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ABSTRACT

We consider the problem of simultaneous testing of null hypotheses associated with

multiple endpoints in the setting of a two-stage adaptive design where the hypothe-

ses are sequentially screened at the first stage as being rejected or accepted based on

boundaries on the false discovery rate (FDR) and the remaining null hypotheses are

tested at the second stage having combined their p-values from the two stages through

some combination function. We propose two procedures to control the false discovery

rate (FDR), extending the Benjamini-Hochberg (BH) procedure and its adaptive ver-

sion incorporating an estimate of the number of true nulls from single-stage to two-stage

setting. These procedures are theoretically proved to control the FDR under the as-

sumption that the pairs of first- and second-stage p-values are independent and those

corresponding to the null hypotheses are identically distributed as a pair (p1, p2) satisfy-

ing the p-clud property of Brannath et al. (2002). We consider two types of combination

function, Fisher’s and Simes’, and present explicit formulas involving these functions



towards carrying out the proposed procedures based on pre-determined critical values

or through estimated FDR’s. Our simulation studies indicate that the proposed pro-

cedures can have significant power improvement over the single-stage BH procedure,

and can continue to control the FDR under some dependence situations. Application

of the proposed procedures to a real gene expression data set produces more discoveries

compared to the single-stage BH procedure.

Keywords: Combination test; early rejection and acceptance boundaries; false dis-

covery rate; multiple testing; stepwise multiple testing procedure; two-stage adaptive

design.

1 INTRODUCTION

Gene association or expression studies that usually involve a large number of endpoints

(i.e., genetic markers) are often quite expensive. Multi-stage adaptive design with its

feature of being cost effective and efficient, since genes are being allowed to be screened

in early stages and selected genes are being further investigated in later stages using

additional observations, has become more and more attractive in such genetic studies.

To address the multiplicity concern in simultaneous testing of the hypotheses associated

with the endpoints, controlling the familywise error rate (FWER), the probability of at

least one type I error among all hypotheses, is a commonly applied concept. However,

these studies are often explorative, so controlling the false discovery rate (FDR), which

is the expected proportion of type I errors among all rejected hypotheses, is more appro-

priate than controlling the FWER (Weller et al., 1998; Benjamini and Hochberg, 1995;

and Storey and Tibshirani, 2003). Moreover, with large number of hypotheses typically

being tested in these studies, better power can be achieved in a multiple testing method

under the FDR framework than under the more conservative FWER framework.

Adaptive designs with multiple endpoints have been considered in the literature

under both the FWER and FDR frameworks. Miller et al. (2001) suggested using a two-

stage design in gene experiments, and proposed using the Bonferroni method to control

the FWER in testing the hypotheses selected at the first stage, although only the second

stage observations are used for this method. This was later improved by Satagopan and

Elston (2003) by incorporating the first stage data through group sequential schemes
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in the final Bonferroni test. Zehetmayer et al. (2005) considered a two-stage adaptive

design where promising hypotheses are selected using a constant rejection threshold

for each p-value at the first stage and an estimation based approach to controlling the

FDR asymptotically (as the number of hypotheses goes to infinity) was taken (Storey,

2002; Storey et al., 2004) at the second stage to test the selected hypotheses using

more observations. Zehetmayer et al. (2008) have extended this work from two-stage

to multi-stage adaptive designs under both FDR and FWER frameworks, and provided

useful insights into the power performance of optimized multi-stage adaptive designs

with respect to the number of stages, and into the power difference between optimized

integrated design and optimized pilot design. Posch et al. (2009) showed that a data-

dependent sample size increase for all the hypotheses simultaneously in a multi-stage

adaptive design has no effect on the asymptotic (as the number of hypotheses goes to

infinity) control of the FDR if the hypotheses to be rejected are determined only by the

test at the final interim analysis, under all scenarios except the global null hypothesis

when all the null hypotheses are true.

Construction of methods with the FWER or FDR control in the setting of a two-

stage adaptive design allowing reduction in the number of tested hypotheses at the

interim analysis has been discussed, as a sperate issue from sample size adaptations,

in Bauer and Kieser (1999) and Kieser, Bauer and Lehmacher (1999) , who presented

methods with the FWER control, and in Victor and Hommel (2007) who focused on

controlling the FDR in terms of a generalized global p-values. We revisit this issue

in the present paper, but focusing primarily on the FDR control in a non-asymptotic

setting (with the number of hypothesis not being infinitely large).

Our motivation behind this paper lies in the fact that the theory presented so far

(see, for instance, Victor and Hommel, 2007) towards developing an FDR controlling

procedure in the setting of a two-stage adaptive design with combinations tests does

not seem to be as simple as one would hope for. Moreover, it does not allow setting

boundaries on the FDR at the first stage and operate in a manner that would be

a natural extension of standard single-stage FDR controlling methods, like the BH

(Benjamini and Hochberg, 1995) or methods related to it, from a single-stage to a two-

stage design setting. So, we consider the following to be our main problem in this

paper:
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To construct an FDR controlling procedure for simultaneous testing of the

null hypotheses associated with multiple endpoints in the setting of a two-

stage adaptive design where the hypotheses are sequentially screened at the

first stage as being rejected or accepted based on prescribed thresholds on

the FDR, and the null hypotheses that are left out at the first stage are

again sequentially tested at the second stage having combined their p-values

from the two stages through a combination function.

We propose two FDR controlling procedures, one extending the original single-stage

BH procedure, which we call the BH-TSADC Procedure (BH type procedure for two-

stage adaptive design with combination tests), and the other extending an adaptive

version of the single-stage BH procedure incorporating an estimate of the number of

true null hypotheses, which we call the Plug-In BH-TSADC Procedure, from single-

stage to a two-stage setting. Let (p1i, p2i) be the pair of first- and second-stage p-

values corresponding to the ith null hypothesis. We provide a theoretical proof of

the FDR control of the proposed procedures under the assumption that the (p1i, p2i)’s

are independent and those corresponding to the true null hypotheses are identically

distributed as (p1, p2) satisfying the p-clud property (Brannath et al., 2002), and some

standard assumption on the combination function. We consider two special types of

combination function, Fisher’s and Simes’, which are often used in multiple testing

applications, and present explicit formulas for probabilities involving them that would

be useful to carry out the proposed procedures at the second stage either using critical

values that can be determined before observing the p-values or based on estimated

FDR’s that can be obtained after observing the p-values.

