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Identifying source objects in astronomical observations, in particular with reliable algorithms,

is extremely important in large-area surveys. It is of great importance for any source detection

algorithm to limit the number of false detections since follow up investigations are timely and

costly. In this paper, we consider two new statistical procedures to control the false discovery

rate (FDR) for group-dependent data - the two-stage BH method and adaptive two-stage BH

method. Motivated by the belief that the spatial dependencies among the hypotheses occur

more locally than globally, these procedures test hypotheses in groups that incorporate the

local, unknown dependencies. If a group is found significant, further investigation is done to the

individual hypotheses within that group. Importantly, these methodologies make no dependence

assumption for hypotheses within each group. The properties of the two procedures are examined

through simulation studies as well as astronomical source detection data.
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correlation.

1 Introduction

Detecting, classifying, and monitoring transient sources in the night sky, specifically Type Ia

supernovae transients, is an area of astronomical research that receives much attention. Astro-

nomical images represent the intensity of light, or roughly a count of the photons at every pixel.

However, the number of pixels in each image can be several millions in size, which makes manual

source detection impossible.



The term source pixel is commonly referred to as a pixel in an image that is above some

threshold and thus is part of a true source (transient object). A source is a collection of these

source pixels that correspond to an astronomical object of interest. The term background pixel

is an image pixel that does not come from a source. A source, like a supernova transient, is a

stellar explosion in the sky that can last for several weeks before fading away. If the host galaxy

is reasonably close, then the supernova becomes quite bright. While there is no difficulty in

detecting it at peak brightness, the scientific goal is to pick it up as it has just begun to rise and

is still very faint. Also, there are many more distant galaxies than bright galaxies, so there are

numerous supernovae that will just barely be seen even at peak brightness.

Typically, the data each night are assumed to come from a mixture Gaussian distribution,

based on source and background pixels. One issue is that the mean and variance of this Gaussian

distribution differs from night to night, due to varying observing conditions, such as cloud

coverage and moonlight. The background pixels from the ith night are assumed to be normally

distributed with mean µi and variance σ2
i . The source pixels from the ith night and the jth source

are normally distributed with mean µi +θj , where θj can be very small. To detect these sources,

we want to test the hypothesis H0 : θj = 0 vs. the alternative H1 : θj > 0. To get around the

nightly differences, astronomers standardize the data, also known as computing the signal-to-

noise ratio (SNR). One can search for transient sources that exceed some SNR threshold using

the standardized data converted to p-values.

It is of great importance for any source detection algorithm to limit the number of false de-

tections. This is because following up new detections is timely and costly. Astronomers want to

spend as little of their time as possible viewing what turn out to be vacant regions of sky. Cur-

rently, there are several publicly available algorithms for source detection based on sliding cells,

Voronoi tessellation, wavelets, and signal-to-noise filtering. Although these algorithms provide

some limit to the number of false detections, they cannot provide proof or an upper bound to

the number they falsely detect. To give astronomers a source detection procedure that controls

a statistically meaningful measure incorporating Type I errors, i.e. false detections, would be a

great asset.

2 Preliminaries and Background

The False Discovery Rate (FDR) proposed by Benjamini and Hochberg (1995), is the expected

proportion of Type I errors among all the rejected null hypotheses. It is now a widely ac-

cepted notion of error rate to control in large-scale multiple testings arising in modern scientific

investigations, including astronomical source detection. Suppose there are N pixels, with Pj ,
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j = 1, . . . , N , being the p-values generated from the observations in those pixels. Then the

Benjamini-Hochberg (BH) method controlling the FDR at a level α operates as follows:

The BH Method.

• Order the p-values from the smallest to the largest: P(1), . . . , P(N).

• Find kBH = max{j : P(j) ≤ jα/N}.
• Reject the null hypotheses whose p-values are less than or equal to P(kBH).

