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Abstract

In this paper, we consider the problem of simultaneously testing many two-sided

hypotheses when rejections of null hypotheses are accompanied by claims of the di-

rection of the alternative. The fundamental goal is to construct methods that control

the mixed directional familywise error rate (mdFWER), which is the probability of
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making any type 1 or type 3 (directional) error. In particular, attention is focused on

cases where the hypotheses are ordered as H1, . . . ,Hn, so that Hi+1 is tested only if

H1, . . . ,Hi have all been previously rejected. In this situation, one can control the

usual familywise error rate under arbitrary dependence by the basic procedure which

tests each hypothesis at level α, and no other multiplicity adjustment is needed. How-

ever, we show that this is far too liberal if one also accounts for directional errors. But,

by imposing certain dependence assumptions on the test statistics, one can retain the

basic procedure. Through a simulation study and a clinical trial example, we numeri-

cally illustrate good performance of the proposed procedures compared to the existing

mdFWER controlling procedures. The proposed procedures are also implemented in

the R-package FixSeqMTP.

Key words and phrases: Directional error, fixed sequence multiple testing, mixed direc-

tional familywise error rate, monotone likelihood ratio, positive dependence, type 1 error.

1 Introduction

Directional errors or type 3 errors occur in testing situations with two-sided alternatives when rejec-

tions are accompanied by additional directional claims. For example, when testing a null hypothesis

θ = 0 against θ 6= 0, rejection of the null hypothesis is often augmented with the decision of whether

θ > 0 or θ < 0. In the case of testing a single hypothesis, type 3 error is generally controlled at level

α when type 1 error is controlled at level α (and sometimes type 3 error is controlled at level α/2).

However, in the case of simultaneously testing multiple hypotheses, it is often not known whether

additional directional decisions can be made without losing control of the mixed directional fami-

lywise error rate (mdFWER), the probability of at least one type 1 or type 3 error. Some methods

have been developed in the literature by augmenting additional directional decisions to the existing

p-value based stepwise procedures. Shaffer (1980) showed that Holm’s procedure (Holm, 1979),

augmented with decisions on direction based on the values of test statistics, can strongly control md-
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FWER under the assumption that the test statistics are independent and under specified conditions

on the marginal distributions of the test statistics, but she also showed that counterexamples exist

even with two hypotheses. Finner (1994) and Liu (1997) independently proved the same result for

the Hochberg procedure (Hochberg, 1988). Finner (1999) generalized the result of Shaffer (1980)

to a large class of stepwise or closed multiple test procedures under the same assumptions. Some

recent results have been obtained in Guo and Romano (2015).

Several situations occur in practice where hypotheses are ordered in advance, based on relative

importance by some prior knowledge (for example in dose-response study, hypotheses of higher

dose vs. a placebo are tested before those of lower dose vs. placebo), or there exists a natural

hierarchy in tested hypotheses (for example in a clinical trial, secondary endpoints are tested only

when the associated primary endpoints are significant), and so on. In such fixed sequence multiple

testing situations, it is also desired to make further directional decisions once significant differences

are observed. For example, in dose response studies, once the hypothesis of no difference between

a dose and placebo is rejected, it is of interest to decide whether the new treatment dose is more or

less effective than the placebo. In such cases, the possibility of making type 3 errors must be taken

into account.

For control of the usual familywise error rate (FWER) (which does not account for the possi-

bility of additional type 3 errors), the conventional fixed sequence multiple testing procedure that

strongly controls the FWER under arbitrary dependence, is known to be a powerful procedure in

testing situations with pre-ordered hypotheses (Maurer et al., 1995). For reviews on recent rel-

evant developments of fixed sequence multiple testing procedures for testing strictly pre-ordered

hypotheses and gatekeeping strategies for testing partially pre-ordered hypotheses, see Dmitrienko,

Tamhane and Bretz (2009) and Dmitrienko, Agostino and Huque (2013). Indeed, suppose null

hypotheses H1, . . . ,Hn are pre-ordered, so that Hi+1 is tested only if H1, . . . ,Hi have all been

rejected. The probability mechanism generating the data is P and Hi asserts that P ∈ ωi, some

family of data generating distributions. In such case, it is easy to see that each Hi can be tested at

level α in order to control the FWER at level α, so that no adjustment for multiplicity is required.
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The argument is simple and goes as follows. Fix any given P such that at least one Hi is true (or

otherwise the FWER is 0 anyway). If H1 is true, i.e. P ∈ ω1, then a type 1 error occurs if and

only if H1 is rejected, and so the FWER is just the probability H1 is rejected, which is assumed

controlled at level α when testing H1. If H1 is false, just let f be the smallest index corresponding

to a true null hypothesis, i.e. Hf is true but H1, . . . ,Hf−1 are all false. In this case, a type 1 error

occurs if and only if Hf is rejected, which is assumed to be controlled at level α.

