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Non-inferiority trials are becoming very popular for comparative effectiveness research. 
Non-inferiority trials establish that the effect of an experimental treatment is not worse 
than that of a reference treatment by more than a specified margin. A three-arm 
non-inferiority trial that includes the placebo, experimental treatment, and a reference 
treatment is considered. It has been criticized that the conventional approach for three-
arm non-inferiority trials loses power for the non-inferiority hypothesis test unless the 
power of the assay sensitivity test is close to one. In order to overcome this situation, a 
novel hierarchical testing procedure with two stages for three-arm non-inferiority trials is 
developed. The family-wise error rate (FWER) is investigated analytically and numerically 
of the proposed test procedure. Numerical studies indicate that the suggested method 
controls FWER and has more power than the traditional approach particularly when the 
power of that assay sensitivity test is not close to one. Through these empirical studies, it 
is shown that the proposed method can be successfully applied in practice.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

One can show the superiority of an experimental treatment over a reference treatment, or when the superiority of 
an experimental treatment over a reference treatment is not evident, one can show that the experimental treatment is 
non-inferior to that reference treatment. An experimental treatment’s effect is declared to be non-inferior to the effect 
of reference treatment when the effect of the experimental treatment on an endpoint is not worse than the effect of a 
reference treatment on that same endpoint by more than a specified margin. A clinical trial used to evaluate whether an 
experimental treatment’s effect is non-inferior to the effect of a reference treatment is called a non-inferiority trial. A ran-
domized, double-blind placebo-controlled trial is the gold standard in the determination of efficacy and the risk-benefit 
profile of an investigational drug (EMA (2005); FDA (2016)). A placebo-controlled trial is considered appropriate in the 
absence of a reference treatment. However, a placebo-controlled trial would be unethical when there is an available ref-
erence treatment (WMA (1997)). In the presence of a reference treatment, experimental treatment is compared with a 
reference treatment. However, the absence of the placebo in an active-controlled trial arises assay sensitivity (D‘Agostino et 
al. (2003)). For a detailed description of the problem, see D‘Agostino et al. (2003) and Hung et al. (2003). Assay sensitiv-
ity refers to the ability of a trial to distinguish between effective and ineffective treatments. To establish the effectiveness 
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of experimental treatment based on its similarity to the reference treatment, an active-controlled trial assumes constancy 
assumption, i.e., the patient population in the current active-controlled trial and the past placebo-control trial remains un-
changed (D‘Agostino et al. (2003)). However, it is not always straightforward to validate this constancy assumption. As a 
consequence, it is often recommended to include the placebo in an active-controlled trial whenever it is feasible and ethi-
cally justifiable, as mentioned in several regulatory guidelines (EMA (2005)). These three-arm non-inferiority trials are often 
considered to avoid the complications described above. A three-arm non-inferiority trial is optimal in the sense that: (i) it 
is free from the constancy assumption, (ii) the effect of the experimental treatment can be directly assessed, and (iii) the 
effect of an experimental treatment can be compared to the effect of active control. Following the footstep of Koch and 
Rohmel (2004), Pigeot et al. (2003) introduced a systematic approach for constructing a test for three-arm non-inferiority 
trials, known as fraction margin-based non-inferiority testing, where the non-inferiority margin is the pre-specified negative 
fraction of the unknown effect size of the reference treatment over placebo in the current three-arm trial. This fraction 
margin approach is a two-step hierarchical procedure. The first step tests the superiority of the reference treatment over 
a placebo. The first step gives the internal validation of assay sensitivity (AS). The rejection of the null hypothesis or the 
confirmation of AS in step one leads to testing the non-inferiority (NI) experimental treatment to the reference treatment. 
Kieser and Friede (2007) demonstrates that due to this hierarchical structure of the multiple testing problem (AS and NI) in 
the fraction margin-based approach, the pretest of assay sensitivity may lead to a reduction in power when testing for NI. 
This finding of Kieser and Friede (2007) motivates us to develop a novel hierarchical testing procedure method for conduct-
ing fraction margin-based NI testing. The proposed method tests the NI hypothesis at a significance level α/β whenever 
the AS hypothesis is significant at level α, where β denotes the power associated with AS test. We demonstrate that the 
suggested hierarchical testing method controls family-wise error rate (FWER) at level α asymptotically. For the practical im-
plementation, we estimate the power of AS test using the bootstrap method whenever AS hypothesis is significant. Through 
extensive simulation studies, we provide numerical evidence of the acceptable performance of the proposed procedures in 
terms of the FWER control and power.

The rest of the article is organized as follows. Section 2 reviews the fraction margin-based non-inferiority testing and 
develops the proposed hierarchical testing method for three-arm NI trials. Section 3 reports the empirical findings under 
different scenarios in detail. Section 4 considers a data example. A discussion follows in Section 5. For brevity, derivations 
of the theoretical results are provided in Appendix.

2. A hierarchical testing method for the assessment of three-arm NI trials

2.1. Fraction margin based non-inferiority testing

To facilitate the discussion of a three-arm non-inferiority trial, we assume that XE,i , XR, j , and X P ,k (i = 1, . . . , nE , j =
1, . . . , nR , k = 1, . . . , nP ) denote the observations corresponding to the treatment response in the experimental (E), reference 
(R), and placebo (P) groups, respectively. For simplicity, we assume that the observations of all three arms are continuous, 
however, the suggested methods can be extended effortlessly to other types of responses such as binary, count etc. We 
assume that

XE,i
iid∼ F E(·), XR, j

iid∼ F R(·), and X P ,k
iid∼ F P (·),

where Fl(·) are continuous distribution functions of Xl , l ∈ {E, R, P }. Let μl = E(Xl) denote the mean response of the arm 
l. We assume that the variances σ 2

l are finite. Without loss of generality, we assume that the large values of the mean 
responses represent desirable outcomes. Commonly, non-inferiority is assessed by considering the test problem

HNI,0 : μE − μR ≤ δ vs HNI,1 : μE − μR > δ, (1)

where δ < 0 denotes a prespecified clinically relevant margin. With the inclusion of the placebo arm to an active-controlled 
trial, the construction of δ via fraction margin approach (see Pigeot et al. (2003)) can be mathematically expressed as 
δ = f (μR − μP ) by assuming the assay sensitivity, μR > μP ; where f ∈ (−1, 0). Reasonable choices of f include − 1

2 , − 1
3 , 

− 1
5 but must be guided by practical and clinical considerations. The hypotheses (1) can be rewritten using the expression 

for δ as follows

HNI,0 : μE − μP

μR − μP
≤ θ vs HNI,1 : μE − μP

μR − μP
> θ, (2)

by assuming μR − μP > 0; where θ = 1 + f , known as the retention fraction. The ratio, (μE − μP )/(μR − μP ), of the 
differences in means measures the proportion of efficacy retained by the experimental treatment. A positive but small 
value of this ratio might lead to the conclusion that the reference treatment should be the standard and the experimental 
treatment should not be widely adopted although it provides some benefit over placebo. However, when (μE − μP )/(μR −
μP ) > 1 the experimental treatment provides more benefit than the active control. For the derivation of the statistical test 
procedures for the test problem (2), it is helpful to express (2) as:
2
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HNI,0 : μE − θμR − (1 − θ)μP ≤ 0 vs HNI,1 : μE − θμR − (1 − θ)μP > 0. (3)

The existing frequentist methods (Pigeot et al. (2003); Hasler et al. (2008); Hida and Tango (2011); Ghosh et al. (2017)) for 
the test problem (3) do not incorporate the pretested AS, μR − μP > 0, though NI and AS test statistics are correlated. This 
disintegration between test problem (3) and the pretested AS condition can lead to a less powerful test method for the NI 
test (3) unless the power of the pretest is close to unity (Kieser and Friede (2007)). In the next section we introduce a novel 
procedure for test problem (3) which incorporates the pretested AS condition.