The BH method controls the FDR at the desired level α, albeit conservatively, unless there

is no real source pixel, only when the p-values are independent or positively dependent (in a

certain sense). More specifically, the FDR of the BH method equals π0α when the p-values

are independent, and is less than π0α when the p-values are positively dependent (Benjamini

and Yekutieli, 2001; Sarkar 2002), where π0 is the (true) proportion of background pixels. The

difference between π0α and the FDR gets larger and larger with increasing (positive) dependence

among the p-values.

In absence of knowledge of any specific type of dependence structure among the p-values, the

method due to Benjamini and Yekutieli (2001), the BY method, is often used. The BY method

is an adjusted BH method with α replaced by α/CN , where CN =
∑N

j=1 j−1. The BY method

is extremely conservative, particularly when N is large, thus is not as powerful as one would

hope in detecting true source pixels.

The idea of improving the BH method has been one of the main motivations behind much of

the methodological developments taken place in modern multiple testing. This idea has flour-

ished in a number of different directions; for instance, in (i) developing adaptive BH methods

incorporating information about π0 from the data into the BH method or taking an estimation

based approach to controlling the FDR (Benjamini and Hochberg, 2000; Benjamini, Krieger and

Yekutieli, 2006; Blanchard and Roquain, 2009; Gavrilov, Benjamini and Sarkar, 2009; Sarkar,

2008; Storey (2002); and Storey, Taylor and Siegmund, 2004); (ii) incorporating information

about correlations or utilizing the dependence structure into the BH method (Efron, 2007; Ro-

mano, Shaikh and Wolf, 2008; Sun and Cai, 2009; and Yekutieli and Benjamini, 1999); and (iii)

generalizing the notion of FDR to k-FDR by relaxing control over at most k− 1 false rejections

(Sarkar, 2007; Sarkar and Guo, 2009, 2010).

In the context of present astronomical applications, Hopkins et al. (2002) suggested a way of

improving the BY method by incorporating local dependencies. They argue that astronomical

images show some degree of correlation between pixels, but are not fully correlated. In other

words, the brightness intensity of a given pixel is not influenced by all other N − 1 pixels,

rather it is only partially correlated with a smaller number (n) of pixels neighboring it. Any real
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transient signal should have the spatial shape of the stars covering some adjacent pixels, which

is called the telescope ‘point spread function’ (PSF), and this n is related to the number of pixels

representing the PSF. They propose to use the BY method with CN replaced by Cn =
∑n

i=1 i−1

to account for the local dependencies around the source pixels. This is clearly more powerful

than the original BY method, but it can be shown that such adjustment to the BY method may

fail to control the FDR when π0 ≈ 1.

Also in astronomical context, Friedenberg and Genovese (2009) considered detecting clusters

of pixels, rather than individual pixels, and chose the probability of False Cluster Proportion

(FCP) exceeding a certain value as the error rate to control. By relaxing the error rate control

to clusters, rather than individuals, there is potential for more powerful procedures due to the

reduction in data dimension. However, procedures with cluster-wise control may have some

disadvantages compared to individual-wise control, as noted below.

Given the massive influx of data due to large-area surveys, it is crucial to be able to accu-

rately identify and classify transient sources in real-time data collection. To do so, automated

methods must strive to use all the data’s available information to first identify and then clas-

sify objects (Savage, 2007). This means using not only clusters of outlying observations as the

in the FCP, but also using individual pixels to systematically classify astronomical objects as

either point-like (i.e. stars, quasars, supernova, etc.) or extended (i.e. galaxies, nebula, etc.).

Currently, many classification methods generate a set of ‘features’ to determine the type of ob-

ject discovered. Many of these features are estimated with pixel-wise information, such as source

positions, fluxes in a range of apertures, and shapes using radial moments. Another nontrivial

problem is deblending or splitting of adjacent sources, typically defined as a number of distinct,

adjacent intensity peaks connected above the detection surface brightness threshold (Salzberg,

1995; Becker, 2006; Henrion, 2011). Deblending of nearby objects is nearly impossible with a

cluster-wise approach. Because of these classification advantages after identifying new sources,

we propose new methodology based on the idea of controlling the rate of false discoveries of

individual pixels.

