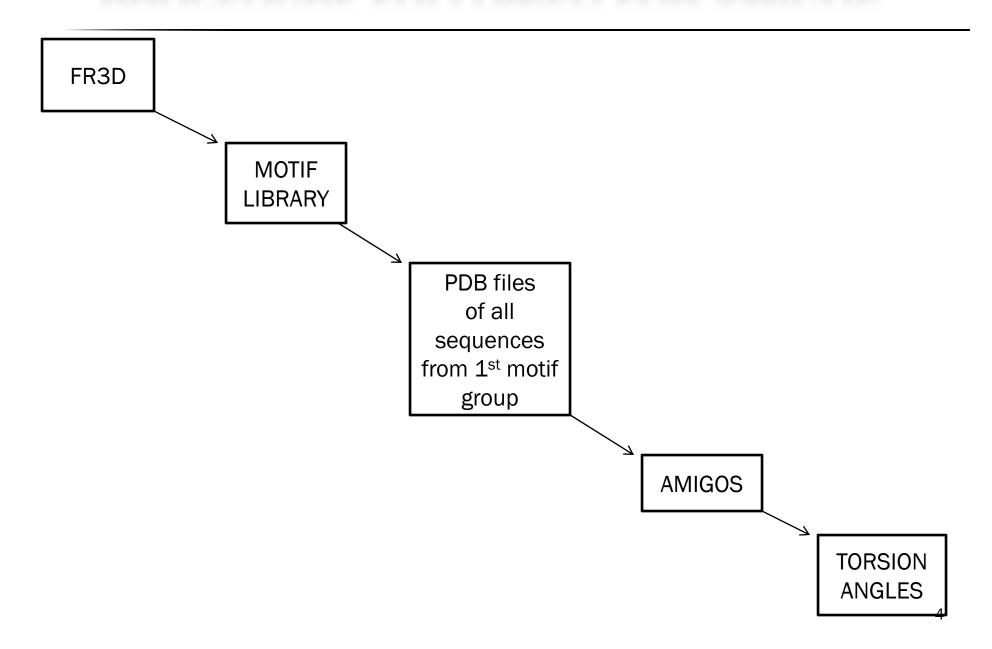
A STUDY OF TORSION ANGLES OF RNA MOTIFS

By

Sai Teja Kshir Sagar Bioinformatics Independent Study May 2010 Under guidance of Dr. Jason Tsong-Li Wang

WHAT ARE RNA MOTIFS


- * Small sequence fragments of RNA which are present repeatedly in RNA.
- **×** It is a 3-D structural element or fold within the chain.
- **×** Same motifs can also appear in different other molecules.

MOTIFS

Types of RNA Motifs:

× Hairpin × Kink Turn × E-loop × K-loop

PROCEDURE FOLLOWED FOR AMIGOS

FIND RNA 3D (FR3D)

- **×** Developed by Dept. of Mathematics and Statistics, Bowling Green State University, USA.
- **×** Used for finding recurrent 3-D motifs in RNA.
- × Also used as a database of RNA structural motifs.
- x Link : http://rna.bgsu.edu/FR3D

CATEGORIES OF RNA MOTIFS ON FR3D

- x cWW-tHW-cSW-cWW_C-loop Motif
- **x** tSH-tHH-cSH-tWH-tHS_sarcin/ricin Motif
- **x** tWH-insertion-tHS Motif
- x cWW-tWH-cWW_GAAA-receptor Motif
- \times cWW-(cWW-cSW)-(tWH-cWW)-cWW-cWW Motif
- x cWW-tSH-tWH-tHS-cWW Motif
- x tHS_C-loop Motif
- x tSH-tHS Motif

ALGORITHMIC METHOD FOR IDENTIFYING GROUPINGS OF OVERALL STRUCTURE (AMIGOS)