2.2. Methodology

Let X̄R , X̄ P , and X̄E denote the sample means corresponding to the samples {XR, j}, {X P ,k}, and {XE,i}, respectively. Let 
σ̂ 2

R , σ̂ 2
P , and σ̂ 2

E be the sample variances based on the samples {XR, j}, {X P ,k}, and {XE,i}, respectively, where

σ̂ 2
l = (nl − 1)−1

nl∑
i=1

(Xl,i − X̄l)
2,

and l ∈ {P , R, E}. Let TAS = X̄R − X̄ P√
σ̂ 2

R /nR+σ̂ 2
P /nP

be the test statistic for the following assay sensitivity testing

HAS,0 : μR − μP ≤ 0 vs HAS,1 : μR − μP > 0. (4)

Let

TNI = X̄E − θ X̄R − (1 − θ) X̄ P√
σ̂ 2

E
nE

+ θ2σ̂ 2
R

nR
+ (1−θ)2σ̂ 2

P
nP

denote the test statistic for testing problem (3). Pigeot et al. (2003)’s fractional margin approach based hypothesis testing (3)
is performed provided we reject HAS,0. Thus, the pretested AS condition acts as a gatekeeper for the non-inferiority testing 
problem (3). To test the AS and NI hypotheses, the suggested test procedure uses the following sequential steps:

Step 1: To test HAS,0, if TAS > c1, reject HAS,0; otherwise, stop.
Step 2: If HAS,0 is rejected, test HNI,0. If TNI > c2, reject HNI,0; otherwise, accept HNI,0.

The pertinent choices for c1 and c2 are determined through controlling the familywise error rate (FWER), the probability of 
making at least one type I errors, when performing hierarchical testing HAS,0 and HNI,0. The FWER requirement is

FWER = P{Reject at least one true HAS,0, HNI,0} ≤ α, (5)

where α ∈ (0, 1).
Lemma 2.1 provides choices for c1 and c2. For mathematical easiness, Lemma 2.1 considers controlling the FWER on the 

boundary conditions, H B
AS,0 : μR − μP = 0, and H B

NI,0 : μE − θμR − (1 − θ)μP = 0, of the AS and NI AS null hypotheses. We 
provide a discussion on FWER control in the interior of the AS and NI null hypotheses in Theorem 2.1.

Lemma 2.1. Let denote β = β(μR − μP ) = PHAS,1 (T A S > c1), the power of the assay sensitivity test at fixed μR − μP > 0. Suppose 
that thresholds c1 and c2 are chosen by satisfying the equations

PH B
AS,0

(TAS > c1) = α and PHAS,1∩H B
NI,0

(TNI > c2|TAS > c1) = α

β
.

Let E = {Reject at least one true H B
AS,0, H

B
NI,0}. Then

PH B
AS,0∩H B

NI,0
(E) = PH B

AS,0∩H B
NI,1

(E) = PHAS,1∩H B
NI,0

(E) = α, and PHAS,1∩HNI,1(E) = 0.

Lemma 2.1 guarantees that the existence of c1 and c2 that give exact control of the FWER at level α under the boundary 
conditions of HAS,0 and HNI,0 hypotheses. The thresholds c1 and c2 are in Lemma 2.1 are optimal in the sense that c1 and 
c2 cannot be improved without losing control on α, the level of the FWER. However, it is not possible to obtain expressions 
for c1 and c2 when the distributions of the samples from the three-arms are unknown. It is worth mentioning that it would 
not be easy to compute the finite sample distribution of T N I |T A S ≥ c1 for normally distributed samples. Hence, it is required 
to obtain consistent estimators for c1 and c2 for the practical implementation of the suggested method.

c1 can be easily estimated by zα , the upper α quantile of the standard normal distribution, since the distribution of 
TAS is asymptotically N(0,1) as nR + nP → ∞. The following Lemma 2.2 gives the asymptotic distribution of TNI|TAS > zα as 
min{nE , nR , nP } → ∞, which will be used for obtaining a consistent estimator for c2.

Let us denote n = nR + nP + nE and λn,l = nl/n. The asymptotic distribution of TNI|TAS > zα is based on the following 
assumptions as min{nR , nP , nE } → ∞:
3
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A1 λn,l → λl ∈ (0, 1), for l ∈ {E, R, P }.
A2 nR

nR+nP
→ ηR .

A3
√

nR + nP (μR − μP ) → δ ≥ 0.

Lemma 2.2. Let F TNI|TAS>zα (·) denote the condition distribution of TNI given TAS > zα . Under the configuration that HAS,1 and H B
NI,0

are true and under the assumptions A1-A3,

F TNI|TAS>zα (x) → FESN(x) as min{nE ,nR ,nP } → ∞,

for any real x; where FESN(x) is distribution function of the extended skew-normal distribution.

An excellent review of extended skew-normal distribution can be found in (Azzalini (2005, 2014). In our setup, the extended 
skew-normal distribution, FESN(x), has the following density function

fESN(x) = φ(x)

(τ

√
1 + γ 2 + γ x)


(τ )
, x ∈ R,

where τ = δ√
b

− zα , γ = ρ/(1 − ρ2), ρ = 1√
a1a2

[(1 − θ)
σ 2

P
λp

− θ
σ 2

R
λr

] is the asymptotic correlation between TAS and TNI, and

a1 = σ 2
E

λE
+ θ2 σ 2

R

λR
+ (1 − θ)2 σ 2

P

λP
, a2 = σ 2

R

λR
+ σ 2

P

λP
, and b = σ 2

R

ηR
+ σ 2

P

ηP
.

Lemma 2.2 gives a large sample approximation to (1 − α/β)th quantile of the distribution TNI|TAS > zα . Let q(1−α/β) be 
the (1 − α/β) quantile of FESN(x), then q(1−α/β) is a large sample approximation to the c2. Based on these large sample 
estimates to c1 and c2, the suggested hierarchical testing method for HAS,0 and HNI,0 is running as follows,

Step 1: To test HAS,0, if TAS > zα , reject HAS,0; otherwise, stop.
Step 2: If HAS,0 is rejected, test HNI,0. If TNI > q(1−α/β) , reject HNI,0 or declare non-inferiority; otherwise, accept HNI,0.