3 Proposed Methods

In this paper, we consider using a different idea of incorporating local dependencies and propose

an alternative to Hopkins and the BY methods. Our idea is based on the arguments that if

the dependencies among the pixels do occur more locally than globally, then by grouping the

pixels using an appropriate group size we can make these groups independent of each other. This

would be the best scenario where we can apply the BH (more powerful than the BY) method to
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detect the so called ‘potential source groups’, which we refer to as the groups containing at least

one source pixel. Once a ‘potential source group’ is identified, we can go back to that group to

detect which of the group’s individual pixels belong to the source. Based on this general idea

of pixel grouping, we propose the following two procedures, by choosing the group size, as in

Hopkins et al. (2002), related to the PSF of the telescope. In particular, paralleling Hopkins et

al.’s choice of n, the number of pixels representing the PSF, we chose our group size S to be this

same quantity. Using this argument, the groups containing S ‘partially correlated’ pixels should

behave independently.

Procedure 1.

Step 1. Divide the data rectangle into D by D mutually exclusive groups. The group size is

S = D2 and the total number of groups is N/S = G (say), with N being the total number

of pixels (hypotheses).

Step 2. Find the minimum p-value in each of these G groups. Let P
(g)
min be that minimum

for the gth group, g = 1, . . . , G. Find Qg = SP
(g)
min, for g = 1, . . . , G, which we will call the

grouped p-values.

Step 3. Apply the BH method to these grouped p-values to detect the ‘potential source

groups’. That is, consider the (increasingly) ordered versions of the grouped p-values,

Q(1), . . . , Q(G), and identify those groups as being potential source groups for which the

grouped p-values are less than or equal to Q(k∗BH), where k∗BH = max{g : Q(g) ≤ gα/G}.
Step 4. Identify the jth individual pixel within the gth potential source group as being a

source pixel if the corresponding p-value, say Pgj , is such that SPgj ≤ k∗BHα/G.

Theorem 1. Procedure 1 controls the FDR at α if the groups are independent or positively

dependent in a certain sense.

A proof of Theorem 1 is provided in Appendix. Our next procedure is based on the following

idea, in addition to that of pixel grouping.

When adapting a multiple testing method to the number of true null hypotheses, say N0,

whether it is for controlling the FDR using the BH method or for controlling the familywise error

rate (FWER) using the Bonferroni method (e.g., Finner and Gontscharuk, 2009; Guo, 2009; and

Sarkar, Guo and Finner, 2010), the p-values are modified from Pj to P̃j = N̂0Pj , based on a

suitable estimate N̂0 of N0. One of these estimates is due to Storey, Taylor and Siegmund (2004):

N̂0 =
WN (λ) + 1

1− λ
, (1)
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where λ is a tuning parameter and WN =
∑N

j=1 I(Pj > λ) is the number of p-values exceeding λ

and provides an information about the number of true null hypotheses in the data. For instance,

in case of the Bonferroni method that rejects Hj if NPj ≤ α, its adaptive version would reject

the Hj if N̂0Pj ≤ α. This would be potentially more powerful.

Notice that such an adaptive p-value is like a ‘shrunken p-value’, which gets shrunk towards a

smaller value, and thus becomes more significant, if there is evidence of more signals in the data.

So, when the p-values are locally dependent and tend to have similar local behaviors in terms

of being either significant or non-significant, by doing similar adaptation separately within each

group by estimating the number of true group specific signals, one could utilize the dependence

within each group and potentially improve Procedure 1. With that in mind, we propose our

second procedure as follows:

Procedure 2.

Step 1. Same as in Procedure 1.

Step 2. Find the minimum of the p-values in each of these G groups. Let Pgj , j = 1, . . . , S,

be the p-values in the gth group, and P
(g)
min be the minimum of these p-values, g = 1, . . . , G.

Find Q̃g = ŜgP
(g)
min, for g = 1, . . . , G, where

Ŝg = min

{∑S
j=1 I(Pgj > λ) + 1

1− λ
, S

}
, (2)

which we will call the grouped adaptive p-values.

