to create ribosome

Make up the majority of RNA found within a typical cell

Small nuclear RNA (snRNA)
Located in nucleus of eukaryotic cells
Function

RNA splicing
Regulation of transcription factors
Maintaining telomeres



Types of ncRNA (cont.)
Small Nucleolar RNA (snoRNA)

Located in the nucleolus
Ribosomes primary role is to assemble polypeptides from amino acids 
(translation)
Ribosomal proteins combined with rRNA to create ribosome

Function
Enhance functionality of mature RNA

chemical modifications to rRNA and other RNA genes (ex. methylation)

Micro RNA
~20 – 23 nucleotides in length
Single stranded

Complimentary to one or more messenger RNA (mRNA)

Function
Regulates gene expression

anneals itself to mRNA inhibiting translation



Why is it hard to predict non-coding 
RNA?

Unlike protein coding genes, functional 
RNAs lack statistical signals for reliable 
detection from primary sequences
There is no protein product for which the 
ncRNAs are coding

No evolutionary constraints on protein product
Constraints come in secondary RNA structure

Can be conserved even with substantial changes 
to primary DNA sequence



How do ncRNA prediction 
programs overcome this problem?

QRNA – uses pairwise alignment, but low 
reliability
MSARI – uses multiple sequence alignments of 
10-15 sequences with high sequence diversity; 
highly accurate
RNAz – combines sequence alignment of 2-4 
sequences with measures of:

Structural conservation
Thermodynamic stability



RNAz

Predicts noncoding RNA sequences
Relies on two features of structural noncoding RNAs:

Thermodynamic stability
Secondary structure conservation

Uses comparative sequence analysis of 2-4 sequences
Builds on other RNA programs to accomplish goal:

RNAFOLD – folding single sequences
RNAALIFOLD – consensus folding of aligned sequences
LIBSVM – support vector machine (SVM) learning



Thermodynamic stability
Measure mean free energy (MFE)

Compares mean free energy of given sequence to random 
sequences of same length and base composition

Z-score calculated as:

z = (m - µ)/σ

where µ and σ are the mean and standard deviations of the random 
sequences, respectively.

Negative z scores indicate that a sequence is more stable than 
expected by chance.



Structural conservation
Uses RNAalifold

Like RNAfold except augmented with covariance information
For covariance information, compensatory mutations (e.g. a CG pair 
mutates to a UA pair) and consistent mutations (e.g. AU mutates to 
GU) give a  bonus of energy while inconsistent mutations (e.g. CG 
mutates to CA) yield a penalty of energy
Results in consensus MFE EA.
RNAz compares EA to average MFE of individual sequences (Eavg)
Structural conservation index calculated as:

SCI = EA / Eavg

SCI high => sequences fold together equally well as fold individually
SCI low => no consensus fold



Combining z and SCI scores

Z- and SCI scores used to classify the 
alignment as “structural noncoding RNA”
or “other” using Support Vector Machine 
(SVM) learning algorithm
Trained using a large set of well-known 
noncoding RNA sequences



RNAz: Input and Output

Input requires aligned sequences in ClustalW or MAF formats
Output provides: 

Properties of sequences (number of sequences and base pairs, reading direction, pairwise
identity)
Thermodynamic scores (MFE for sequences and consensus, energy contribution, covariance 
contribution, z-scores)
Secondary structure conservation (structure conservation index)
Classification prediction (SVM decision value, class probability, prediction)
Predicted secondary structure of each sequence and consensus

RNAz
ClustalW
multiple
sequence
alignment

# of sequences
# of base pairs 
Reading direction
Mean pairwise identity
Mean single sequence MFE
Consensus MFE
Energy contribution
Covariance contribution
Combinations/Pair mean z-score
Structure conservation index
SVM decision value
SVM RNA-class probability
Prediction: RNA
Predicted secondary structure of each 

sequence and consensus for 
whole alignment



Example: Iron Response Element 
(IRE) RNA Input
CLUSTAL W (1.83) multiple sequence alignment

sacCer1         
GCCTTGTTGGCGCAATCGGTAGCGCGTATGACTCTTAATCATAAGGTTAGGGGTTCGAGC

sacBay
GCCTTGTTGGCGCAATCGGTAGCGCGTATGACTCTTAATCATAAGGTTAGGGGTTCGAGC

sacKlu
GCCTTGTTGGCGCAATCGGTAGCGCGTATGACTCTTAATCATAAGGCTAGGGGTTCGAGC

sacCas
GCTTCAGTAGCTCAGTCGGAAGAGCGTCAGTCTCATAATCTGAAGGTCGAGAGTTCGAAC
** *   * ** ** **** ** ****  * *** *****  ****    * ****** *

sacCer1         CCCCTACAGGGCT
sacBay CCCCTACAGGGCT
sacKlu CCCCTACAGGGCT
sacCas CTCCCCTGGAGCA

* **    * ** 



Example: Iron Response Element 
(IRE) RNA Output



IRE RNA Structures Using RNA 
Fold

Mouse

RNAFOLD: MFE = -19.66 kcal/mol

Fugu

MFE = -19.70 kcal/mol

Rat

MFE = -19.44 kcal/mol

Zebrafish

MFE = - 22.94 kcal/mol

Average MFE = -20.43 (vs. -19.23 for output of RNAz) 



Consensus Folding via 
RNAALIFOLD

MFE = EA = -17.76 kcal/mol

SCI = EA / Eavg = -17.76/(-19.23) = 0.92

Fold together equally well as individually



Classification of Z scores and SCI 
using SVM

Z score = -3.24
SCI = 0.92

Green = high
probability of
structural ncRNA

Red = low
probability of
structural ncRNA

High probability of
structural noncoding RNA



3 Algorithms in RNAz

Calculation of z-score
Calculation of SCI
SVM for classification of consensus as 
“structural noncoding RNA” or “other”