We carried out extensive simulations to see how well the proposed procedures control

the FDR and perform in terms of power compared to the BH method based on the first-

stage p-values under independence, and whether or not they can continue to control

the FDR under the different types of (positive) dependence among the underlying test

statistics we consider, such as equal, clumpy and AR(1) dependence. Our simulation

studies indicate that between the two proposed procedures, the BH-TSADC seems to

be the better choice in terms of controlling the FDR and power improvement over the

single-stage BH procedure when π0, the proportion of true nulls, is large. If π0 is not
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large, the Plug-In BH-TSADC procedure is better, but it might loose the FDR control

when the p-values exhibit equal or AR(1) type dependence with a large equal- or auto-

correlation.

We applied the proposed procedures to reanalyze the data on multiple myeloma

considered before by Zehetmayer et al. (2008), of course, for a different purpose. The

data consist of a set of 12625 gene expression measurements for each of 36 patients with

bone lytic lesions and 36 patients in a control group without such lesions. We considered

this data in a two-stage framework, with the first 18 subjects per group for Stage 1 and

the next 18 per group for Stage 2. With some pre-chosen early rejection and acceptance

boundaries, these procedures produce significantly more discoveries than single-stage

BH procedure at the same FDR level.

The article is organized as follows. We review some basic results on the FDR con-

trol in a single-stage design in Section 2, present our proposed procedures in Section

3, discuss the results of simulations studies in Section 4, and illustrate the real data

application in Section 5. We make some concluding remarks in Section 6 regarding the

approach we have taken in this paper to construct our procedures, contrasting it with

other possible approaches. We give proofs of theorems and propositions in Appendix.

2 CONTROLLING THE FDR IN A SINGLE-STAGE DE-

SIGN

Suppose that there are m endpoints and the corresponding null hypotheses Hi, i =

1, . . . , m, are to be simultaneously tested based on their respective p-values pi, i =

1, . . . , m, obtained in a single-stage design. The FDR of a multiple testing method that

rejects R and falsely rejects V null hypotheses is E(FDP), where FDP = V/ max{R, 1}
is the false discovery proportion. Multiple testing is often carried out using a stepwise

procedure defined in terms of p(1) ≤ · · · ≤ p(m), the ordered p-values. With H(i) the null

hypothesis corresponding to p(i), a stepup procedure with critical values γ1 ≤ · · · ≤ γm

rejects H(i) for all i ≤ k = max{j : p(j) ≤ γj}, provided the maximum exists; otherwise,

it accepts all null hypotheses. A stepdown procedure, on the other hand, with these

same critical values rejects H(i) for all i ≤ k = max{j : p(i) ≤ γi for all i ≤ j}, provided

the maximum exists, otherwise, accepts all null hypotheses. The following are formulas
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for the FDR’s of a stepup or single-step procedure (when the critical values are same

in a stepup procedure) and a stepdown procedure in a single-stage design, which can

guide us in developing stepwise procedures controlling the FDR in a two-stage design.

We will use the notation FDR1 for the FDR of a procedure in a single-stage design.

Result 1. (Sarkar, 2008). Consider a stepup or stepdown method for testing m null

hypotheses based on their p-values pi, i = 1, . . . , m, and critical values γ1 ≤ · · · ≤ γm

in a single-stage design. The FDR of this method is given by

FDR1 ≤
∑

i∈J0

E

[
I(pi ≤ γ

R
(−i)
m−1(γ2,...,γm)+1

)

R
(−i)
m−1(γ2, . . . , γm) + 1

]
, (1)

with the equality holding in the case of stepup method, where I is the indicator function,

J0 is the set of indices of the true null hypotheses, and R
(−i)
m−1(γ2, . . . , γm) is the number

of rejections in testing the m− 1 null hypotheses other than Hi based on their p-values

and using the same type of stepwise method with the critical values γ2 ≤ · · · ≤ γm.

With pi having the cdf F (u) when Hi is true, the FDR of a stepup or stepdown

method with the thresholds γi, i = 1, . . . , m, under independence of the p-values, satis-

fies the following:

FDR1 ≤
∑

i∈J0

E

(
F (γ

R
(−i)
m−1(γ2,...,γm)+1

)

R
(−i)
m−1(γ2, . . . , γm) + 1

)
. (2)

When F is the cdf of U(0, 1) and these thresholds are chosen as γi = iα/m, i = 1, . . . ,m,

the FDR equals π0α for the stepup and is less than or equal to π0α for the stepdwon

method, where π0 is the proportion of true nulls, and hence the FDR is controlled at

α. This stepup method is the so called BH method (Benjamini and Hochberg, 1995),

the most commonly used FDR controlling procedure in a single-stage deign.. The FDR

is bounded above by π0α for the BH as well as its stepdown analog under certain type

of positive dependence condition among the p-values (Benjamini and Yekutieli, 2001;

Sarkar, 2002, 2008).

The idea of improving the FDR control of the BH method by plugging into it a

suitable estimate π̂0 of π0, that is, by considering the modified p-values π̂0pi, rather than

the original p-values, in the BH method, was introduced by Benjamini and Hochberg
6



(2000), which was later brought into the estimation based approach to controlling the

FDR by Storey (2002). A number of such plugged-in versions of the BH method with

proven and improved FDR control mostly under independence have been put forward

based on different methods of estimating π0 (for instance, Benjamini, Krieger, Yekutieli,

2006; Storey, Taylor and Siegmund, 2004; and Blanchard and Roquain, 2009).

3 CONTROLLING THE FDR IN A TWO-STAGE ADAP-

TIVE DESIGN

Now suppose that the m null hypotheses Hi, i = 1, . . . , m, are to be simultaneously

tested in a two-stage adaptive design setting. When testing a single hypothesis, say

Hi, the theory of two-stage combination test can be described as follows: Given p1i,

the p-value available for Hi at the first stage, and two constants λ < λ′, make an early

decision regarding the hypothesis by rejecting it if p1i ≤ λ, accepting it if p1i > λ′, and

continuing to test it at the second stage if λ < p1i ≤ λ′. At the second stage, combine p1i

with the additional p-value p2i available for Hi using a combination function C(p1i, p2i)

and reject Hi if C(p1i, p2i) ≤ γ, for some constant γ. The constants λ, λ′ and γ are

determined subject to a control of the type I error rate by the test.