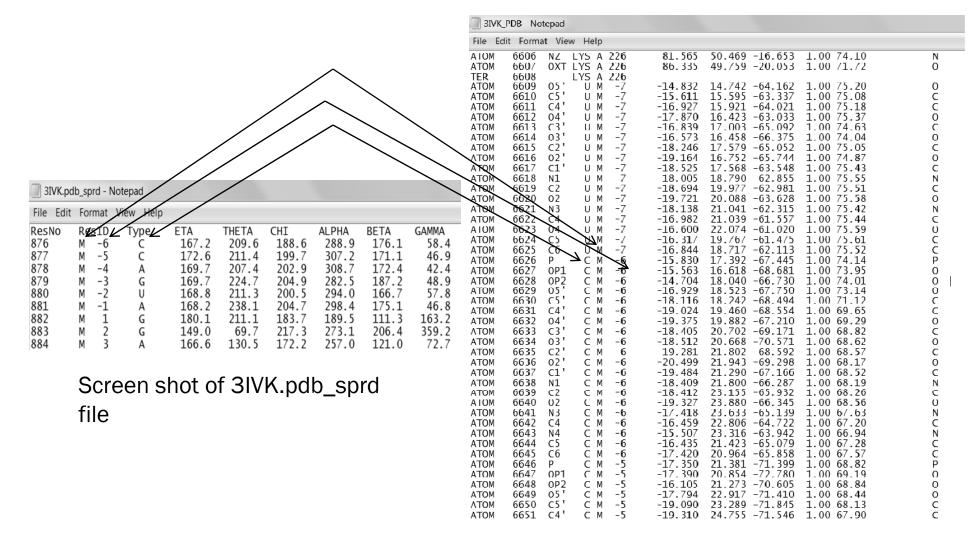
- **×** Developed by Pyle Lab.
- **×** It is a Perl script which gives tables of torsion angles from nucleic acid PDB files.
- * AMIGOS measures standard backbone torsion angles, i.e. alpha, beta, gamma, delta, epsilon, and zeta.
- **×** It also calculates sugar pucker torsion (nu2), chi, and pseudo-torsions eta and theta angles.

INPUT AND OUTPUT FILES

- * Amigos accepts only ent or pdb files as input files.
- **×** It generates two output files for each pdb i.e. "filename_area.txt" and "filename_sprd.txt."
- It also generates two output files (all_sprd.txt & all_area.txt) which contain measurement of all the nucleotides from all the pdb files.
- ★ 2n+2 files are generated, where n is the number of pdb files.

AMIGOS TOOL (POINTS TO BE NOTED)

- ***** HETATM entries in a pdb file are ignored by this tool.
- ★ Bases adjacent to HETATM's torsion are not calculated.
- Only those residues which either contain '02' / '02*' or are properly named as A,G,C,U or T are considered for geometric calculation.
- * Output does not contain the measurements of nucleotide at the start or end of the chain.


POINTS TO BE NOTED

- * The tool strictly calculates the measurements of RNA residues ignoring any other protein in the pdb file.
- ★ By default it calculates area of all the nucleotides which fall outside the helical region, but this can be modified in the script according to the need.
- We can also direct the program to calculate measurements of any four user-defined atoms as well, but this has to be modified in the code.

EXAMPLE:

INTERPRETATION OF 3IVK.PDB_SPRD.TXT FILE

Since the tool reads the file, residue-wise , the res.no does not start with 1 but with 876 because the tool starts reading RNA residues in the pdb file 3IVK from 875th residue. Compare the columns Res(2nd), ID(3rd) and type(4th) in the 3IVK.pdb_sprd file with that of the column 5th, 6th and 4th respectively from atom no.6626 in 3IVK.pdb file.