In fact, in situations where ordering is not specified, the above result suggests it may be worth-

while to think about hypotheses in order of importance so that potentially false hypotheses are more

easily detected. Indeed, as is well-known, when the number n of tested hypotheses is large, control

of the FWER is often so stringent that often no rejections can be detected, largely due to the multi-

plicity of tests and the need to find significance at very low levels (as required, for example, in the

Bonferroni method with n large). On the other hand, under a specified ordering, each test is carried

out at the same conventional level.

To our knowledge, no one explores the possibility of making additional directional decisions

for such fixed sequence procedures. In this paper, we introduce such fixed sequence procedures

augmented with additional directional decisions and discuss its mdFWER control under indepen-

dence and some dependence. For such directional procedures, its simple fixed sequence structure

of the tested hypotheses makes the notoriously challenging problem of controlling the mdFWER

under dependence a little easier to handle than stepwise procedures.

Throughout this work, we consider the problem of testing n two-sided hypotheses H1, . . . ,Hn

specified as follows:

Hi : θi = 0 vs. H
′
i : θi 6= 0, i = 1, . . . , n. (1)

We assume the hypotheses are ordered in advance, either using some prior knowledge about the

importance of the hypotheses or by some other specified criteria, so that H1 is tested first and Hi is

only tested if H1, . . . ,Hi−1 are all rejected. We also assume that, for each i, a test statistic Ti and

p-value Pi are available to test Hi (as a single test). For a rejected hypothesis Hi, we decide on the

sign of the parameter θi by the sign of the corresponding test statistic Ti, i.e., we conclude θi > 0
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if Ti > 0 and vice versa. The errors that might occur while testing these hypotheses are type 1 and

type 3 errors. A type 1 error occurs when a true Hi is falsely rejected. A type 3 error occurs when a

false Hi is correctly rejected but the claimed sign of the parameter θi is wrong. Then, the mdFWER

is the probability of making at least a type 1 or type 3 error, and it is desired that this error rate is no

bigger than α for all possible data generating distributions in the model.

We make a few standard assumptions about the test statistics. Let Ti ∼ Fθi(·) for some continu-

ous cumulative distribution function Fθi(·) having parameter θi. In general, most of our results also

apply through the same arguments when the family of distributions of Ti depends on i, though for

simplicity of notation, the notation is suppressed. We assume that F0 is symmetric about 0 and Fθi

is stochastically increasing in θi. Various dependence assumptions between the test statistics will be

used throughout the paper. (Some of the results can generalize outside this parametric framework.

Of course, for many problems, approximations are used to construct marginal tests and the approxi-

mate distributions of the Ti are often normal, in which case our exact finite sample results will hold

approximately as well.) Let c1 = F−10 (α/2) and c2 = F−10 (1 − α/2), so that a marginal level α

test of Hi rejects if Ti < c1 or Ti > c2. For testing Hi vs. H
′
i , rejections are based on large values

of |Ti| and the corresponding two-sided p-value is defined by

Pi = 2 min{F0(Ti), 1− F0(Ti)}, i = 1, . . . , n. (2)

We assume that the p-value Pi is distributed as U(0,1) when θi = 0.

The rest of the paper is organized as follows. In Section 2, we consider the problem of md-

FWER control under no dependence assumptions on the test statistics. Unlike control of the usual

FWER where each test can be constructed at level α, it is seen that Hi can only be tested at a

much smaller level α/2i−1. This rapid decrease in the critical values used motivates the study of

the problem under various dependence assumptions. In Section 3 we introduce a directional fixed

sequence procedure and prove that this procedure controls the mdFWER under independence. In

Sections 4 and 5 we further discuss its mdFWER control under positive dependence. In Section 6

we numerically evaluate the performances of the proposed procedure through a simulation study. In

5



Section 7 we illustrate an application of the proposed procedures through a clinical trial example.

Section 8 makes some concluding remarks and all proofs are deferred to Section 9.

2 The mdFWER Control Under Arbitrary Dependence

A general fixed sequence procedure based on marginal p-values must specify the critical level αi

that is used for testing Hi, in order for the resulting procedure to control the mdFWER at level α.