For simultaneous testing, we consider a natural extension of this theory from single

to multiple testing. More specifically, given the first-stage p-value p1i corresponding

to Hi for i = 1, . . . , m, we first determine two thresholds 0 ≤ λ̂ < λ̂′ ≤ 1, stochastic

or non-stochastic, and make an early decision regarding the hypotheses at this stage

by rejecting Hi if p1i ≤ λ̂, accepting Hi if p1i > λ̂′, and continuing to test Hi at the

second stage if λ̂ < p1i ≤ λ̂′. At the second stage, we use the additional p-value p2i

available for a follow-up hypothesis Hi and combine it with p1i using the combination

function C(p1i, p2i). The final decision is taken on the follow-up hypotheses at the

second stage by determining another threshold γ̂, again stochastic or non-stochastic,

and by rejecting the follow-up hypothesis Hi if C(p1i, p2i) ≤ γ̂. Both first-stage and

second-stage thresholds are to be determined in such a way that the overall FDR is

controlled at the desired level α.

Let p1(1) ≤ · · · ≤ p1(m) be the ordered versions of the first-stage p-values, with H(i)

being the null hypotheses corresponding to p1(i), i = 1, . . . , m, and qi = C(p1i, p2i). We
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describe in the following a general multiple testing procedure based on the above theory,

before proposing our FDR controlling procedures that will be of this type.

A General Stepwise Procedure.

1. For two non-decreasing sequences of constants λ1 ≤ · · · ≤ λm and λ′1 ≤ · · · ≤ λ′m,

with λi < λ′i for all i = 1, . . . , m, and the first-stage p-values p1i, i = 1, . . . ,m,

define two thresholds as follows: R1 = max{1 ≤ i ≤ m : p1(j) ≤ λj for all j ≤ i}
and S1 = max{1 ≤ i ≤ m : p1(i) ≤ λ′i}, where 0 ≤ R1 ≤ S1 ≤ m and R1 or

S1 equals zero if the corresponding maximum does not exist. Reject H(i) for all

i ≤ R1, accept H(i) for all i > S1, and continue testing H(i) at the second stage

for all i such that R1 < i ≤ S1.

2. At the second stage, consider q(i), i = 1, . . . , S1 − R1, the ordered versions of

the combined p-values qi = C(p1i, p2i), i = 1, . . . , S1 − R1, for the follow-up null

hypotheses, and find R2(R1, S1) = max{1 ≤ i ≤ S1 − R1 : q(i) ≤ γR1+i}, given

another non-decreasing sequence of constants γr1+1(r1, s1) ≤ · · · ≤ γs1(r1, s1), for

every fixed r1 < s1. Reject the follow-up null hypothesis H(i) corresponding to

q(i) for all i ≤ R2 if this maximum exists, otherwise, reject none of the follow-up

null hypotheses.

Remark 1. We should point out that the above two-stage procedure screens out the null

hypotheses at the first stage by accepting those with relatively large p-values through

a stepup procedure and by rejecting those with relatively small p-values through a

stepdown procedure. At the second stage, it applies a stepup procedure to the combined

p-values. Conceptually, one could have used any type of multiple testing procedure to

screen out the null hypotheses at the fisrt stage and to test the follow-up null hypotheses

at the second stage. However, the particular types of stepwise procedure we have chosen

at the two stages provide flexibility in terms of developing a formula for the FDR and

eventually determining explicitly the thresholds we need to control the FDR at the

desired level.

Let V1 and V2 denote the total numbers of falsely rejected among all the R1 null

hypotheses rejected at the first stage and the R2 follow-up null hypotheses rejected at
8



the second stage, respectively, in the above procedure. Then, the overall FDR in this

two-stage procedure is given by

FDR2 = E

[
V1 + V2

max{R1 + R2, 1}
]

.

The following theorem (to be proved in Appendix) will guide us in determining the

first- and second-stage thresholds in the above procedure providing a control of FDR2

at the desired level. This is the procedure that will be one of those we propose in this

article.

Theorem 1. The FDR of the above general multiple testing procedure satisfies the

following inequality

FDR2 ≤
∑

i∈J0

E

[
I(p1i ≤ λ

R
(−i)
1 +1

)

R
(−i)
1 + 1

]
+

∑

i∈J0

E




I(λ
R̃

(−i)
1 +1

< p1i ≤ λ′
S

(−i)
1 +1

, qi ≤ γ
R̃

(−i)
1 +R

(−i)
2 +1,S−i

1 +1
)

R̃
(−i)
1 + R

(−i)
2 + 1


 ,

where R
(−i)
1 is defined as R1 in terms of the m−1 first-stage p-values {p11, . . . , p1m}\{p1i}

and the sequence of constants λ2 ≤ · · · ≤ λm, R̃
(−i)
1 and S

(−i)
1 are defined as R1 and

S1, respectively, in terms of {p11, . . . , p1m} \ {p1i} and the two sequences of constants

λ1 ≤ · · · ≤ λm−1 and λ′2 ≤ · · · ≤ λ′m, and R
(−i)
2 is defined as R2 with R1 replaced

by R̃
(−i)
1 and S1 replaced by S

(−i)
1 + 1 and noting the number rejected follow-up null

hypotheses based on all the combined p-values except the qi and the critical values other

than the first one; that is,

R
(−i)
2 ≡ R

(−i)
2 (R̃(−i)

1 , S
(−i)
1 + 1)

= max{1 ≤ j(6= i) ≤ S
(−i)
1 − R̃

(−i)
1 + 1 : q

(−i)
(j) ≤ γ

R̃
(−i)
1 +j+1

(R̃(−i)
1 , S

(−i)
1 + 1)},

where q
(−i)
(j) ’s are the ordered versions of the combined p-values for the follow-up null

null hypotheses except the qi.
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3.1 BH Type Procedures

We are now ready to propose our FDR controlling multiple testing procedures in a two-

stage adaptive design setting with combination function. Before that, let us state some

assumptions we need.