Step 3. Apply the BH method to these grouped adaptive p-values to detect the ‘potential

source groups’. That is, consider the (increasingly) ordered versions of the grouped adaptive

p-values, Q̃(1), . . . , Q̃(G), and identify those groups as being potential source groups for which

the grouped adaptive p-values are less than or equal to Q̃(k̃∗BH), where k̃∗BH = max{g : Q̃(g) ≤
gα/G}.
Step 4. Identify the jth pixel within the gth potential source group as being a source pixel

if the corresponding p-value Pgj is such that ŜgPgj ≤ k̃∗BHα/G.

Another adaptive method could also be considered by estimating the number of groups that

do not contain any source signal, say G0, and using the estimate Ĝ0 in place of G in Procedure

1, step 3 and 4. However, because of the sparse number of signals in astronomical data, the

estimate Ĝ0 is often just as large or larger than G itself, providing no additional advantage over

Procedure 1. This type of adaptive group estimation is better suited in data where π0 is not so

close to 1.
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4 Simulation Study

We ran several simulation studies to examine the FDR control property and the power of our

proposed procedures compared to existing methodology. One of the main advantages of the

proposed procedures is that there is no dependence assumption of the p-values within each

group. Thus, it is only fair to compare our procedures with existing methodology that has such

relaxed assumptions (namely, BY and Hopkins).

Since the proposed procedures were developed to control the FDR under arbitrary dependence

assumptions within each group, the simulation studies were done under two different dependent

scenerios. In the first scenerio, each group’s p-values are generated from a multivariate normal

distribution with common correlation (− 1
S−1 < ρ < 1).

Second, the p-values were also generated from a multivariate normal distribution, but with

an autoregressive type of correlation structure within each group, separately for each of the G

groups. An autoregressive correlation structure indicates that data collected in a close spatial

proximity tend to be more highly correlated than observations taken further apart. For example,

let Xij denote an observation in a particular group located in the ith row and jth column.

Then, the correlation between two observations in that particular group can be written as

Corr(xij , xi′j′) = ρmax (|i−i′|,|j−j′|), for any 0 ≤ ρ ≤ 1. In other words, the correlation between

two observations decreases in value as the absolute spatial distance between (i, i′) or (j, j′)

increases.

Under these two correlation structures, we generated S dependent standard normal random

variables independently for each of the G groups. Three of the G groups were chosen randomly

for each simulation and one of the values 2, 3 and 4 is added to the variables in each of these three

groups. In other words, only three groups were assumed to contain all the signals. Simulation

studies with varying number of signal groups (1 group to 10 groups, instead of 3 groups) were

also computed, but since they yielded similar results, we have decided to restrict the discussion

of our simulation studies to 3 signal groups. The group size S was chosen to be 25, using 5× 5

groups (D = 5). The number of groups is G = 900, totaling n = 22, 500 individual hypotheses

per simulation. Since each simulation contained a fixed 3 groups of signal each of size 25, the

proportion of true null hypotheses π0 = 1 − 75
22,500 = 0.996. Using both correlation structures,

we repeated this 1,000 times at each value of ρ.

Four methods were compared: Benjamini-Yekutieli, Hopkins’, the proposed Two-Stage, and

proposed Adaptive Two-Stage Procedure, using λ = 0.5. At each simulation, we estimate FDR

by the proportion of falsely rejected hypotheses and the power is estimated by proportion of

correctly rejected hypotheses. The average proportion of correctly and falsely rejected hypotheses
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over all repetitions is shown in Figure 1 for the fixed group correlation and in Figure 2 for the

autoregressive case.
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Fig. 1 Simulated FDR and Power for fixed group correlation structure

When examining the simulated power in the right side of Figure 1, both the Two-Stage and

Adaptive Two-Stage Procedures outperform the BY method with the fixed group correlation

structure. In other words, the Two-Stage Procedures correctly identify a higher proportion of

hypotheses containing a signal. The Adaptive Two-Stage Procedure has competitive power with

Hopkins’ procedure and surpasses it when the within group fixed correlation becomes large

(ρ > 0.5).