We call this method asymptotic hierarchical testing (AHT). The next result shows that AHT asymptotically controls FWER at 
any level α.

Theorem 2.1. Set c1 = zα and c2 = q(1−α/β) . Let E = {Reject at least one true H B
AS,0, H

B
NI,0}. Under the assumptions of Lemma 2.2,

lim
min{nE ,nR ,nP }→∞

PH B
AS,0∩H B

NI,0
(E) = lim

min{nE ,nR ,nP }→∞
PH B

AS,0∩HNI,1
(E) = lim

min{nE ,nR ,nP }→∞
PHAS,1∩H B

NI,0
(E) = α,

and

lim
min{nE ,nR ,nP }→∞

PHAS,1∩HNI,1(E) = 0.

Theorem 2.1 establishes that the suggested AHT method asymptotically controls FWER for the boundary cases, μR −μP =
0 and μE − θμR − (1 − θ)μP = 0 of HAS,0 and HNI,0, respectively. However, when μR − μP is an interior point of (−∞, 0],

lim
min{nR ,nP }→∞

P (TAS > zα) = 0.

This can be observed from fact that

TAS = X̄R − X̄ P√
σ̂ 2

R /nR + σ̂ 2
P /nP

= ( X̄R − μR) − ( X̄ P − μP )√
σ̂ 2

R /nR + σ̂ 2
P /nP

+ μR − μP√
σ̂ 2

R /nR + σ̂ 2
P /nP

→ −∞ in probability,

since by CLT, ( X̄R−μR )−( X̄ P −μP )√
σ̂ 2

R /nR+σ̂ 2
P /nP

converges in distribution to N(0,1) distribution, and μR−μP√
σ̂ 2

R /nR+σ̂ 2
P /nP

→ −∞ in probability as 

min{nR , nP } → ∞.
For μE − θμR − (1 − θ)μP < 0 and μR − μP > 0,

lim
min{nR ,nP ,nE }→∞

P (TAS > q1−α/β |TAS > zα) = 0.

Because
4
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TNI = ( X̄E − μE) − θ( X̄R − μR) − (1 − θ)( X̄ P − μP )√
σ̂ 2

E
nE

+ θ2σ̂ 2
R

nR
+ (1−θ)2σ̂ 2

P
nP

+ μE − θμR − (1 − θ)μP√
σ̂ 2

E
nE

+ θ2σ̂ 2
R

nR
+ (1−θ)2σ̂ 2

P
nP

→ −∞

in probability as min{nR , nP , nE } → ∞. Thus, we can conclude that the asymptotic FWER of AHT is 0 when either μR − μP

or μE − θμR − (1 − θ)μP is an interior point of (−∞, 0], and consequently we have

lim
min{nE ,nR ,nP }→∞

P (Reject at least one true HAS,0, HNI,0} ≤ α.

Numerically in Table 3, we show that AHT controls FWER for large sample sizes when either μR − μP or μE − θμR −
(1 − θ)μP is an interior point of (−∞, 0].

Another crucial observation is that β appears in AHT method and Theorem 2.1 is unknown, and hence β is required to 
estimate to apply the method. To facilitate the discussion of estimation of β , let us take

μR − μP = c

√
σ 2

R

nR
+ σ 2

P

nP
,

where c > 0 is a constant. Under this setup β can be expressed as

β = P

(
T̃AS + μR − μP√

σ̂ 2
R

nR
+ σ̂ 2

P
nP

> zα

)
= P

(
T̃AS + c

√
σ 2

R /nR + σ 2
P /nP

σ̂ 2
R /nR + σ̂ 2

P /nP
> zα

)
,

where T̃AS = ( X̄R− X̄R )−( X̄ P − X̄ P )√
σ̂ 2

R /nR+σ̂ 2
P /nP

. Under the assumption of finiteness of the fourth order moment of the distributions Fl(·),

σ̂ 2
l = σ 2

l + O p(n−1/2
l ), (6)

l ∈ {R, P }. From assumption A2, (6) and a simple application of a Taylor series expansion, we may deduce that√
σ 2

R /nR + σ 2
P /nP

σ̂ 2
R /nR + σ̂ 2

P /nP
= 1 + O p((nR + nP )−1/2). (7)

Using (7), β can be expressed as

β = P (T̃AS + c(1 + O p((nR + nP )−1/2)) > zα)

= P (T̃AS + c + O p((nR + nP )−1/2 > zα)

= P (T̃AS > zα − c) + O ((nR + nP )−1/2)),

the last line follows from an application of delta method (Hall (1992)).
We apply the bootstrap to estimate β . To simplify the discussion on the bootstrap estimate of β , let X̄∗

R , and σ̂ ∗2
R denote 

the bootstrap version of X̄R , and σ̂ 2
R , computed from a resample {X∗

R,1, . . . , X
∗
R,nR

} from {XR,1, . . . , XR,nR }. Similarly, X̄∗
P , and 

σ̂ ∗2
P are the versions of X̄ P , and σ̂ 2

P , computed from a {X∗
P ,1, . . . , X

∗
P ,nP

} from {X P ,1, . . . , X P ,nP }. The bootstrap version of 

T̃AS + c

√
σ 2

R /nR+σ 2
P /nP

σ̂ 2
R /nR+σ̂ 2

P /nP
is

T̃ ∗
AS + ĉ

√
σ̂ 2

R /nR + σ̂ 2
P /nP

σ̂ ∗2
R /nR + σ̂ ∗2

P /nP
,

where T̃ ∗
AS = ( X̄∗

R−μR )−( X̄∗
P −μP )√

σ̂ ∗2
R /nR+σ̂ ∗2

P /nP

and ĉ = X̄R− X̄ P√
σ̂ 2

R /nR+σ̂ 2
P /nP

. The bootstrap estimate of β is

β̂B = P∗
(

T̃ ∗
AS + ĉ

√
σ̂ 2

R /nR + σ̂ 2
P /nP

σ̂ ∗2
R /nR + σ̂ ∗2

P /nP
> zα

)
,

where P∗(A) denotes the conditional probability of the event A given {XR,1, . . . , XR,nR }, and {X P ,1, . . . , X P ,nP }. Under the 
assumption of finiteness of the fourth order moment, we can have

σ̂ ∗2 = σ̂ 2 + O p(n−1/2
), (8)
l l l

5
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l ∈ {R, P }. Under the assumption A2 along with (8) and a simple application of a Taylor series expansion, we can have the 

expansion of 
√

σ̂ 2
R /nR+σ̂ 2

P /nP

σ̂ ∗2
R /nR+σ̂ ∗2

P /nP
as below

√
σ̂ 2

R /nR + σ̂ 2
P /nP

σ̂ ∗2
R /nR + σ̂ ∗2

P /nP
= 1 + O p((nR + nP )−1/2). (9)

Using (9), β̂B can be

P∗
(

T̃ ∗
AS + c

√
σ̂ 2

R /nR + σ̂ 2
P /nP

σ̂ ∗2
R /nR + σ̂ ∗2

P /nP
> zα

)
= P∗

(
T̃ ∗

AS + c(1 + O p((nR + nP )−3/2)) > zα

)

= P∗
(

T̃ ∗
AS + c > zα

)

= P∗
(

T̃ ∗
AS > zα − c

)
+ O ((nR + nP )−1/2)), (10)

the last line follows from an application of delta method (Hall (1992)). The bootstrap estimate P∗
(

T̃ ∗
AS > zα −c

)
of P

(
T̃AS >

zα − c

)
is second order correct (Hall and Martin (1988)), i.e. P∗

(
T̃ ∗

AS > zα − c

)
= P

(
T̃AS > zα − c

)
+ O p((nR + nP )−1)), so 

(10) implies that

P∗
(

T̃ ∗
AS + c

√
σ̂ 2

R /nR + σ̂ 2
P /nP

σ̂ ∗2
R /nR + σ̂ ∗2

P /nP
> zα

)
= P

(
T̃AS > zα − c

)
+ O p((nR + nP )−1/2)) = β + O p((nR + nP )−1/2)).