Assumption 1. The combination function C(p1, p2) is non-decreasing in both ar-

guments.

Assumption 2. The pairs (p1i, p2i), i = 1, . . . ,m, are independently distributed and

the pairs corresponding the null hypotheses are identically distributed as (p1, p2) with

a joint distribution that satisfies the ‘p-clud’ property (Brannath et al., 2002), that is,

Pr (p1 ≤ u) ≤ u and Pr (p2 ≤ u | p1) ≤ u for all 0 ≤ u ≤ 1. (3)

Let us define

H(c; t, t′) =
∫ t′

t

∫ 1

0
I(C(u1, u2) ≤ c)du2du1.

Definition 1. (BH-TSADC Procedure: The BH type procedure for two-stage adap-

tive design with combination tests).

1. Given the level α at which the FDR is to be controlled, three sequences of constants

λi = iλ/m, i = 1, . . . ,m, λ′i = iλ′/m, i = 1, . . . , m, for some prefixed λ < α < λ′,

and γr1+1,s1 ≤ · · · ≤ γs1,s1 , satisfying

H(γr1+i,s1 ; λr1 , λ
′
s1

) =
(r1 + i)(α− λ)

m
, (4)

i = 1, . . . , s1 − r1, for every fixed 1 ≤ r1 < s1 ≤ m, find R1 = max{1 ≤ i ≤ m :

p1(j) ≤ λj for all j ≤ i} and S1 = max{1 ≤ i ≤ m : p1(i) ≤ λ′i}, with R1 or S1

being equal to zero if the corresponding maximum does not exist.

2. Reject H(i) for i ≤ R1; accept H(i) for i > S1; and continue testing H(i) for

R1 < i ≤ S1 making use of the additional p-values p2i’s available for all such

follow-up hypotheses at the second stage.

3. At the second stage, consider the combined p-values qi = C(p1i, p2i) for the follow-

up null hypotheses. Let q(i), i = 1, . . . , S1 −R1, be their ordered versions. Reject
10



H(i) [the null hypothesis corresponding to q(i)] for all i ≤ R2(R1, S1) = max{1 ≤
j ≤ S1 − R1 : q(j) ≤ γR1+j,S1}, provided this maximum exists, otherwise, reject

none of the follow-up null hypotheses.

Proposition 1. Let π0 be the proportion of true null hypotheses. Then, the FDR

of the BH-TSADC method is less than or equal to π0α, and hence controlled at α, if

Assumptions 1 and 2 hold.

The proposition is proved in Appendix.

The BH-TSADC procedure can be implemented alternatively, and often more con-

veniently, in terms of some FDR estimates at both stages. With R(1)(t) = #{i : p1i ≤ t)

and R(2)(c; t, t′) = #{i : t < p1i ≤ t′, C(p1i, p2i) ≤ c}, let us define

F̂DR1(t) =





mt
R(1)(t)

if R(1)(t) > 0

0 if R(1)(t) = 0,

and F̂DR2(c; t, t′) =





mH(c;t,t′)
R(1)(t)+R(2)(c;t,t′) if R(2)(c; t, t′) > 0

0 if R(2)(c; t, t′) = 0,
(5)

Then, we have the following:

The BH-TSADC procedure: An alternative description. Reject H(i) for all i ≤ R1 =

max{1 ≤ k ≤ m : F̂DR1(p1(j)) ≤ λ for all j ≤ k}; accept H(i) for all i > S1 = max{1 ≤
k ≤ m : F̂DR1(p1(k)) ≤ λ′}; continue to test H(i) at the second stage for all i such that

R1 < i ≤ S1. Reject H(i), the follow-up null hypothesis corresponding to q(i), at the sec-

ond stage for all i ≤ R2(R1, S1) = max{1 ≤ k ≤ S1−R1 : F̂DR2(q(k); R1λ/m,S1λ
′/m) ≤

α− λ}.

Remark 1. The BH-TSADC procedure is an extension of the BH procedure, from

a method of controlling the FDR in a single-stage design to that in a two-stage adaptive

design with combination tests. When λ = 0 and λ′ = 1, that is, when we have a single-

stage design based on the combined p-values, this method reduces to the usual BH

method. Notice that F̂DR1(t) is a conservative estimate of the FDR of the single-step

test with the rejection pi ≤ t for each Hi. So, the BH-TSADC procedure screens out

those null hypotheses as being rejected (or accepted) at the first stage the estimated
11



FDR’s at whose p-values are all less than or equal to λ (or greater than λ′).

Clearly, the BH-TSADC procedure can potentially be improved in terms of having

a tighter control over its FDR at α by plugging a suitable estimate of π0 into it while

choosing the second-stage thresholds, similar to what is done for the BH method in a

single-stage design. As said in Section 2, there are different ways of estimating π0, each

of which has been shown to provide the ultimate control of the FDR, of course when

the p-values are independent, by the resulting plugged-in version of the single-stage BH

method (see, e.g., Sarkar, 2008). However, we will consider the following estimate of

π0, which is of the type considered in Storey, Taylor and Siegmund (2004) and seems

natural in the context of the present adaptive design setting where m − S1 of the null

hypotheses are accepted as being true at the first stage:

π̂0 =
m− S1 + 1
m(1− λ′)

. (6)

The following theorem gives a modified version of the the BH-TSADC procedure using

this estimate.

Definition 2. (Plug-In BH-TSADC Procedure: A plug-in version of the BH-TSADC

procedure).

Consider the BH-TSADC procedure with the sequences of contacts λi = iλ/m,

i = 1, . . . ,m, and λ′i = iλ′/m, i = 1, . . . , m, given 0 ≤ λ < λ′ ≤ 1, providing the

early decision thresholds R1 and S1, and the second-stage critical values γ∗R1+i,

i = 1, . . . , S1 −R1, satisfying

H(γ∗R1+i,S1
; λR1 , λ

′
S1

) =
(R1 + i)(α− λ)

mπ̂0
. (7)

for i = 1, ..., S1 −R1.