When controlling the FWER without regard to type 3 errors, each αi can be as large as α. However,

Theorem 1 below shows that by using the critical constant αi = α/2i−1, the mdFWER is controlled

at level α. Moreover, we show that these critical constants are unimprovable. Formally, the optimal

procedure is defined as follows.

Procedure 1 (Directional fixed sequence procedure under arbitrary dependence)

• Step 1: If P1 ≤ α then reject H1 and continue to test H2 after making directional decision

on θ1: conclude θ1 > 0 if T1 > 0 or θ1 < 0 if T1 < 0. Otherwise, accept all the hypotheses

and stop.

• Step i: If Pi ≤ α/2i−1 then reject Hi and continue to test Hi+1 after making directional

decision on θi: conclude θi > 0 if Ti > 0 or θi < 0 if Ti < 0. Otherwise, accept the

remaining hypotheses Hi, . . . ,Hn.

In the following, we discuss the mdFWER control of Procedure 1 under arbitrary dependence

of the p-values. When testing a single hypothesis, the mdFWER of Procedure 1 reduces to the type

1 or type 3 error rate depending on whether θ = 0 or θ 6= 0, and Procedure 1 reduces to the usual p-

value based method along with the directional decision for the two-sided test. The following lemma

covers this case.

Lemma 1 Consider testing the single hypothesis H : θ = 0 against H
′

: θ 6= 0 at level α, using

the usual p-value based method along with a directional decision. If H is a false null hypothesis,

then the type 3 error rate is bounded above by α/2.
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Generally, when simultaneously testing n hypotheses, by using Lemma 1 and mathematical

induction, we have the following result holds.

Theorem 1 For Procedure 1 defined as above, the following conclusions hold.

(i) This procedure strongly controls the mdFWER at level α under arbitrary dependence of the

p-values.

(ii) One cannot increase even one of the critical constants αi = α/2i−1, i = 1, . . . , n, while

keeping the remaining fixed without losing control of the mdFWER.

In fact, the proof shows that no strong parametric assumptions are required. However, the rapid

decrease in critical values α/2i−1 makes rejection of additional hypotheses difficult. Thus, it is

of interest to explore how dependence assumptions can be used to increase these critical constants

while maintaining control of the mdFWER. The assumptions and methods will be described in the

remaining sections.

Remark 1 Instead of Procedure 1, let us consider the conventional fixed sequence procedure with

the same critical constant α augmented with additional directional decisions, which is defined in

Section 3 as Procedure 2. By using Bonferroni inequality and Lemma 1, we can prove that the

mdFWER of this procedure is bounded above by n+1
2 α. Thus, the modified version of the procedure,

which has the same critical constant 2α
n+1 , strongly controls the mdFWER at level α under arbitrary

dependence of p-values. However, it is unclear if such critical constant can be further improved

without losing the control of the mdFWER.

3 The mdFWER Control Under Independence

We further make the following assumptions on the distribution of the test statistics.

Assumption 1 (Independence) The test statistics, T1, . . . , Tn, are mutually independent.
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Of course, it follows that the p-values P1, . . . , Pn are mutually independent as well.

As will be seen, it will be necessary to make further assumptions on the family of distributions

for each marginal test statistic.

Definition 1 (Monotone Likelihood Ratio (MLR)) A family of probability density functions fδ(·)

is said to have monotone likelihood ratio property if, for any two values of the parameter δ, δ2 > δ1

and any two points x2 > x1,
fδ2(x2)

fδ1(x2)
≥ fδ2(x1)

fδ1(x1)
, (3)

or equivalently,
fδ1(x1)

fδ1(x2)
≥ fδ2(x1)

fδ2(x2)
. (4)

Definition 1 means that, for fixed x1 < x2, the ratio fδ(x1)
fδ(x2)

is non-increasing in δ. Two direct

implications of Definition 1 in terms of the cdf Fδ(·) are

Fδ1(x2)

Fδ1(x1)
≤ Fδ2(x2)

Fδ2(x1)
, (5)

and
1− Fδ1(x2)

1− Fδ1(x1)
≤ 1− Fδ2(x2)

1− Fδ2(x1)
. (6)

Assumption 2 (MLR Assumption) The family of marginal distributions of the Ti has monotone

likelihood ratio.