Hence β̂B is a consistent estimator of β . We may easily deduce that AHT asymptotically controls FWER at level α if is 
replaced by β̂B .

Due to the nonexistence of explicit expression of β̂B , we can use Monte Carlo approximation to β̂B . Let {X∗
R,b =

(X∗
R,1, . . . , X

∗
R,nR

), b = 1, . . . , M}, and {X∗
P ,b = (X∗

P ,1, . . . , X
∗
P ,nP

), b = 1, . . . , M} denote M independent and identically dis-
tributed resamples from {XR,1, . . . , XR,nR }, and {X P ,1, . . . , X P ,nP }, respectively. The Monte Carl approximation bootstrap 
estimate to β̂B is then

β̂B = 1

M

M∑
b=1

I(T̃ ∗
AS,b > zα − X̄R − X̄ P√

σ̂ 2
R /nR + σ̂ 2

P /nP

).

Let T̃ ∗
AS,1, . . . , T̃

∗
AS,M be the M values of TAS based M bootstrap samples of where I(·) is the indicator function, and T̃ ∗

AS,b =
( X̄∗

R,b− X̄R )−( X̄∗
P ,b− X̄ P )√

σ̂ ∗2
R,b/nR+σ̂ ∗2

P ,b/nP

.

Alternative to the bootstrap estimate of β is based on the normality approximation to the distribution of TAS under HAS,1. 
The normal approximation based estimate of β can obtained as follows

β̂N = 1 − 


(
zα − X̄R − X̄ P√

σ̂ 2
R /nR + σ̂ 2

P /nP

)
.

In our simulation, we observe that β̂B gives better control on FWER of the AHT than that of β̂N . Thus, empirical FWER and 
power of the AHT are reported using the estimate β̂B of β . We now analyze the power of AHT method.

Theorem 2.2. Let π1,n = P(TAS > zα, TNI > q(1−α/β)|HAS,1, HNI,1) denote the power of AHT. Let limmin{nE ,nR ,nP }→∞ π1,n = π1,∞ . 
Then

(a) π1,∞ = 1.
(b) Let μE − θμR − (1 − θ)μp = h

n . Under the assumptions A1-A3, then the asymptotic power of AHT has expression

π1,∞ =
[

1 − 


(
zα − δ√

)][
1 − FESN

(
q(1−α/β) − h√

)]
,

a2 a1

6
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Fig. 1. Power curve of ATH procedure as function of ρ; nE = 100,nR = 100,nP = 100.

Theorem 2.2(a) confirms that the AHT method is consistent against the alternative hypotheses in the sense that when 
min{nE , nR , nP } → ∞ AHT sets forth the non-inferiority of the experiment treatment when both the alternative hypotheses 
HAS,1 and HNI,1 are true. Theorem 2.2(b) considers the local asymptotic power of AHT. It reflects the characteristic that the 
AHT’s power is between α and one when the values of μR − μP , and μE − θμR − (1 − θ)μP are close to the boundary 
between the parameter spaces corresponding to the null and alternative hypotheses. By using the power function in Theo-
rem 2.2(b), we can also compute the approximated power of AHT at μR − μP and μE − θμR − (1 − θ)μP using equating 
μR − μP = δ

nR+np
, and μE − θμR − (1 − θ)μp = h

n . The next result discuss the effect of asymptotic correlation ρ , between 
TAS and TNI, on asymptotic power of AHT.

Corollary 2.1. Under the setup of Theorem 2.2(b),

π1,∞ is an increasing function of ρ when ρ > 0,

and

π1,∞ is a decreasing function of ρ when ρ < 0.

The expression of ρ is discussed in Theorem 2.2. Corollary 2.1 establishes the asymptotic power of AHT for fixed values 
of μR − μP and μE − θμR − (1 − θ)μP , π1,n increases with increased values of ρ when ρ is positive and π1,n decreases 
with increased values of ρ when ρ is negative.

Fig. 1 illustrates Corollary 2.1 for large nR , nP , and nE . The powers π1,n of AHT are approximated for different values of 
ρ using the expression in Theorem 2.2(b). Left side of the figure was generated under X P ∼normal(2,5), XR ∼normal (2.8, 
5), and XR ∼normal (2.88, 3). Right side of the figure was generated under X P ∼ Exp (1/2), XR ∼ Exp(1/2.8), and XE ∼Exp 
(1/2.88). The figure shows that the asymptotic power of AHT is a decreasing and also is an increasing function of ρ when 
ρ < 0, and ρ > 0, respectively.

3. Simulation study

In this section we present empirical results based on simulated data. We compare the suggested AHT method with 
(Pigeot et al. (2003)) and Hasler et al. (2008)). For our convenience we refer the Pigeot et al. (2003) and Hasler et al. (2008)
tests as the traditional (tradi) and Hasler, respectively. We considered three scenarios to generate the data. In Scenario 1, XE , 
7
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Table 1
The powers of assay sensitivity test at 2.5% level.

Sample Sizes (nE = nR = nP = 100) (nE = 150,nR = 150,nP = 75) (nE = nR = nP = 300)

Scenario 1 0.72 0.72 0.99
Scenario 2 0.71 0.71 0.99
Scenario 3 0.64 0.69 0.98

Sample Sizes (nE = nR = nP = 100) (nE = 150nR = 150nP = 75) (nE = nR = nP = 300)

Method = AHT Case 2 Case 2 Case 2

Scenario 1 0.81 0.75 0.99
Scenario 2 0.80 0.80 0.99
Scenario 3 0.72 0.78 0.99

Table 2
Empirical FWER at 2.5% level corresponding to the configuration HAS,1 ∩ H B

NI,0.

Sample Sizes (nE = nR = nP = 100) (nE = 150nR = 150nP = 75) (nE = nR = nP = 300)

Method = AHT Case 1 Case1 Case1

Scenario 1 0.023 0.021 0.025
Scenario 2 0.017 0.021 0.024
Scenario 3 0.023 0.022 0.026

Sample Sizes (nE = nR = nP = 100) (nE = 150nR = 150nP = 75) (nE = nR = nP = 300)

Method = AHT Case 2 Case 2 Case 2

Scenario 1 0.023 0.026 0.024
Scenario 2 0.022 0.019 0.027
Scenario 3 0.026 0.022 0.028

Table 3
Empirical FWER at 2.5% level corresponding to the configuration HAS,1 ∩ H I

NI,0 corresponding to Scenario 1.