Proposition 2. The FDR of the Plug-In BH-TSADC method is less than or equal

to α if Assumptions 1 and 2 hold.

A proof of this proposition is given in Appendix.

As in the BH-TSADC procedure, the Plug-In BH-TSADC procedure can also be
12



described alternatively using estimated FDR’s at both stages. Let

F̂DR
∗
2(c; t, t

′) =





mπ̂0H(c;t,t′)
R(1)(t)+R(2)(c;t,t′) if R(2)(c; t, t′) > 0

0 if R(2)(c; t, t′) = 0,
(8)

Then, we have the following:

The Plug-In BH-TSADC procedure: An alternative description. At the first stage,

decide the null hypotheses to be rejected, accepted, or continued to be tested at the

second stage based on F̂DR1, as in (the alternative description of) the BH-TSADC

procedure. At the second stage, reject H(i), the follow-up null hypothesis corresponding

to q(i), for all i ≤ R∗
2(R1, S1) = max{1 ≤ k ≤ S1 − R1 : F̂DR

∗
2(q(k); R1λ/m,S1λ

′/m) ≤
α− λ}.

3.2 Two Special Combination Functions

We now present explicit formulas of H(c; t, t′) for two special combination functions -

Fisher’s and Simes’ - often used in multiple testing applications.

Fisher’s combination function: C(p1, p2) = p1p2.

HFisher(c; t, t′) =
∫ t′

t

∫ 1

0
I(C(u1, u2) ≤ c) du2du1

=





c ln
(

t′
t

)
if c < t

c− t + c ln
(

t′
c

)
if t ≤ c < t′

t′ − t if c ≥ t′ ,

(9)

for c ∈ (0, 1).
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Simes’ combination function: C(p1, p2) = min {2min(p1, p2),max(p1, p2)}.

HSimes(c; t, t′) =
∫ t′

t

∫ 1

0
I(C(u1, u2) ≤ c)du2du1

=





c
2(t′ − t) if c ≤ t

c( t′
2 − t) + c2

2 if t < c ≤ min(2t, t′)

c(t′ − t) if t′ < c ≤ 2t

c
2(1 + t′)− t if 2t < c ≤ t′

c
2(1 + 2t′)− c2

2 − t if max(2t, t′) ≤ c ≤ 2t′

t′ − t if c ≥ 2t′,

(10)

for c ∈ (0, 1).

These formulas are given in Chen, Sarkar and Bretz (2010) and can be used to

determine the critical values γi’s before observing the combined p-values or to estimate

the FDR after observing the combined p-values at the second stage in the BH-TSADC

and Plug-In BH-TSADC procedures with Fisher’s and Simes’ combination functions.

Of course, for large values of m, it is numerically more challenging to determine the γi’s

than estimating the FDR at the second stage, and so in that case we would recommend

using the alternative versions of these procedures.

To illustrate what or how to determine the critical values at the two stages in the

BH-TSADC procedure for relatively small values of m, and also to see how the second

stage critical values compare between Fisher’s and Simes combination functions, we

consider testing m = 5 null hypotheses in a two-stage adaptive design setting using these

combination functions with λ = 0.025, λ′ = 0.5, and α = 0.05. The first stage critical

values in these procedures for the stepdown test are λr1 = 0.005r1, r1 = 0, 1, . . . , 5, and

for the stepup test are λ′s1
= 0.1s1, s1 = 1, . . . , 5. The values of γr1+i,s1 , i = 1, . . . , s1−r1,

satisfying the equation HFisher(γr1+i,s1 ; 0.005r1, 0.1s1) = (r1 + i)0.025/m for Fisher’s

combination function and the equation HSimes(γr1+i,s1 ; 0.005r1, 0.1s1) = (r1+i)0.025/m

for Simes combination function, for different pairs (r1, s1), where r1 < s1 = 0, 1, . . . , 5,

are presented in Table 1.

It is to be noted that the combined p-value based on Fisher’s combination function is

stochastically smaller than that based on Simes’ combination function, and so in Table

1 the second stage critical values corresponding to Fisher’s combination function are
14



always seen to be smaller than those corresponding to Simes’ combination function. Of

course, it does not necessarily mean that Simes’ combination function is always a better

choice in our proposed procedures.

4 SIMULATION STUDIES

This section presents the results of simulation studies we conducted to investigate the

following two questions related to the proposed procedures:

Q1. How well do the proposed BH-TSADC and Plug-In BH-TSADC procedures per-

form under independence compared to the single-stage BH procedure in terms of

FDR control and power?

Q2. Can the proposed BH-TSADC and Plug-In BH-TSADC procedures continue to

control the FDR for dependent p-values?

To investigate Q1, (i) we generated two independent sets of m uncorrelated random

variables Zi ∼ N(µi, 1), i = 1, . . . , m, one for Stage 1 and the other for Stage 2, having

set mπ0 of these µi’s at zero and the rest at 2, (ii) tested Hi : µi = 0 against Ki : µi > 0,

simultaneously for i = 1, . . . ,m, by applying the (alternative versions of) BH-TSADC

and Plug-In BH-TSADC procedures at level α with both Fisher’s and Simes combination

functions, λ = 0.025, and λ′ = 0.5 to the generated data for both stages and the level

α BH procedure to the data for the first stage, and (iii) noted the false discovery

proportion and the proportion of false nulls that are rejected. We repeated steps (i)-

(iii) 1000 times and averaged out the above proportions over these 1000 runs to obtain

the final simulated values of FDR and average power (the expected proportion of false

nulls that are rejected) for each of these procedures.