Screen shot of 3IVK.pdb file

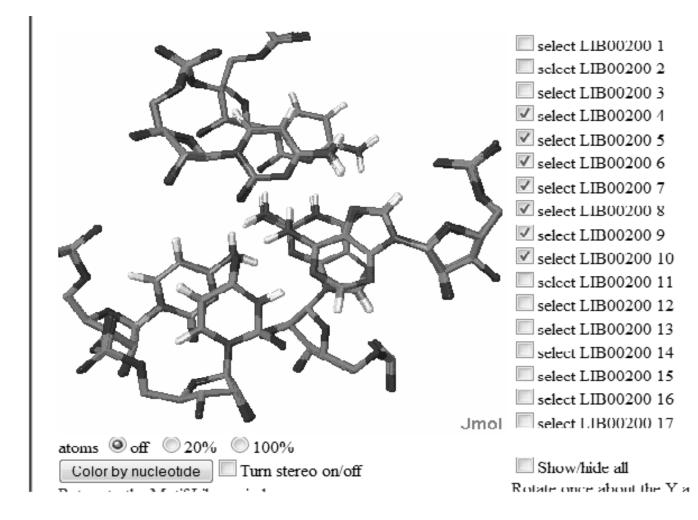
COMBINED INTERPRETATION OF BOTH SPRD FILE AND PDB FILE FOR 3IVK

- ★ RNA residue id in pdb file starts from -7(6th column) or atom no.6609.
- ★ Thus the tool gives the measurement from residue id -6 or atom no.6626.
- ★ All the atoms corresponding to -6 form a single residue of RNA which is 876th residue of that pdb file and is represented as res no.876 in sprd file.
- ★ Thus all the torsion angles of all the residues read by the tool are given in the output file 3IVK.pdb_sprd.
- ★ Residues from 876 to 1129 in output file can be identified in the 3IVK.pdb file from atom 6626 to 12141.

MOTIF GROUP: CWW-THW-CSW-CWW_C-LOOP (1ST GROUP MOTIF)

- AMIGOS Result of 1st Motif group of FR3D (sprd.txt).
- The result below is of PDB: 1KOG, which contains 6 motifs of the same group (1st group).
- **×** All the other pdb file results of the group is given in the excel file.

1	PDB: 1KOG	,												
2	MOTIL:9													
3	ResNo	ResID	Туре	ETA	THETA	CHI	ALPHA	BETA	GAMMA	DELTA	EPSILON	ZETA	NUTWO	TYPEA
1	8	176	G	187.5	221.7	202	5 205.9	254.7	63.5					
5	6	174	A	180.8	231.8	212	Z 333.5	117	61.2	94.5	217.50%	245	29.3	1
5	28	1 96	С	169.6	205.9	193	3 287	140.2	80.2	85.8	225.20%	263.6	35.3	1
J	29	197	τ	212.8	129.5	207	3 295	151.5	68.5	100	335.20%	91.6	30.4	1
R	31	1.99	C	174.5	221.1	198	5 303.8	181.5	42.5	80.3	216.80%	290.5	38.2	1
9	32	I 100	U	165.8	215	200	9 304.1	174.8	43.7	79.3	219.20%	284.2	39	1
10	MOTIF:5													
1	43	J 74	A	185.5	232.2	217	2 338.1	112.9	61.9	95.9	219.60%	244.1	27.2	1
12	45	J 75	G	184.5	219.1	20	1 207.5	251.6	62.7	80.5	201.70%	293.2	40.5	1
13	65	J 95	С	170.9	206.8	195	4 287.5	144	78.3	90.7	224.60%	263.4	33.7	1
4	56	J 97	c	211.5	127.1	20	5 290.3	151	72.5	100.8	326.90%	99.3	3D.6	1
15	58	J 99	С	172.5	218.5	196	1 309.3	179.5	38.4	79.1	217.60%	289.1	37.2	1
16	59	J 100	U	166.2	21/.1	201	9 299.4	1/5./	49.3	80.5	219.30%	284	40.8	1
17	MOTIF:6													
18	101	N 74	A	182.5	227.1	21	3 336.2	116.9	60.2	93.8	217.30%	243.6	20.2	1
19	193	N 76	G	188.9	221	20	2 208.7	254.9	61.9	83.1	202.70%	291	39.1	1
20		N 96	С	171.2	207.1							267.4		
21		N 97	c	213.5								93.8		
22		N 99	c	175.1	219.9							289.8		
23		N 100	U	165.1								282.7		
24			-						1210		Lasteere	20217	0010	-
25		L 74	A	182.6	5 231.	4 21	3.2 334	.7 114	.9 62	7	95 217.40	1% 24	4.5 2	9.3
26		L 76	G	182.0			2.9 20				3.7 198.90			9.1
27		L 96	c	170.3			.95 28		44 84		7.5 223.60			3.8
28		L 97	c	212.9		-	6.7 294				5.5 336.60		5.1	29
29		L 99	c	174.9			8.7 302				.1 214.40		9.8	38
0		L 100	U	166.5			7.6 302).5 219.60			9.5
31	MOTIF:8	100	0	100.0	, 215.	0 19	7.0 302	.4 1/5		.0 00		//0 /	.05 5	5.5
32		M 74	А	183.1	227.	2 21	7.4 334	Q 1	18 61	2 06	5.8 216.20	196 24	2.7 2	6.7
33		M 76	G	185.2			3.7 20				82 201.30			0.9
34		M 96	c	170.7			4.8 284		42 82		5.9 220.90			4.2
35		M 97	c	213.2			109 204				0.4 329.00			0.2
36		M 99	c	172.9			8.3 300				3.4 214.40			8.1
37		M 100	U	165.5			0.1 300				5.6 219.40			0.6
8	MOTIF:10		0	105.5	212.	0 20	0.1 300	.0 1/5	-1 40	0.5 70	219.40	J70 20	3.3 4	0.0
9		0 74	A	186.1	228.	2 24	4.9 335	5 1	13 68	4 04	1.6 217.60	196 2.4	5.2 2	8.3
10		0 74	G	186.1			4.9 335 9.4 206						5.2 2 291	40
			C	168.4							2.8 202.20			
1	-	0 96				-					1.6 221.90		8.6	34
2		0 97	c	216.6			294				2.6 340.50			0.1
13		0 99	c	172			9.3 308				5.2 214.10			9.4
4	254	O 100	U	167.3	3 214.	z 19	8.1 301	.2 173	.4 48	1 77	7.1 218.90	176 28	4.2 3	9.2