Sample Sizes (nE = nR = nP = 100) (nE = 150nR = 150nP = 75) (nE = nR = nP = 300)

Method=AHT Case 1 Case1 Case1

μE − θμR − (1 − θ)μP = −0.02 0.021 0.018 0.014
μE − θμR − (1 − θ)μP = −0.04 0.016 0.012 0.010
μE − θμR − (1 − θ)μP = −0.54 0 0 0

Sample Sizes (nE = nR = nP = 100) (nE = 150nR = 150nP = 75) (nE = nR = nP = 300)

Method = AHT Case 2 Case 2 Case 2

μE − θμR − (1 − θ)μP = −0.02 0.020 0.016 0.012
μE − θμR − (1 − θ)μP = −0.04 0.018 0.015 0.012
μE − θμR − (1 − θ)μP = −0.54 0 0 0

XR , and X P were generated from normal(μE , 3), normal(μR , 5), and normal(μp, 5). In Scenario 2, XE , XR , and X P were 
generated from double-exponential (μE , 1.2), double-exponential (μR , 1.6), and double-exponential (μP , 1.6). In Scenario 3, 
XE , XR , and X P were generated from Exp(1/μE ), Exp(1/μR), and Exp(1/μp). Scenarios 2 and 3 consider heavier tailed 
distributions and skewed distributions, respectively. Second and third scenarios assess the robustness of our method and its 
nonparametric extension.

Under each scenario, we considered two cases. In Cases 1, the value of the pair (μR , μP ) was set at (2.8, 2) and in Case 2, 
we chose (μR , μP ) as (2.9, 2). For each combination of scenario and case, we considered three sets of the triple (nE , nR , nP ). 
They were (100, 100, 100), (150, 150, 75), and (300, 300, 300). The powers of the assay sensitivity test corresponding to the 
Case 1 and Case 2 are displayed in Table 1.

Under each combination of scenarios, cases, and sample sizes, the empirical FWERs for AHT method were computed 
based on 2000 random samples. And empirical powers of AHT, tradi, and Hasler were also calculated based on 2000 random 
samples. To evaluate the attained FWER of AHT, we computed empirical FWERs under the configuration HAS,1 ∩ HNI,0 with 
θ = 0.8. Empirical FWERs are reported in Tables 2-3.

For a given value of (μR , μP ), we examined powers of AHT, tradi, and Hasler at (μE − μP )/(μR − μP ) > 0.80, i.e. the 
powers were calculated at (μE − μP )/(μR − μP ) = 0.90, 1.00, 1.10, 1.20, and 1.50. For computing empirical powers of AHT, 
β = P(TAS > zα |HAS,1) was replaced by its bootstrap estimate β̂B . Along with the empirical powers of AHT, we also reported 
the powers of AHT using the asymptotic formula given in Theorem 2.2 (b). They were displayed in parentheses in Tables 4–6.

Results from simulation data presented in Table 2 displays the empirical FWERs of AHT method under the configuration 
HAS,1 ∩ H B

NI,0, where H B
NI,0 : μE − θμR − (1 − θ)μR = 0. The results in Table 2 show that empirical FWER of AHT method 

are close the nominal size 0.025 under the all scenarios and all the cases, and they range from 0.017 to 0.028. Thus, Table 2
8
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1.20 μE −μP
μR −μP

=1.50

.222)/0.286 (0.281) 0.466 (0.492)/0.601 (0.617)
.192 0.389/0.550
.210 0.367/0.521

P

P
= 1.20 μE −μP

μR −μP
= 1.50

(0.282)/0.350 (0.362) 0.555 (0.581)/0.714(0.712)
/0.306 0.523/0.687
/0.312 0.535/0.674

= 1.20 μE −μP
μR −μP

= 1.50

0.592)/0.700(0.693) 0.966(0.963)/0.990 (0.989)
.694 0.960/0.990
.712 0.970/0.987

9

Table 4
Empirical Power at 2.5% FWER level corresponding to Scenario 1. The bracketed values are asymptotic powers based on Theorem 2.2(b).

nE = nR = nP = 100 μE −μP
μR −μP

=0.90 μE −μP
μR −μP

= 1.00 μE −μP
μR −μP

= 1.10 μE −μP
μR −μP

=

Method Case 1/Case 2

AHT 0.055 (0.049)/0.056 (0.054) 0.093 (0.089)/0.114 (0.104) 0.143 (0.147)/0.171 (0.181) 0.214 (0
tradi 0.028/0.033 0.037/0.073 0.080/0.119 0.143/0
Hasler 0.030/0.031 0.043/0.069 0.081/0.118 0.140/0

nE = 150,nR = 150,nP = 75 μE −μP
μR −μP

=0.90 μE −μP
μR −μP

= 1.00 μE −μP
μR −μP

= 1.10 μE −μ
μR −μ

Method Case 1/Case 2

AHT 0.052 (0.054)/0.064 (0.061) 0.097 (0.106)/0.136(0.128) 0.180 (0.183)/0.235 (0.230) 0.254
tradi 0.040/0.045 0.063/0.102 0.139/0.211 0.213
Hasler 0.031/0.040 0.063/0.101 0.141/0.196 0.217

nE = nR = nP = 300 μE −μP
μR −μP

=0.90 μE −μP
μR −μP

= 1.00 μE −μP
μR −μP

= 1.10 μE −μP
μR −μP

Method Case 1/Case 2

AHT 0.083 (0.079)/0.082(0.089) 0.208 (0.195)/0.249(0.234) 0.389 (0.378)/0.469(0.456) 0.589(
tradi 0.072/0.073 0.183/0.240 0.374/0.461 0.578/0
Hasler 0.080/0.075 0.186/0.230 0.376/0.445 0.585/0
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P

P
= 1.20 μE −μP

μR −μP
=1.50

0.220)/0.277(0.279) 0.435(0.485)/0.594(0.609)
0.215 0.387/0.526
0.212 0.367/0.521

P

P
= 1.20 μE −μP

μR −μP
= 1.50

(0.278)/0.357 (0.357) 0.545 (0.571)/0.690 (0.703)
/0.305 0.514/0.666
5/0.304 0.5260 /0.665

= 1.20 μE −μP
μR −μP

= 1.50

(0.589)/0.700 (0.690) 0.956 (0.961)/0.986 (0.988)
0.690 0.955/0.973
0.701 0.9640/0.991

10
Table 5
Empirical Power at 2.5% FWER level corresponding to Scenario 2. The bracketed values are asymptotic powers based on Theorem 2.2(b).