The simulated FDR’s and average powers for these three procedures have been

graphically displayed in Figures 1 and 2. Figure 1 compares the proposed BH-TSADC

and Plug-In BH-TSADC procedures with Fisher’s and Simes combination functions

with those of the BH procedure for different values of π0, α = 0.05, and m = 10, 100,

and 1000, in terms of the simulated FDR, while Figure 2 does the same in terms of the

simulated average power.
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In our simulation study to investigate Q2, we considered three different scenarios

for dependent p-values. In particular, we generated two independent sets of m = 100

correlated normal random variables Zi ∼ N(µi, 1), i = 1, . . . , m, one for Stage 1 and

the other for Stage 2, with mπ0 of the µi’s being equal to 0 and the rest being equal

to 2, and a correlation matrix exhibiting one of three different types of dependence -

equal, clumpy and autoregressive of order one [AR(1)] dependence. In other words,

the Zi’s were assumed to have a common, non-negative correlation ρ in case of equal

dependence, were broken up into ten independent groups with 10 of the Zi’s within

each group having a common, non-negative correlation ρ in case of clumpy dependence,

and were assumed to have correlations ρij = Cor(Zi, Zj) of the form ρij = ρ|i−j| for

all i 6= j = 1, . . . , m, and some non-negative ρ in case of AR(1) dependence. We then

applied the (alternative versions of) BH-TSADC and Plug-In BH-TSADC procedures

at level α = 0.05 with both Fisher’s and Simes combination functions, λ = 0.025, and

λ′ = 0.5 to these data sets. These two steps were repeated 1000 times before obtaining

the simulated FDR’s and average powers for these procedures, as in our study related

to Q1.

Figures 3-5 graphically display the simulated FDR’s of these procedures for different

values of π0 and types of dependent p-values considered.

As seen from all these figures, the proposed procedures with Fisher’s combination

function seem to have slight edge over the corresponding ones with Simes’ combination

function in terms of FDR control and power. Between these two procedures, whether

it’s based on Fisher’s or Simes’ combination function, the BH-TSADC appears to be

the better choice when π0 is large, which is often the case in practice. It controls the

FDR not only under independence, which is theoretically known, but also the FDR

control seems to be maintained even under different types of positive dependence. Also,

it provides a better power improvement over the single-stage BH procedure. If, however,

π0 is not large, the Plug-In BH-TSADC procedure provides a better control of the FDR

and its power improvement over the single-stage BH procedure seems more significant

than the BH-TSDADC procedure; of course, it may loose the FDR control when the

p-values exhibit equal or AR(1) type dependence with a moderately large equal- or

auto-correlation.
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5 A REAL DATA APPLICATION

To illustrate how the proposed procedures can be implemented in practice, we reanalyzed

a dataset taken from an experiment by Tian et al. (2003) and post-processed by Jeffery

et al. (2006). Zehetmayer et al. (2008) considered this data for a different purpose. In

this data set, multiple myeloma samples were generated with Affymetrix Human U95A

chips, each consisting 12625 probe sets. The samples were split into two groups based

on the presence or absence of focal lesions of bone.

The original dataset contains gene expression measurements of 36 patients without

and 137 patients with bone lytic lesions, However, in our reanalysis, we used the gene

expression measurements of 36 patients with bone lytic lesions and a control group of

the same sample size without such lesions. We considered this data in a two-stage

framework, with the first 18 subjects per group for Stage 1 and the next 18 subjects per

group for Stage 2. We prefixed the Stage 1 early rejection boundary λ at 0.025 and the

early acceptance boundary λ′ at 0.5, and applied the proposed (alternatives versions of)

BH-TSADC and plug-in BH-TSADC procedures at the overall FDR level 0.05.

In particular, we considered all m = 12625 probe set gene expression measure-

ments at Stage 1 and analyzed them based on a stepdown procedure with the critical

values λi = i0.025/m, i = 1, . . . ,m, and a steup procedure with the critical values

λ′i = i0.5/m, i = 1, . . . , m, using the corresponding p-values generated from one-sided t-

tests. We noted the probe sets that were rejected by the stepdown procedure and those

that were accepted by the stepup procedure. With these numbers being r1 and m− s1,

respectively, we took the probe sets that were neither rejected by the stepdown proce-

dure nor accepted by the stepup procedure, that is, the probe sets with the first-stage

p-values more than r1λ/m but less than or equal to s1λ
′/m, for further analysis using

estimated FDR based on their first-stage and second-stage p-values combined through

Fisher’s and Simes’ combination functions, as described in the alternative versions of

the BH-TSADC and plug-in BH-TSADC procedures.

The results of this analysis are reported in Table 2. As seen from this table, the BH-

TSADC procedure with Fisher’s combination function and its plug-in version produce

144 and 93 discoveries, respectively; whereas, these numbers are 40 and 32, respectively,

for the Simes’ combination function. These numbers are significantly much larger than
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18, the number of discoveries made by the single-stage BH procedure.

6 CONCLUDING REMARKS

Our main goal in this article has been to construct a two-stage multiple testing procedure

that allows making early decisions on the null hypotheses, in terms of rejection, accep-

tance or continuation to the second stage for further testing with more observations,

and eventually controls the FDR. Such two-stage formulation of multiple testing is of

practical importance in many statistical investigations; nevertheless, generalizations of

the classical BH type methods from single-stage to the present two-stage setting, which

seem to be the most natural procedures to consider, have not been put forward until the

present work. We have been able to construct two such generalizations and provided

proofs of their FDR control and simulation and practical examples of their improved

power performances compared to the corresponding single-stage BH type methods un-

der independence. We also have presented numerical evidence that they can maintain

a control over the FDR even under some dependence situations.

It is important to emphasize that the theory behind the developments of our pro-

posed two-stage FDR controlling methods has been driven by the idea of setting the

early decision boundaries λ < λ′ on the FDR of the first-stage p-values, rather than on

these p-values themselves. In other words, we reject (or accept) those null hypotheses at

the first stage at whose p-values the estimated FDR’s are all less than or equal to λ (or

greater than λ′); see Remark 1. This, we would argue, is often practical and meaningful

when we are testing multiple hypotheses in two-stages with a view to controlling the

overall FDR.

Brannath et al. (2002) have defined a global p-value p̃(p1, p2) for testing a single

hypothesis in a two-stage adaptive design with combination function C(p1, p2). With

the boundaries λ < λ′ set on each p1i, the global p-value for each Hi is defined by

p̃i ≡ p̃i(p1i, p2i) =





p1i if p1i ≤ λ or p1i > λ′

λ + H(C(p1i, p2i);λ, λ′) if λ < p1i ≤ λ′ .
(11)

They have shown that each p̃i is stochastically larger than or equal to U(0, 1) when

(p1i, p2i) satisfies the p-clud property, and the equality holds when p1i and p2i are
18



independently distributed as U(0, 1). So, one may consider the BH method based on

the p̃i’s. This would control the overall FDR under the assumptions considered in the

paper, maybe under some positive dependence conditions as well. However, it does not

set the early decision boundaries on the FDR.