INTERPRETATION OF RESULTS

- ***** There are 6 motifs of 1st group in 1KOG sequence.
- ***** The area marked by the box are the eta and theta angles of the motifs of 1KOG.
- ***** The table shows all the torsion angles of the motif.

INTERPRETATION OF RESULT

- ★ We can see that eta and theta angles of all the motif residues are in a very similar range (+/- 10 degrees).
- In some of the residues the range is very small (+/-2 degrees).
- ***** We can also see that all the other torsion angles of all the residues of the motifs are in same range.
- From the observation we can say that in a given RNA pdb, motifs from the same group have similar torsion angles, irrespective of their chain ID in the sequence.

JMOL VIEW OF ALL THE 6 MOTIFS IN 1KOG FILE

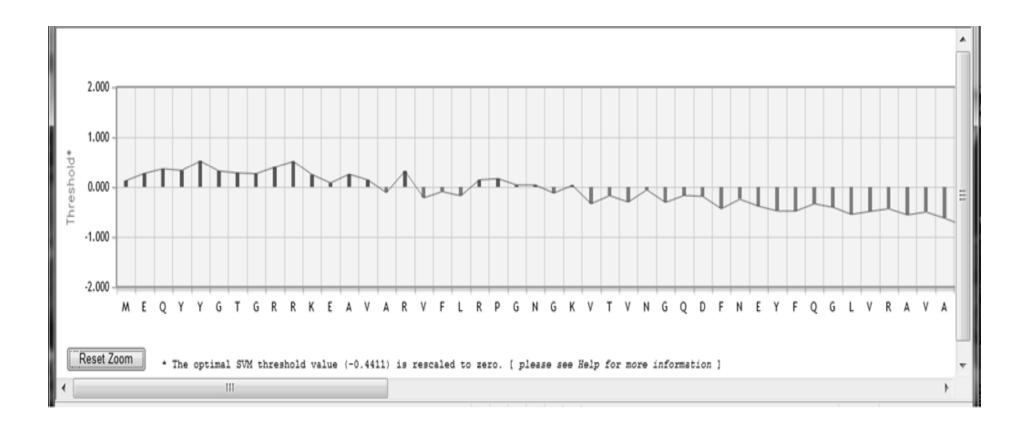
APPLICATION OF AMIGOS

- **×** We can find patterns in the angles of RNA motifs.
- **×** By the help of AMIGOS we can predict the motifs present in any RNA.
- If given an RNA and its motif, we can also classify the motif using AMIGOS, based on its torsion angles.
- **×** By using AMIGOS we can do angle mining of RNA and its motifs.