The simulated FDR in the left side of Figure 1, reveals a stable Two-Stage Procedure, with

the estimated FDR < 0.05 across all fixed group correlations. However, the Adaptive Two-Stage

Procedure seems to lose control of the FDR with moderately correlated data within groups

(0.5 < ρ < 0.8). Although unfortunate, this result is not surprising. Other adaptive methodology

also become unstable with large correlation among hypotheses.

Next, we look at the performance of the proposed procedures under the autoregressive within

group correlation structure. When examining the simulated power in the right side of Figure

2, both the Two-Stage and Adaptive Two-Stage Procedures outperform the BY method under

this group correlation structure. The simulated FDR in the left side of Figure 2, reveals a
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Fig. 2 Simulated FDR and Power for autoregressive correlation structure

stable Two-Stage Procedure and Adaptive Procedure, with the estimated FDR < 0.05 across

all autoregressive group correlations values of ρ.

In conclusion, the simulation study confirms that between the proposed Two-Stage Procedure

and the BY method, both of which are theoretically known to control the FDR under arbitrary

dependence within the groups, the former is clearly the better choice in terms of controlling

the FDR under this dependence situation. Moreover, it is competitive with Hopkins’, even

though Hopkins’ may not control the FDR. The simulation study also seems to indicate that

the Adaptive Two-Stage Procedure controls the FDR when the correlation is fixed and small

(0 < ρ < 0.5), but may become unstable as correlation gets more extreme. Impressively, the

Adaptive Two-Stage Procedure under the autoregressive correlation scenario, seems to control

the FDR over all positive values of ρ, which is yet to be proved theoretically.

5 Application

The astronomical data used to illustrate our procedures comes from Palomar Transient Factory

(PTF), one of the mid-size wide-field survey projects currently underway. Each image is 2048×
4096 pixels, but a smaller sub-rectangle of noise (130× 130) was chosen to apply the methods.
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The data is approximately normally distributed with mean x̄ = 721.7 and variance s2 = 476.1.

A heat map of the image can be seen below in Figure 3a and the results in Figure 3b. The data

were first standardized and converted to p-values. Results of four methods are presented: BY,

Hopkins, Two-Stage BH (Procedure 1), and Adaptive Two-Stage BH (Procedure 2). Again, we

have chosen λ = 0.5 in Procedure 2. Applying the BY procedure to the data rejects fourteen

pixels and Hopkins rejects an additional three pixels. On the other hand, using our Two-Stage

BH method, seven potential source groups are found to have seventeen source pixels and the

Adaptive Two-Stage BH finds eighteen from those seven potential source groups.
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(b) The results of the four methods on the
PTF Astronomical data. The blue points
represent source pixels and the red boxes
represent a potential source group. Below
each plot is the total number of source pix-
els found using that method.

Fig. 3 Results from Palomar Transient Factory data
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6 Concluding Remarks

We have proposed, in this research, two new FDR controlling methods to be used in group-

dependent data - Two-Stage BH method and Adaptive Two-Stage BH method - and compared

them with the existing methods of Benjamini-Yekutieli and Hopkins’. Both of our proposed

methods compare favorably to the BY method in terms of the proportion of detected source

pixels. When the group correlation is small (ρ < 0.5) or large (ρ > 0.8), both of these methods

retain control of the FDR; however, when this correlation is moderate (0.5 < ρ < 0.8), the

adaptive procedure seems to become unstable.

More investigation is needed to estimate the dependence structure of astronomical data to see

if the local correlation is small enough to warrant use of adaptive methods. Further simulation

studies should be done with larger repetitions, varying π0, and incorporating other dependence

structures.

It would also be interesting to study the astronomical source detection problem differently by

adding a third dimension. Since astronomy data is often collected nightly, the assemblage can

be thought of as a ‘data cube’ instead of a ‘data matrix’, where the first and second dimension

are the spatial location and the third dimension is the date/time of observation. In other words,

multiple testing procedures can be adapted to not only search for signals at every ith row and

jth column location, but also at every time t. This set up could be explored in both a frequentist

and Bayesian contexts.