Based on the conventional fixed sequence multiple testing procedure, we define a directional

fixed sequence procedure as follows, which is the conventional fixed sequence procedure augmented

with directional decisions. In other words, any hypothesis is tested at level α, and as will be seen

under the specified conditions, no reduction in critical values is necessary in order to achieve md-

FWER control.

Procedure 2 (Directional fixed sequence procedure)
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• Step 1: If P1 ≤ α, then reject H1 and continue to test H2 after making a directional decision

on θ1: conclude θ1 > 0 if T1 > 0 or θ1 < 0 if T1 < 0. Otherwise, accept all the hypotheses

and stop.

• Step i: If Pi ≤ α , then reject Hi and continue to test Hi+1 after making a directional

decision on θi: conclude θi > 0 if Ti > 0 or θi < 0 if Ti < 0. Otherwise, accept the

remaining hypotheses, Hi, . . . ,Hn.

For Procedure 2, in the case of n = 2, we derive a simple expression for the mdFWER in

Lemma 2 below and prove its mdFWER control in Lemma 3 by using such simple expression.

Lemma 2 Consider testing two hypotheses H1 : θ1 = 0 and H2 : θ2 = 0, against both sided

alternatives, using Procedure 2 at level α. Let c1 = F−10 (α/2) and c2 = F−10 (1 − α/2). When

θ2 = 0, the following result holds.

mdFWER =

 α+ Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c2, c2)− F(θ1,0)(c2, c1) if θ1 > 0

1 + Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c1, c1)− F(θ1,0)(c1, c2) if θ1 < 0.
(7)

In the above, Fθ1,θ2(·, ·) refers to the joint c.d.f. of (T1, T2). Then, under Assumption 1 (indepen-

dence) , (7) can be simplified as

mdFWER =

 α+ Fθ1(c1)− αFθ1(c2) if θ1 > 0

1 + αFθ1(c1)− Fθ1(c2) if θ1 < 0.
(8)

Lemma 3 Under Assumption 1 (independence) and Assumption 2 (MLR), Procedure 2 strongly

controls the mdFWER when n = 2.

Generally, for testing any n hypotheses, by using mathematical induction and Lemma 3, we

also prove the mdFWER control of Procedure 2 under the same assumptions as in the case of n = 2.

Theorem 2 Under Assumption 1 (independence) and Assumption 2 (MLR), Procedure 2 strongly

controls the mdFWER at level α.
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Many families of distributions have the MLR property: normal, uniform, logistic, Laplace,

Student’s t, generalized extreme value, exponential familes of distributions, etc. However, it is

also important to know whether or not the above results fail without the MLR assumption. A

natural family of distributions to consider without the MLR property is the Cauchy family; indeed,

Shaffer (1980) used this family to obtain a counterexample for the directional Holm procedure while

testing p-value ordered hypotheses. We now show that Procedure 2 fails to control the mdFWER

for this family of distributions with corresponding cdf Fθ(x) = 0.5 + 1
π arctan(x− θ), even under

independence.

Lemma 2 can be used to verify the calculation for the case of n = 2 with θ1 > 0 and θ2 = 0;

specifically, see (8). Indeed, we just need to show show

Fθ1(−c) = F0(−c− θ1) > αFθ1(c) = αF0(c− θ1) , (9)

where c is the 1−α/2 quantile of the standard Cauchy distribution, given by tan[π(1−α)/2]. Take

α = 0.05, so c = 12.7062. Then, the above inequality (9) is violated for example by θ1 = 100. The

left side is approximately F (−112.7) ≈ 0.002824 while the right side is

0.05× F (−87.3) = 0.05× 0.0036 = 0.00018.

4 Extension to Positive Dependence

Clearly, the assumption of independence is of limited utility in multiple testing, as many tests are

usually carried out on the same data set. Thus, it is important to generalize the results of the previous

section to cover some more general cases. As is typical in the multiple testing literature (Benjamini

and Yekutieli, 2001; Sarkar, 2002; Sarkar and Guo, 2010, etc), assumptions of positive regression

dependence will be used.

Before defining the assumptions, for convenience, we introduce several notations below. Among

the prior-ordered hypotheses H1, . . . ,Hn, let i0 denote the index of the first true null hypothesis,
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n1 denote the number of all false nulls, and Ti1 , . . . , Tin1 denote the corresponding false null test

statistics. Specifically, if all Hi’s are false, let i0 = n+ 1.