One may consider taking an estimation based approach to the present problem as

follows. An estimated global FDR at (p1, p2) = (t, t′) when testing multiple hypotheses

in a two-stage adaptive design with combination function C(p1, p2) can be defined in

the spirit of the above global p-value by

F̂DR12(c, t, t′) =





mπ̂0c
R(1)(c)∨1

if c ≤ t or c > t′

mπ̂0[t+H(c;t,t′)]
[R(1)(t)+R(2)(c;t,t′)]∨1

if t < c ≤ t′ ,
(12)

for some estimate π̂0 of π0. Let

t̂λ = sup{c ≤ t : F̂DR12(c′, t, t′) ≤ λ for all c′ ≤ c}

t̂λ′ = inf{c > t′ : F̂DR12(c′, t, t′) > λ′ for all c′ > c},

and ĉα(λ, λ′) = sup{t̂λ < c ≤ t̂λ′ : F̂DR12(c, t̂λ, t̂λ′) ≤ α}. (13)

Then, reject Hi if p1i ≤ t̂λ or if C(p1i, p2i) ≤ ĉα(λ, λ′) and t̂λ < p1i ≤ t̂λ′ . This may

control the overall FDR asymptotically under the weak dependence condition and the

consistency property of π̂0 (as in Storey et al., 2004).

7 Appendix

Proof of Theorem 1.

FDR2 = E

[
V1 + V2

max{R1 + R2, 1}
]

≤ E

[
V1

max{R1, 1}
]

+ E

[
V2

max{R1 + R2, 1}
]

.
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Now,

E

[
V1

max{R1, 1}
]

=
∑

i∈J0

E

[
I(p1i ≤ λR1)
max{R1, 1}

]

=
∑

i∈J0

E

[
I(p1i ≤ λR1)
max{R1, 1}

]
≤

∑

i∈J0

E

[
I(p1i ≤ λ

R
(−i)
1 +1

)

R
(−i)
1 + 1

]
;

(as shown in Sarkar, 2008; see also Result 1). And,

E

[
V2

max{R1 + R2, 1}
]

=
∑

i∈J0

E

[
I(λR1+1 < p1i ≤ λ′S1

, qi ≤ γR1+R2,S1 , S1 > 0, S1 > R1, R2 > 0)
R1 + R2

]
. (14)

Writing R2 more explicitly in terms of R1 and S1, we see that the expression in (14)

is equal to

∑

i∈J0

m∑

s1=1

s1−1∑

r1=0

s1−r1∑

r2=1

E

[
I(λr1+1 < p1i ≤ λ′s1

, qi ≤ γr1+r2 , R1 = r1, S1 = s1, R2(r1, s1) = r2)
r1 + r2

]

=
∑

i∈J0

m∑

s1=1

s1−1∑

r1=0

s1−r1∑

r2=1

E

[
I(λr1+1 < p1i ≤ λ′s1

, qi ≤ γr1+r2 , R̃
(−i)
1 = r1, S

(−i)
1 = s1 − 1, R

(−i)
2 (r1, s1) = r2 − 1)

r1 + r2

]

=
∑

i∈J0

m−1∑

s1=0

s1∑

r1=0

s1−r1∑

r2=0

E

[
I(λr1+1 < p1i ≤ λ′s1+1, qi ≤ γr1+r2+1,s1+1, R̃

(−i)
1 = r1, S

(−i)
1 = s1, R

(−i)
2 (r1, s1 + 1) = r2)

r1 + r2 + 1

]

=
∑

i∈J0

E




I(λ
R̃

(−i)
1 +1

< p1i ≤ λ′
S

(−i)
1 +1

, qi ≤ γ
R̃

(−i)
1 +R

(−i)
2 +1,S

(−i)
1 +1

)

R̃
(−i)
1 + R

(−i)
2 + 1


 .

(15)

Thus, the theorem is proved.

Proof of proposition 1. As seen from Theorem 1 and the assumptions made in
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the proposition,

FDR2 ≤
∑

i∈J0

E

[
PrH(p1 ≤ λ

R
(−i)
1 +1

)

R
(−i)
1 + 1

]
+

∑

i∈J0

E




PrH(λ
R̃

(−i)
1 +1

< p1 ≤ λ′
S

(−i)
1 +1

, C(p1, p2) ≤ γ
R̃

(−i)
1 +R

(−i)
2 +1,S

(−i)
1 +1

)

R̃
(−i)
1 + R

(−i)
2 + 1




≤
∑

i∈J0

E

[
λ

R
(−i)
1 +1

)

R
(−i)
1 + 1

]
+

∑

i∈J0

E




Pr(λ
R̃

(−i)
1 +1

< u1 ≤ λ′
S

(−i)
1 +1

, C(u1, u2) ≤ γ
R̃

(−i)
1 +R

(−i)
2 +1,S

(−i)
1 +1

)

R̃
(−i)
1 + R

(−i)
2 + 1


 .

(16)

Now, note that the first sum in (16) is less than or equal to π0λ, since λ
R

(−i)
1 +1

=

[R(−i)
1 + 1]λ/m, and the second summation is less than or equal to π0(α− λ), since the

probability in the numerator in this summation is equal to

H(γ
R̃1

(−i)
+R

(−i)
2 +1,S

(−i)
1 +1

; λ
R̃1

(−i)
+1

, λ′
S

(−i)
1 +1

)

=

[
R̃

(−i)
1 + 1 + R

(−i)
2

]
(α− λ)

m
. (17)

Thus, the theorem is proved.