nE = nR = nP = 100 μE −μP
μR −μP

=0.90 μE −μP
μR −μP

= 1.00 μE −μP
μR −μP

= 1.10 μE −μ
μR −μ

Method Case 1/Case 2

AHT 0.048(0.049)/0.051(0.054) 0.076(0.088)/0.111(0.104) 0.141 (0.146)/0.178(0.180) 0.204(
tradi 0.017/0.027 0.046/0.064 0.071/0.111 0.137/
Hasler 0.018/0.036 0.034/0.063 0.076/0.125 0.131/

nE = 150,nR = 150,nP = 75 μE −μP
μR −μP

=0.90 μE −μP
μR −μP

= 1.00 μE −μP
μR −μP

= 1.10 μE −μ
μR −μ

Method Case 1/Case 2

AHT 0.045 (0.054)/0.062 (0.060) 0.092 (0.106)/0.134 (0.127) 0.163 (0.181)/0.219 (0.228) 0.257
tradi 0.031/0.044 0.069/0.109 0.127/0.181 0.214
Hasler 0.033/0.047 0.0625/0.091 0.1230/0.191 0.210

nE = nR = 300 = nP = 300 μE −μP
μR −μP

=0.90 μE −μP
μR −μP

= 1.00 μE −μP
μR −μP

= 1.10 μE −μP
μR −μP

Method Case 1/Case 2

AHT 0.091(0.079)/0.107 (0.089) 0.213 (0.194)/0.229 (0.232) 0.387 (0.375)/0.457 (0.453) 0.588
tradi 0.077/0.098 0.190/0.225 0.377/0.437 0.570/
Hasler 0.078/0.097 0.173/0.243 0.359 /0.426 0.570/
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= 1.20 μE −μP
μR −μP

=1.50

0.127)/0.137 (0.147) 0.225 (0.255)/0.306 (0.304)
.081 0.154/0.198
.068 0.141/0.195

P

P
= 1.20 μE −μP

μR −μP
= 1.50

(0.162)/0.213(0.209) 0.326 (0.342)/ 0.395 (0.410)
/0.173 0.249/0.331
/0.176 0.2720/ 0.351

= 1.20 μE −μP
μR −μP

= 1.50

(0.322)/0.378 (0.366) 0.702 (0.694)/0.771 (0.778)
0.358 0.682/0.764
0.357 0.6975/0.768

11
Table 6
Empirical Power at 2.5% FWER level corresponding to Scenario 3. The bracketed values are asymptotic powers based on Theorem 2.2(b).

nE = nR = nP = 100 μE −μP
μR −μP

=0.90 μE −μP
μR −μP

= 1.00 μE −μP
μR −μP

= 1.10 μE −μP
μR −μP

Method Case 1/Case 2

AHT 0.040 (0.041)/0.037 (0.043) 0.054 (0.063)/0.065 (0.069) 0.073 (0.092)/0.093 (0.104) 0.103 (
tradi 0.012/0.017 0.021/0.029 0.031/0.049 0.045/0
Hasler 0.012/0.018 0.021 /0.026 0.038/0.052 0.057/0

nE = 150,nR = 150,nP = 75 μE −μP
μR −μP

=0.90 μE −μP
μR −μP

= 1.00 μE −μP
μR −μP

= 1.10 μE −μ
μR −μ

Method Case 1/Case 2

AHT 0.060 (0.066)/0.092 (0.011) 0.098 (0.084)/ 0.112 (0.118) 0.127 (0.113)/0.160 (0.161) 0.159
tradi 0.043/0.067 0.071/0.085 0.087/0.118 0.127
Hasler 0.035/0.058 0.069 /0.083 0.091 /0.117 0.131

nE = nR = 300 = nP = 300 μE −μP
μR −μP

=0.90 μE −μP
μR −μP

= 1.00 μE −μP
μR −μP

= 1.10 μE −μP
μR −μP

Method Case 1/Case 2

AHT 0.062(0.059)/0.074 (0.063) 0.136(0.118)/0.143 (0.132) 0.219 (0.208)/0.233 (0.235) 0.337
tradi 0.045/0.060 0.107/0.126 0.182/0.214 0.317/
Hasler 0.055 /0.059 0.100/0.125 0.180/0.232 0.303/
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confirms that the suggested method controls FWER. Table 3 reports the FWERs under the configuration HAS,1 ∩ H I
NI,0, where 

H I
NI,0 : μE − θμR − (1 − θ)μR < 0, i.e. H I

NI,0 denotes the interior of HNI,0. Table 3 reports empirical FWERs in several interior 
values in (−∞, 0] assumed by μE − θμR − (1 − θ)μR . These empirical FWERs demonstrate that the FWER control of AHT in 
the interior of HNI,0. The empirical FWERs for Scenarios 2 and 3 under the same setup of the Table 3, not given for brevity, 
are broadly similar to Scenario 1.

The empirical powers of AHT, tradi, and Hasler under the different combinations of scenarios and cases are presented in 
Tables 4–6. These tables show that empirical powers and the asymptotic powers of AH are alike. Tables 4–6 indicate that 
AHT method has more power than the tradi and Hasler when the power of assay sensitivity test is less than or close to 80%. 
When the power of assay sensitivity close to 1, AHT method has slightly more power than the tradi and Hasler for smaller 
the values of μE −μP

μR−μP
. In conclusion, Tables 4–6 demonstrate based on our simulated data that the proposed AHT is more 

powerful than the tradi and Hasler.

4. Data example

We consider a study on “Mildly Asthmatic Patients to illustrate our proposed method. This study is discussed in Pigeot 
et al. (2003). The primary outcome variable is FVC (forced vital capacity). The data set consists of experimental (nE = 35), 
reference (nR = 19) and a placebo (nP = 20) groups. The mean, and standard deviation for the outcome variable are 4.32, 
and 1.16 for experimental group. The mean, and standard deviation for the outcome variable for the reference group are 
4.86, and 1.03. For the placebo group the mean, and standard are 3.14 and 0.97. In order to perform non-inferiority testing, 
first step is to establish the superiority of the reference group over the placebo. Since TAS = 5.36 > z0.025 = 1.96, so the 
assay sensitivity is established. According to Pigeot et al. (2003), we chose θ = 0.5, for assessment of noninferiority. The box 
plots of Pigeot et al. (2003) show that the distributions of FVC for the experimental and placebo groups are symmetrical 
whereas the distribution FVC for the reference group is skewed.

In the absence of study data and for assessing noninferiority of experimental to reference, we independently simulated 
5000 samples of sizes 35 and 20 for the experimental and placebo groups from N(4.32,1.16) and N(3.14,0.97), respectively. 
For the reference group we simulated 5000 samples of size nR = 19 from a gamma (shape parameter=22.09, scale parame-
ter=0.22). Based on these 5000 simulated data sets, the powers of assessing the noninferiority of experimental corresponding 
to AHT, tradi, and Hasler are 0.309, 0.279, and 0.268, respectively.