Assumption 3 The false null test statistics along with parameters, θi1Ti1 , . . . , θin1Tin1 , are posi-

tively regression dependent in the sense of

E
{
φ(θi1Ti1 , . . . , θin1Tin1 ) | θikTik ≥ u

}
↑ u, (10)

for each θikTik and any (coordinatewise) non-decreasing function φ.

Assumption 4 The first true null statistic, Ti0 , is independent of all false null statistics Tik , k =

1, . . . , n1 with ik < i0.

Theorem 3 Under Assumptions 2 - 4, Procedure 2 strongly controls the mdFWER at level α.

Corollary 1 When all tested hypotheses are false, Procedure 2 strongly controls the mdFWER at

level α under Assumptions 2 - 3.

Remark 2 In Theorem 3, we note that specifically, when all of the tested hypotheses are false,

Assumption 4 is automatically satisfied. Generally, consider the case of any combination of true

and false null hypotheses where Assumption 4 is not imposed. Without loss of generality, suppose

θi > 0, i = 1, . . . , n− 1 and θn = 0, that is, the first n− 1 hypotheses are false and the last one is

true. Under Assumptions 2-3, if Tn (or−Tn) and T1, . . . , Tn−1 are positively regression dependent,

then the mdFWER of Procedure 2 when testing H1, . . . ,Hn is, for any n, bounded above by

Pr( make at least one type 3 error when testing H1, . . . ,Hn−1 or Tn /∈ (c1, c2))

≤ lim
θn→0+

Pr( make at least one type 3 error when testing H1, . . . ,Hn)

+ lim
θn→0+

Pr(Tn ≥ c2)

≤ α+ α/2 = 3α/2.
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The first inequality follows from the fact that when θn → 0+, Hn can be interpreted as a false null

hypothesis with θn > 0, and thus one type 3 error is made if Hn is rejected and Tn ≤ c1. The

second inequality follows from Corollary 1 and Lemma 1.

Based on the above inequality, a modified version of Procedure 2, the directional fixed se-

quence procedure with the critical constant 2α/3, strongly controls the mdFWER at level α under

Assumptions 2-3 and the above additional assumption.

Remark 3 In the above remark, further, if we do not make any assumption regarding dependence

between the true null statistic Tn and the false null statistics T1, . . . , Tn−1. Then, by Theorem 3, the

mdFWER of Procedure 2 when testing H1, . . . ,Hn is bounded above by

Pr( make at least one type 3 error when testing H1, . . . ,Hn−1)

+ Pr( make type 1 error when testing Hn)

≤ α+ α = 2α.

Therefore, an alternative modified version of Procedure 2, the directional fixed sequence procedure

with the critical constant α/2, strongly controls the mdFWER at level α only under Assumptions

2-3.

5 Further Extensions to Positive Dependence

We now develop alternative results to show that Procedure 2 can control mdFWER even under

certain dependence between the false null and true null statistics. We relax the assumption of in-

dependence that the false null statistics are independent of the first true null statistic, and consider

a slightly strong version of the conventional positive regression dependence on subset of true null

statistics (PRDS) (Benjamini and Yekutieli, 2001), which is given below.

Assumption 5 The false null test statistics, T1, . . . , Ti0−1 and the first true null statistic Ti0 , are
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positive regression dependent in the sense of

E {φ(T1, . . . , Ti0−1) | Ti0 ≥ u, T1, . . . , Tj} ↑ u, (11)

for any given j = 1, . . . , i0 − 1, any given values of T1, . . . , Tj and any (coordinatewise) non-

decreasing function φ.

We firstly consider the case of n = 2, that is, while testing two hypotheses, and show control

of the mdFWER of Procedure 2 when the test statistics are positively regression dependent in the

sense of Assumption 5.

Proposition 1 Under Assumptions 2 and 5, the mdFWER of Procedure 2 is strongly controlled at

level α when n = 2.

Specifically, in the case of bivariate normal distribution, Assumption 2 is satisfied and two test

statistics T1 and T2 are always positively or negatively regression dependent. As in the proof of

Proposition 1, to show the mdFWER control of Procedure 2, we only need to consider the case of

θ1 6= 0 and θ2 = 0. Thus, if T1 and T2 are negatively regression dependent, we can choose −T2

as the statistic for testing H2 and Assumption 5 is still satisfied. By Proposition 1, we have the

following corollary holds.

Corollary 2 Under the case of bivariate normal distribution, the mdFWER of Procedure 2 is

strongly controlled at level α when n = 2.

We now consider the case of three hypotheses. The general case will ultimately be considered,

but is instructive to discuss the case separately due to the added multivariate MLR condition, which

is described as follows.