Proof of Proposition 2. This can be proved as in Proposition 1. More specifi-

cally, first note that the FDR here, which we call the FDR∗
2, satisfies the following:

FDR∗
2 ≤

∑

i∈J0

E

[
I(p1i ≤ λ

R
(−i)
1 +1

)

R
(−i)
1 + 1

]
+

∑

i∈J0

E




I(λ
R̃

(−i)
1 +1

≤ p1i ≤ λ′
S

(−i)
1 +1

, qi ≤ γ∗
R̃

(−i)
1 +R

∗(−i)
2 +1,S

(−i)
1 +1

)

R̃
(−i)
1 + R

∗(−i)
2 + 1


 ,(18)

where

R
∗(−i)
2 ≡ R

∗(−i)
2 (R̃(−i)

1 , S
(−i)
1 + 1)

= max{1 ≤ j( 6= i) ≤ S
(−i)
1 − R̃

(−i)
1 + 1 : q

(−i)
(j) ≤ γ∗

R̃
(−i)
1 +j+1,S

(−i)
1 +1

},
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with q
(−i)
(j) being the ordered versions of the combined p-values except the qi. As in

Proposition 1, the first sum is less than or equal to π0λ, while the second sum is less

than or equal to

∑

i∈J0

E




H(γ
R̃

(−i)
1 +R

∗(−i)
2 +1,S

(−i)
1 +1

; λ
R̃

(−i)
1 +1

, λ′
S

(−i)
1 +1

)

R̃
(−i)
1 + R

∗(−i)
2 + 1




= (α− λ)
∑

i∈J0

E

[
1− λ′

m− S
(−i)
1

]
≤ π0(α− λ),

since E[ 1−λ′

m−S
(−i)
1

] ≤ 1−λ′mπ0

m ; see, for instance, Sarkar (2008).
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Table 1: The second stage critical values γr1+i,s1 , i = 1, . . . , s1 − r1, for
different r1 < s1 in testing m = 5 null hypotheses using the BH-TSADC
procedure based on Fisher’s (Simes’) combination function with prefixed
early stopping boundaries λ = 0.025 and λ′ = 0.5 and the FDR level α =
0.05.

r1 s1 γr1+1 γr1+2 γr1+3 γr1+4 γr1+5

0 1 0.0009
(0.0091)

2 0.0008 0.0017
(0.0083) (0.0167)

3 0.0007 0.0016 0.0026
(0.0077) (0.0154) (0.0231)

4 0.0007 0.0015 0.0025 0.0035
(0.0071) (0.0143) (0.0214) (0.0286)

5 0.0006 0.0015 0.0024 0.0033 0.0044
(0.0067) (0.0130) (0.0200) (0.0267) (0.0333)

1 2 0.0027
(0.0250)

3 0.0024 0.0037
(0.0231) (0.0308)

4 0.0023 0.0034 0.0046
(0.0214) (0.0286) (0.0357)

5 0.0022 0.0033 0.0043 0.0054
(0.0200) (0.0267) (0.0333) (0.0400)

2 3 0.0044
(0.0385)

4 0.0041 0.0054
(0.0357) (0.0429)

5 0.0038 0.0051 0.0064
(0.0333) (0.0400) (0.0467)

3 4 0.0061
(0.0500)

5 0.0057 0.0071
(0.0467) (0.0533)

4 5 0.0078
(0.0600)
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Table 2: The results of two-stage combination tests with Fisher’s and Simes’
combination functions with prefixed early stopping boundaries λ = 0.025 and
λ′ = 0.5 and the FDR level α = 0.05 of 12625 probe sets in the Affymetrix
Human U95A Chips data taken from Tian et al. (2003).

Fisher’s Simes’
Plug-in Plug-in

BH-TSADC BH-TSADC BH-TSADC Plug-in BH-TSADC Single-Stage BH
Stage 1 Rejection 4 4 4 4 18

Acceptance 10520 10520 10520 10520 12607
Stage 2 Rejection 140 89 36 28 NA

Acceptance 1961 2012 2065 2073 NA
Total Rejection 144 93 40 32 18
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Figure 1: Comparison of simulated FDR’s of BH-TSADC and Plug-In BH-
TSADC procedures with Fisher’s and Simes’ combination functions, prefixed
early stopping boundaries λ = 0.025 and λ′ = 0.5 with simulated FDR of
single-stage BH procedure, for m = 10, 100, and 1000, and α = 0.05. [BH-
TSADC: solid line, Plug-In BH-TSADC: dashed line, and BH: dotted line.]
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Figure 2: Comparison of simulated average power of BH-TSADC and Plug-
In BH-TSADC procedures with Fisher’s and Simes’ combination functions,
prefixed early stopping boundaries λ = 0.025 and λ′ = 0.5 with the simulated
average power of single-stage BH procedure, for m = 10, 100, and 1000, and
α = 0.05. [BH-TSADC: solid line, Plug-In BH-TSADC: dashed line, and
BH: the dotted.]
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Figure 3: Comparison of simulated FDR of BH-TSADC and Plug-In BH-
TSADC procedures with Fisher’s and Simes’ combination functions under
equal dependence with early stopping boundaries λ = 0.025 and λ′ = 0.5,
m = 100, and α = 0.05. [Solid line: ρ = 0; dash line: ρ = 0.2; dotted line:
ρ = 0.4; dotdash line: ρ = 0.6; long-dash line: ρ = 0.8; and two-dash line:
ρ = 1.]
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Figure 4: Comparison of simulated FDR of BH-TSADC and Plug-In BH-
TSADC procedures with Fisher’s and Simes’ combination functions under
clumpy dependence with early stopping boundaries λ = 0.025 and λ′ = 0.5,
m = 100, and α = 0.05. [Solid line: ρ = 0; dash line: ρ = 0.2; dotted line:
ρ = 0.4; dotdash line: ρ = 0.6; long-dash line: ρ = 0.8; and two-dash line:
ρ = 1.]
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Figure 5: Comparison of simulated FDR of BH-TSADC and Plug-In BH-
TSADC procedures with Fisher’s and Simes’ combination functions under
AR(1) dependence with early stopping boundaries λ = 0.025 and λ′ = 0.5,
m = 100, and α = 0.05. [Solid line: ρ = 0; dash line: ρ = 0.2; dotted line:
ρ = 0.4; dotdash line: ρ = 0.6; long-dash line: ρ = 0.8; and two-dash line:
ρ = 1.]
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