OTHER TOOLS WHICH I HAVE WORKED ON

✗ PiRahNA

× PARTS


PIRAHNA

- This tool is based on "Protein Function Annotation from Sequence: Prediction of Residues Interacting with RNA"
- **×** It predicts :
 - + RNA-binding residues from protein sequence information
 - + RNA-binding function at the protein level

INPUT AND OUTPUT

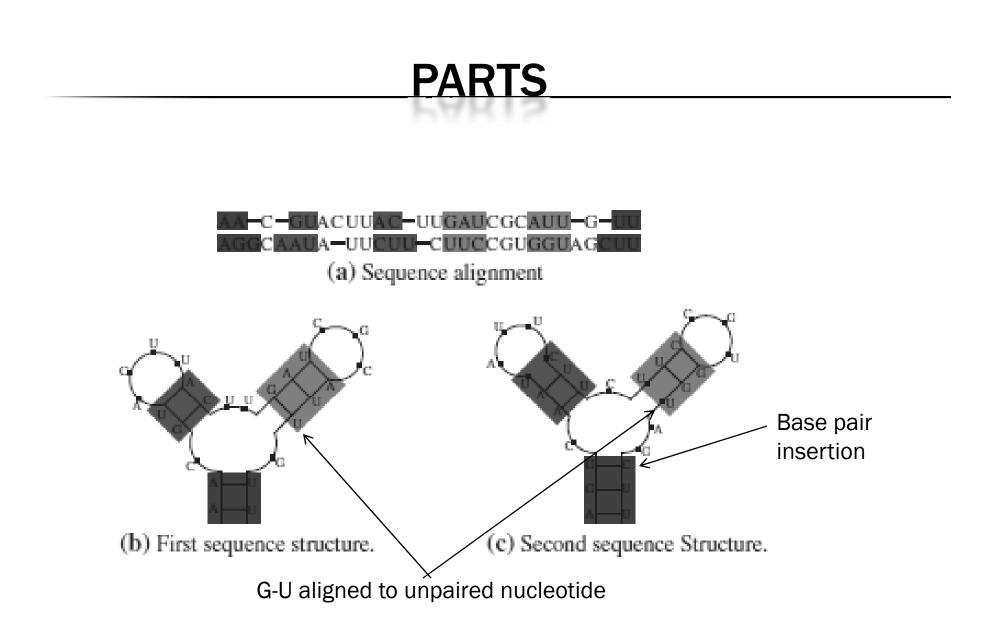
- **×** Input: Protein sequence
- A Output: Graphical representation, where
 + X-axis represents the query sequence
 - + Y-axis represents SVM threshold values for individual residues.

OUTPUT RESULTS

OUTPUT INTERPRETATIONS

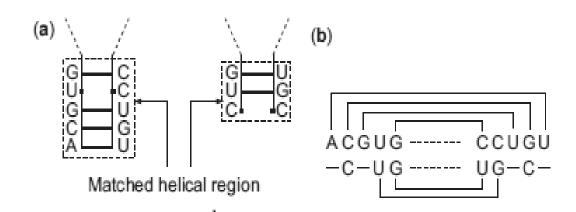
- Residues which have a SVM threshold above zero are predicted to be RNA binding residues of that sequence.
- In the graph it is represented by **RED** color bars.
- The higher the threshold value of the residue the less is false positive rate and vice versa for false negative rate.

OUTPUT INTERPRETATIONS


- In this tool the optimal threshold value is -0.4411 (which is rescaled to zero in the graph).
- It has a MCC of 0.50 and AUC of 0.86.
- The threshold was obtained by doing 5-fold cross validation of a non-redundant set of 81 RNAs taken from pdb.
- Uniqueness of this tool is that it uses both PSSM and physicochemical properties for RBR prediction.