5. Discussion

This article presented a novel hierarchical testing procedure for three-arm non-inferiority trials. The developed method 
does not depend on distributional assumptions on the treatment responses; thus, this procedure is robust. The analytical 
and numerical studies indicate that the AHT procedure maintains FWER. Our simulation study shows that the proposed AHT
method is more powerful than the traditional testing procedure when the assay sensitivity test’s power is not close to one. 
Both approaches have similar power when the power of the assay sensitivity test is close to one. Thus, we advocate using 
the proposed method to analyze data from three-arm non-inferiority trials. Though this article concentrates on continuous 
data, our future research in this direction considers the extension of AHT method to other data types, such as binary data 
and count data.
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Appendix A

Proof of Lemma 2.1. To prove Theorem 2.1, we consider three configurations, specifically, H B
AS,0 ∩ H B

NI,0, H B
AS,0 ∩ HNI,1, and 

HAS,1 ∩ H B
NI,0. If H B

AS,0 is true then the FWER is controlled for the first two configurations H B
AS,0 ∩ H B

NI,0 and H B
AS,0 ∩ HNI,1, 

provided the type I error of H B
AS,0 is controlled at level α. This observation is true under H B

AS,0 ∩ H B
NI,0 because the 

event, {rejecting H B
NI,0}, occurs only when the event, {rejecting H B

AS,0}, occurs. That is {rejecting H B
NI,0} is a subset of 

{rejecting H B
AS,0} and the probability of {rejecting H B

AS,0} does not depend on the truth or falsity H B
NI,0. Under H B

AS,0 ∩ HNI,1, 
type-I error of H B

AS,0 is not associated with the rejection of H B
NI,0. Under the third configuration, HAS,1 ∩ H B

NI,0,

FWER = PHAS,1∩H B
NI,0

({rejecting HAS,1} ∩ {rejecting H B
NI,0})

= PHAS,1∩H B
NI,0

{TAS > c1}PHAS,1∩H B
NI,0

{TNI > c2|TAS > c1}
= α,
12
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since, by the construction PHAS,1∩H B
NI,0

{TAS > c1} = β and PHAS,1∩H B
NI,0

{TNI > c2|TAS > c1} = α
β

. Under HAS,1 ∩ HNI,1, FWER=0 
since both HAS,0 and HNI,0 are false. Hence, we have the proof.

Proof of Lemma 2.2. Let us define Y E,i = XE,i−μE
σE

, Y R, j = XR, j−μR
σR

, and Y P ,k = X P ,k−μP
σP

. Then under HNI,0, TNI can be ex-
pressed as

TNI =
√

n[σE Ȳ E − θσR Ȳ R − (1 − θ)σP Ȳ P − (μE − θμR − (1 − θ)μP )]√
σ 2

E τ̂ 2
E

λE,n
+ θ2 σ 2

R τ̂ 2
R

λR,n
+ (1 − θ)2 σ 2

P τ̂ 2
P

λP ,n

=
√

n[σE Ȳ E − θσR Ȳ R − (1 − θ)σP Ȳ P ]√
σ 2

E τ̂ 2
E

λE,n
+ θ2 σ 2

R τ̂ 2
R

λR,n
+ (1 − θ)2 σ 2

P τ̂ 2
P

λP ,n

, (A.1)

where τ̂ 2
l = (nl − 1)−1 ∑nl

i=1(Yl,i − Ȳl)
2 and λl,n = nl

n , l ∈ {E, R, P }.
Now,

a1,n = σ 2
E τ̂ 2

E

λE,n
+ σ 2

R τ̂ 2
R

λR,n
+ σ 2

P τ̂ 2
P

λP ,n
= σ 2

E

λE,n
(nE − 1)−1(

nE∑
i=1

Y 2
E,i − nE Ȳ 2

E) + θ2σ 2
R

λR,n
(nR − 1)−1(

nR∑
i=1

Y 2
R,i − nR Ȳ 2

R)

+ (1 − θ)2σ 2
P

λP ,n
(nP − 1)−1(

nP∑
i=1

Y 2
P ,i − nP Ȳ 2

P ) = nE(nE − 1)−1 σ 2
E

λE,n
+ nR(nR − 1)−1 θ2σ 2

R

λR,n
+ nP (nP − 1)−1 (1 − θ)2σ 2

P

λP ,n

+ σ 2
E

λE,n
(nE − 1)−1(

nE∑
i=1

Y 2
E,i − 1) − σ 2

E

λE,n
(nE − 1)−1nE Ȳ 2

E + θ2σ 2
R

λR,n
(nR − 1)−1

nR∑
i=1

(Y 2
R,i − 1) − θ2σ 2

R

λR,n
(nR − 1)−1nR Ȳ 2

R

+ (1 − θ)2σ 2
P

λP ,n
(nP − 1)−1

nP∑
i=1

(Y 2
P ,i − 1) − (1 − θ)2σ 2

P

λP ,n
(nP − 1)−1nP Ȳ 2

P

= σ 2
E

λE,n
+ θ2σ 2

R

λR,n
+ (1 − θ)2σ 2

P

λP ,n
+ O p(N−1/2), (A.2)

the last line follows from the facts that n−1
l

∑nl
i=1(Y 2

R,i − 1) = O p(n−1/2
l ), Ȳ 2

l = O p(n−1
l ), and nl

n = O (1).
Under HAS,1, TAS can be expressed as

TAS = (σR Ȳ R − σP Ȳ P )√
σ 2

R τ̂ 2
R

nR
+ σ 2

P τ̂ 2
P

nP

+ (μR − μP )√
σ 2

R τ̂ 2
R

nR
+ σ 2

P τ̂ 2
P

nP

,

=
√

n[(σR Ȳ R − σP Ȳ P )]√
σ 2

R τ̂ 2
R

λR,n
+ σ 2

P τ̂ 2
P

λP ,n

+
√

n′(μR − μP )√
σ 2

R τ̂ 2
R

ηR,n′ + σ 2
P τ̂ 2

P
ηP ,n′

, (A.3)

where n′ = nR + nP , ηR,n′ = nR
n′ , and ηP ,n′ = nP

n′ . Similarly, we can have

a2,n = σ 2
R τ̂ 2

R

λR,n
+ σ 2

P τ̂ 2
P

λP ,n
= σ 2

R

λR,n
+ σ 2

P

λP ,n
+ O p(n−1/2), (A.4)

and

b2,n′ = σ 2
R τ̂ 2

R

ηR,n′
+ σ 2

P τ̂ 2
P

ηP ,n′
= σ 2

R

ηR,n′
+ σ 2

P

ηP ,n′
+ O p(n−1/2), (A.5)

since n
n′ = O (1).

Let us introduce some notations a1 = σ 2
E

λE
+ θ2σ 2

R
λR

+ (1−θ)2σ 2
P

λP
, a2 = σ 2

R
λR

+ σ 2
P

λP
,

UNI =
√

n√
a1

[σE Ȳ E − θσR Ȳ R − (1 − θ)σP Ȳ P ], and V NI =
√

n[(σR Ȳ R −σP Ȳ P )]√
a2

. Based on Equations (A.1)-(A.5), we can have following 
expression for (TNI, TAS)

�

(TNI, TAS)
� = An(UNI, V AS)

� + (0,

√
n′[μR − μp]√

b ′
)� + O p(n−1/2), (A.6)
2,n

13
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where

An =
⎡
⎣

√
a1

a1,n
0

0
√

a2
a2,n

,

⎤
⎦ .