We will explain each of these algorithms in 
turn



Calculation of z-score
Generated synthetic combinations of different length and base composition

50 – 400 nucleotides in steps of 50 (8 sizes)
GC/AT, A/T, G/C ratios of sequences ranging from 0.25 to 0.75 in steps of 0.05 (11 
percentages per ratio type)
10,648 combinations (= 8 x 11 x 11 x 11)

For each combination, generate 1000 random sequences and calculated mean and 
standard deviation of MFE
Used SVM library LIBSVM to train 2 regression models for mean and standard 
deviation (µ and σ) rather than using random sampling. Verified accuracy by 
comparison of SVM algorithm and sampling.
Z score calculation:

z = (MFE - µ)/ σ

where µ is the mean of sequences with a given length and base composition and 
sigma is the standard deviation



Accuracy of using SVM for Z-score 
Calculation

Comparison of z scores 
through two methods:

Sampling
100 sequences from random 
locations in human genome
100 known ncRNAs from Rfam
database

Using SVM regression model
SVM model eliminates need 
for extensive sampling



Calculation of SCI

SCI calculation:

SCI = EA / Eavg

where EA is the consensus MFE of the aligned 
sequences and Eavg is the average MFE of the 
individual sequences

EA calculated through RNAALIFOLD



Support Vector Machines
Support Vector Machines provide a means of classifying data into different classes or categories
Binary classifier separates data into two separate classes
Goal: Find hyperplane with the maximum margin that separates two classes of data

Reduces impact of changes in underlying model
Minimizes false positives

Feature
A

Feature
B

margin

hyperplane



Binary Linear SVM

Each value represented by tuple (xi, yi) (I = 1, 2 in this example) where xi = (xi1, xi2, …, xid)T

corresponds to the attribute set for the ith value.  yi can either be 1 or -1 to denote the binary choice.

Decision boundary of linear classifier has form:

w • x + b = 0

where w and b are parameters in the model.

Feature
A

Feature
B

w • x + b = 0

w • xa + b = 0

w • xb + b = 0

xa

xb

For test value z:

y =      1, if w • z + b ≥ 0
-1, if w • z + b < 0



Training with SVM
Train model with data that has already been classified 

For this presentation, this means known ncRNA and know non-ncRNA.
For a linear model, the training data is used to set w and b (after scaling) 
such that:

min f(w) = ||w||2 / 2 subject to yi(w • zi + b) ≥ 1, I = 1, 2,…, N

w • z + b ≥ 1 if yi = 1 (i.e., for known ncRNA),
w • z + b < 1 if yi = -1 (i.e., for known non-ncRNA)
Must also maximize the margin:

Equivalent to:

min f(w) = ||w||2 / 2 subject to yi(w • zi + b) ≥ 1, I = 1, 2,…, Nw



Two Additional SVM Issues
Two additional SVM issues need explanation for this paper:
(1) What if training data not outside of margin because of noise in the training data?
(2) What if two classes cannot be separated by a line?

To handle the first issue, positive slack variables are added into the constraints of the f(w) 
optimization such that:

min f(w) = ||w||2 / 2 + C(     ξi)k subject to yi(w • zi + b) ≥ 1 - ξi , I = 1, 2,…, N

where C and k represent penaties for misclassifying training instances.

To handle the second issue, we transform the data from its original space to a transformed 
space with a mapping function Φ(x) where there is a linear hyperplane between the two 
datasets.  This mapping has the property:

K(u,v) = Φ(u) • Φ(v) = (u • v + 1)2

where K is a kernel function.

Only certain kernel functions can be used.  Some common ones include:

Polynomial: K(x,x) = (γxTx + r)d, γ >0,
Radial basis function: K(x,x) = exp (- γ || x – x||2), γ > 0,
Sigmoid K(x,x) = tanh(γ xTx + r)

w

∑
=

N

i 1



Back to Paper: Classification SVM

Binary classification SVM trained to classify alignments as “RNA” or “other”
Classification parameters were:

Mean of MFE z scores of the individual sequences
SCI
Mean pairwise identity
Number of sequences in the alignment

Training data
All classes of ncRNA with exception of tmRNAs and U70 small nucleolar RNAs
For each native alignment, included one randomized version

Testing
Generated models from all classes, leaving out one class at a time
Alignments with mean pairwise identities between 50-100%

Kernel function
Radial basis function  K(x,x) = exp (- γ || x – x ||2), with γ = 2
Slack penalty variable C = 32

Information content
of multiple alignment
depends strongly on
pairwise identity and 
number of sequences



Resulting ncRNA Classification

Alignments of tRNAs and 5S rRNAs with 2-4 sequences per alignment and 
mean pairwise identities between 60-90%
Green circles – native alignments
Red crosses – shuffled random controls
Background cloror indicates RNA class probability in z-SCI plane



Results of RNAz
At cutoff of classification probability (P) of 0.9 over 12 
ncRNA types: 

Average sensitivity = 72.27%
Average specificity = 98.93%

Results varied by ncRNA type:
U70 snoRNA – stable but not well conserved
tmRNA – conserved, but not stable

Scan of Comparative Regulatory Genomics (CORG) 
database:

89 ncRNA regions with P > 0.5
11 known ncRNAs; 78 unknown
Hits in 5’ UTRs of protein coding genes, introns, unannotated
regions
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