PARTS

- * Probabilistic Alignment for RNA joinT Secondary structure prediction
- **×** Developed by University of Rochester, USA.
- ***** It is a tool to predict alignment and secondary structures of two RNA sequences.


PARTS

- **×** In this tool the RNA base pairs are aligned first and then they are aligned sequentially.
- ***** This helps in increasing the accuracy of secondary structure prediction.
- It also considers insertion and deletion of base pairs.

PARTS ALIGNMENT

***** The alignment of RNA sequences is given below.

SARSA (PARTS)

- ★ Pairwise Alignment of RNA Tertiary Structures
- This tool gives pairwise alignment of RNA tertiary structures.
- This tool converts the 3D structures of RNA to 1D SA (structural alphabet) letters.
- ★ Then it uses classical sequence alignment methods to compare their 1D SA-sequences and find the structural similarities.

INPUT AND OUTPUT

🕑 🍘 🏚 http://bioalgorithm.life.nctu.edu.tw/SARSA/help/examples/parts_show/results.html

PARTS Result(s)

Input RNA 3D Structures

- RNA molecule 1:
 - <u>1L2X:UR0020</u> (PDB code:NDB code), Length: 28, Chain ID: A, from 1 to 28, (view<u>Backbone torsions</u>)
- RNA molecule 2:
 - o 2A43:UR0066 (PDB code:NDB code), Length: 26, Chain ID: A, from 3 to 28, (view Backbone torsions)

Input Parameters

- Alignment: Global alignment
- Gap open penalty: -5
- Gap extension penalty: -2
- Specified number of suboptimal alignments: 1

>Alignment 1

```
      Alignment score = 75, RMSD = 2.398, Superposition display

      Alignment of SA-encoded RNA sequences:

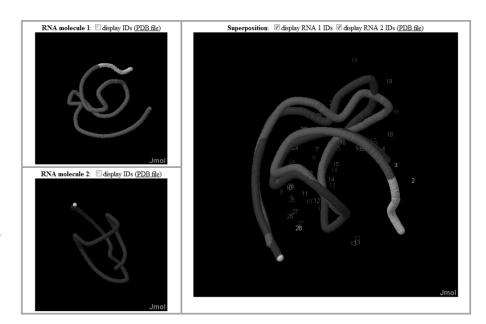
      RNA 1
      1

      FAAAAAPTAAEVAAAIQDWAAIAMAAP-
      28

      IIIIIII
      I

      RNA 2
      3
      ---TAAAPTAABLAAARQCRAAIAMAAB

      Alignment of original RNA sequences:
      RNA 1
      1


      GGCGCGGCACCGUCCGCGGAACAAACGG-
      28

      IIIIIIII
      I
      I

      RNA 1
      1
      GGCGCGGCACCGUCCGCGGAACAAACGG-
      28

      IIIIIIII
      I
      I

      RNA 2
      3
      ---GCGGCACCGUCCGCUCCAAACAGAACGG-
      28
```


Developed by BioAlgorithm Laboratory, Institute of Bioinformatics & Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan

CONCLUSION

- **×** After studying these tools I found:
 - + RNA motifs play a very important role in many biological processes.
 - + With the help of angle mining we can predict a motif in a given RNA pdb file.
 - + We can also classify motifs in a given pdb file by the help of angle mining.
 - Accurate alignment of RNA secondary and tertiary structures would be more significant than sequence alignment.

REFERENCES AND LINKS

- **x** rna.bgsu.edu/FR3D
- x pylelab.org/home/index2.html
- R. V. Spriggs, Y. Murakami, H. Nakamura and S. Jones (2009), Protein function annotation from sequence: prediction of residues interacting with RNA
- **x** http://piranha.protein.osaka-u.ac.jp
- Arif Ozgun Harmanci, Gaurav Sharma and David H. Mathews (2008), PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction
- x bioalgorithm.life.nctu.edu.tw/SARSA/index_parts.p
 hp