The authors would like to thank Eric Feigelson for acclimating us to transient detection

methodology and the goals of astronomical research, Peter Nugent for supplying the PTF data,

and Peter Freeman for his commentary regarding the False Cluster Proportion methodology. The

research of Sarkar and Guo were supported by NSF Grants DMS-1006344 and DMS-1006021

respectively.

7 Appendix

Proof of Theorem 1. We first prove the theorem assuming that the groups are independent.

For that we need the following notations:

R: Number of source pixels detected,

V : Number of source pixels falsely detected,

RG: The index of the ordered (in terms of increasing values of grouped p-values) potential source

group detected (which is also k∗BH),
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RG(−k): The index of the ordered potential source group detected based on the BH method

applied to all the groups except the kth one and the critical values gα/G, g = 2, . . . , G, and

J0(g): The set of indices of the p-values in the gth group that correspond to background pixels.

Then,

FDR = E

{
V

max{R, 1}
}

= E

[
E

{
V

max{R, 1}
∣∣∣RG,R

}]

=
G∑

k=1

∑

j∈J0(k)

G∑
g=1

N∑
r=1

1
r
Pr

{
SPkj ≤ g

G
α,RG = g, R = r

}

=
G∑

k=1

∑

j∈J0(k)

G∑
g=1

N∑
r=1

1
r
Pr

{
Pkj ≤ g

N
α, RG(−k) = g − 1, R = r

}

=
G∑

k=1

∑

j∈J0(k)

G∑
g=1

N∑
r=1

gα

rN
Pr

{
RG(−k) = g − 1, R = r

∣∣∣Pkj ≤ g

N
α
}

≤
G∑

k=1

∑

j∈J0(k)

G∑
g=1

N∑
r=1

α

N
Pr

{
RG(−k) = g − 1, R = r

∣∣∣Pkj ≤ g

N
α
}

=
G∑

k=1

∑

j∈J0(k)

G∑
g=1

α

N
Pr

{
RG(−k) = g − 1

∣∣∣Pkj ≤ g

N
α
}

(3)

=
G∑

k=1

∑

j∈J0(k)

G∑
g=1

α

N
Pr

{
RG(−k) = g − 1

}

=
G∑

k=1

∑

j∈J0(k)

α

N
=

N0

N
α ≤ α.

In (3), the fifth equality follows from the assumption that Pkj is distributed as U(0, 1) when it

corresponds to a background pixel, the first inequality follows from the fact that RG ≤ R, and

the seventh equality follows from the independence assumption of the groups. This proves the

theorem under independence of the groups.

If the groups are not completely independent of each other, we will assume that they are

positively dependent in the following sense:

The conditional expectation

E
{

φ(P(−g))
∣∣Pgj = u

}
, (4)

where P(−g) is the set of p-values corresponding to all pixels except those in the gth group.

Pgj is the jth p-value corresponding to a background pixel in the gth group, and φ(P(−g)) is
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an increasing (coordinatewise) function of all the p-values except those in the gth group, is

non-decreasing in u ∈ (0, 1) for each g and j.

From (3), we note that

FDR ≤
G∑

k=1

∑

j∈J0(k)

G∑
g=1

α

N
Pr

{
RG(−k) = g − 1

∣∣∣Pkj ≤ g

N
α
}

=
G∑

k=1

∑

j∈J0(k)

G∑
g=1

α

N

[
Pr

{
RG(−k) ≥ g − 1

∣∣∣Pkj ≤ g

N
α
}

−Pr
{

RG(−k) ≥ g
∣∣∣Pkj ≤ g

N
α
}]

≤
G∑

k=1

∑

j∈J0(k)

G∑
g=1

α

N

[
Pr

{
RG(−k) ≥ g − 1

∣∣∣Pkj ≤ g − 1
N

α

}

−Pr
{

RG(−k) ≥ g
∣∣∣Pkj ≤ g

N
α
}]

=
G∑

k=1

∑

j∈J0(k)

α

N
=

N0α

N
≤ α.

The second inequality follows from the assumption (4) of positive dependence of groups. This

completes our proof of Theorem 1.
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