To obtain the distribution of (TNI, TAS)
� , we now consider the joint distribution of (UNI, V AS)

� . Under the assumption 
of Theorem 2.1, 

√
nl Ȳl → N(0, λ−1

l ) in distribution as min{nE , nR , nP } → ∞, where l ∈ {E, R, P }. By applying the delta 
method (Serfling (1980), pp 122) to sequence {(UNI, V AS)

�}, we can show that (UNI, V AS)
� → N2(0, �) in distribution 

min{nE , nR , nP } → ∞, where 0 is zero vector, and

� =
⎡
⎣ 1 (a1a2)

−1/2[ (1−θ)σ 2
P

λP
− θσ 2

R
λR

]
(a1a2)

−1/2[ (1−θ)σ 2
P

λP
− θσ 2

R
λR

] 1.

⎤
⎦

By using the above limiting distribution of (UNI, V AS)
� along with Theorem 4.19 in Polansky (2011) in (A.6), we can con-

clude that

(TNI, TAS)
� → N2(μ,�) as min{nE ,nR ,nP } → ∞,

where μ = (0, δ√
b2

)� , where b2 = σ 2
R

ηR
+ σ 2

P
ηP

is the limit of b2,n′ as min{nR , nP } → ∞.

Since as n → ∞, (TNI, TAS)
� → N2(μ, �), thus

TNI|TAS ∼ ESN(0,1, γ , τ ),

as min{nE , nR , nP } → ∞ from the definition of extended skew-normal distribution.

Proof of Theorem 2.1. The arguments of Lemma 2.1 indicates that the suggested AHT method controls FWER asymptotically 
under the configurations H B

AS,0 ∩ H B
NI,0, H B

AS,0 ∩ HNI,1 since the test TAS > zα is asymptotically of level α. Let’s consider the 
FWER Under configuration HAS,1 ∩ H B

NI,0,

FWER = PHAS,1∩H B
NI,0

{TAS > zα, TNI > q1−α/β}
= β × PHAS,1∩H B

NI,0
{TNI > q1−α/β |TAS > zα}.

Under HAS,1, β →
[

1 −
(zα − δ
a2

)

]
and α

β
→ α

[
1 −
(zα − δ

a2
)

]−1

= τ , as min{nE , nR , nP } → ∞. Since F −1
ESN is a continuous 

function on (0,1), thus qα/β = F −1
ESN(α/β) → qτ as min{nE , nR , nP } → ∞. Based Lemma 2.2, we can conclude that

PHAS,1∩H B
NI,0

{TNI > q1−α/β |TAS > zα} → τ ,

as min{nE , nR , nP } → ∞. Thus,

FWER →
[

1 − 
(zα − δ

a2
)

]
τ = α

as min{nE , nR , nP } → ∞.
Under HAS,1 ∩ HNI,1, FWER=0 since both H B

AS,0 and H B
NI,0 are false. Hence, we have the proof.

Proof of Theorem 2.2(a). π1,n can be expressed

π1,n = P(TAS > zα, TNI > q(1−α/β)|HAS,1,HNI,1) =
P(T ∗

AS > zα − μR − μP√
σ̂ 2

R /nR + σ̂ 2
P /nP

, T ∗
NI > q(1−α/β) − μE − θμR − (1 − θ)μP√

σ̂ 2
E /nE + θ2σ̂ 2

R /nR + (1 − θ)2σ̂ 2
P /nP

|HAS,1,HNI,1), (A.7)

where T ∗
NI = ( X̄E −μE )−θ( X̄R −μR )−(1−θ)( X̄ P −μP )√

σ̂2
E

nE
+θ2 σ̂2

R
nR

+(1−θ)2 σ̂2
P

nP

, and T ∗
AS = ( X̄R −μR )−( X̄ P −μP )√

σ̂2
R

nR
+ σ̂2

P
nP

. The arguments in the proof of Lemma 2.2 con-

clude that (T ∗
NI, T

∗
AS)

� → N2(0, �) as n → ∞. Again, zα − μR−μP√
σ̂ 2

R /nR

and q(1−α/β) − μE −θμR −(1−θ)μP√
σ̂ 2

E /nE +θ2σ̂ 2
R /nR+(1−θ)2σ̂ 2

P /nP

both diverge 

in probability to −∞. Thus, it follows that π1,n → 1 as n → ∞.
14
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Proof of Theorem 2.2(b). π1,n can be written

π1,n = P(TAS > zα, TNI > q(1−α/β)|HAS,1,HNI,1) = PHAS,1(T ∗
AS > zα − μR − μP√

σ̂ 2
R /nR + σ̂ 2

P /nP

)×

PHAS,1,HNI,1

(
T ∗

NI > q(1−α/β) − μE − θμR − (1 − θ)μP√
σ̂ 2

E /nE + θ2σ̂ 2
R /nR + (1 − θ)2σ̂ 2

P /nP

|T A S > zα

)
. (A.8)

Asymptotically, PHAS,1 (T ∗
AS > zα − μR −μP√

σ̂ 2
R /nR+σ̂ 2

P /nP

) → 1 −
(zα − δ
a2

) and using the similar arguments of Lemma 2.2 show that

PHAS,1,HNI,1

(
T ∗

NI > q(1−α/β) − μE − θμR − (1 − θ)μP√
σ̂ 2

E /nE + θ2σ̂ 2
R /nR + (1 − θ)2σ̂ 2

P /nP

|T A S > zα

)
→ 1 − FESN(q(1−α/β) − h√

a1
)

as n → ∞. Thus, from (A.8) we have

π1,n →
[

1 − 
(zα − δ

a2
)

][
1 − FESN(q(1−α/β) − h√

a1
)

]
as n → ∞.

Proof of Corollary 2.1. From Theorem 2.2(b), we know that

π1,n →
[

1 − 


(
zα − δ√

σ 2
R

ηR
+ σ 2

P
ηP

)][
1 − FESN

(
q(1−α/β) − h√

a1

)]
(A.9)

as n → ∞. Since 1 − FESN

(
q(1−α/β) − h√

a1

)
in (A.9) depends on ρ , so it is sufficient to show that FESN

(
q(1−α/β) − h√

a1

)
is 

an increasing function of ρ . Using (2.48) of Azzalini (2005), we can express FESN

(
q(1−α/β) − h√

a1

)
as

FESN

(
q(1−α/β) − h√

a1

)
=


B(q(1−α/β) − h√
a1

, τ ;−ρ)


(τ )
, (A.10)

where 
B(u, v; ρ) is the standard bivariate normal distribution function. Since 
B(u, v; ρ) is an increasing function of ρ
(see Sibuya (1960)), thus 
B(q(1−α/β) − h√

a1
, τ ; −ρ) is an increasing function and a is decreasing function of ρ when ρ < 0, 

and ρ > 0, respectively. Hence, consequently, 1 − FESN

(
q(1−α/β) − h√

a1

)
is a decreasing and is an increasing function of ρ

when ρ < 0, and ρ > 0, respectively.
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