Let f(x|T1) and g(x|T1) denote the probability density functions of T2 and T3 conditional on

T1, respectively.
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Assumption 6 (Bivariate Monotone Likelihood Ratio (BMLR)) For any given value of T1, f(x|T1)

and g(x|T1) have the monotone likelihood ratio (MLR) property in x, i.e., for any x2 > x1, we have

f(x2|T1)
g(x2|T1)

≥ f(x1|T1)
g(x1|T1)

. (12)

Proposition 2 Under Assumptions 2, 3, 5, and 6, the mdFWER of Procedure 2 is strongly controlled

at level α when n = 3.

Remark 4 In the case of three hypotheses, suppose that the test statistics Ti, i = 1, . . . , 3 are

trivariate normally distributed with the mean θi. Without loss of generality, assume θi > 0, i = 1, 2

and θ3 = 0, that is, H1 and H2 are false and H3 is true. Let Σ = (σij), i, j = 1, . . . , 3, denote

the variance-covariance matrix of Ti’s. It is easy to see that Assumption 2 is always satisfied. Also,

when σij ≥ 0 for i 6= j, Assumption 3 and Assumption 5 are satisfied. Finally, when σ22 = σ33

and σ12 = σ13, Assumption 6 is satisfied.

Finally, We consider the general case of n hypotheses. Now we must consider the multivariate

monotone likelihood ratio property, described as follows. For any given j = 1, . . . , i0 − 1, let

f(x|T1, . . . , Tj−1) and g(x|T1, . . . , Tj−1) denote the probability density functions of Tj and Ti0

conditional on T1, . . . , Tj−1, respectively.

Assumption 7 (Multivariate Monotone Likelihood Ratio (MMLR)) For any given values of

T1, . . . , Tj−1, f(x|T1, . . . , Tj−1) and g(x|T1, . . . , Tj−1) have the monotone likelihood ratio (MLR)

property in x, i.e., for any x2 > x1, we have

f(x2|T1, . . . , Tj−1)
g(x2|T1, . . . , Tj−1)

≥ f(x1|T1, . . . , Tj−1)
g(x1|T1, . . . , Tj−1)

. (13)

Theorem 4 Under Assumptions 2, 3, 5, and 7, the mdFWER of Procedure 2 is strongly controlled

at level α.
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6 A Simulation Study

We conduct a simulation study to illustrate the performance of the proposed directional fixed se-

quence procedures under arbitrary dependence (Procedure 1) and independence (Procedure 2) in

terms of mdFWER control and average power and compare them with the directional Bonferroni

procedure, directional Holm procedure and directional Hochberg procedure. We study two sim-

ulation settings for evaluating the effects of proportion of false nulls and dependence on the per-

formance of these procedures, respectively. We generate n-dimensional normal random vectors

(T1, . . . , Tn) where the components follow normal distribution N(θi, 1) with common pairwise

correlation ρ. Consider simultaneously testing n two-sided hypotheses using Ti along with making

directional decisions on θi based on the sign of Ti:

Hi : θi = 0 vs. H
′
i : θi 6= 0, i = 1, . . . , n. (14)

For this simulation, we set the first n1 of the n hypotheses Hi to be false null and the rest to be

true null. The true null test statistics are generated from N(0, 1) and the false null test statistics are

generated from N(θi, 1) with θi 6= 0. The simulation results are obtained under the significance

level α = 0.05 and based on 10,000 replicates. The “power” of a procedure at a replication is

defined as the proportion of non-null θi to be rejected along with correct directional decisions on

θi to be made among all non-null θi out of n hypotheses. The “average power” is the average of

the power for the 10,000 replications. The mdFWER is estimated as the proportion of replications

where at least one true null hypothesis is falsely rejected or at least one false null hypothesis is

correctly rejected but a wrong directional decision is made regarding the corresponding θi.

6.1 Simulation Setting 1

In this setting, we set the number of tested hypotheses n = 20, the common correlation ρ = 0

(independence) or ρ = 0.5 (positive correlation), and the proportion of false null hypotheses π1 to

be between 0.05 and 1.0. For the values of θi, we set θi = 3 for false null and θi = 0 for true null.
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Figure 1 shows the plots of mdFWER and average power of all five directional procedures

plotted against π1, the fraction of false null hypotheses. As it is evident, all the five procedures

control mdFWER at level 0.05 and Procedure 1 has the lowest mdFWER. When the test statistics

are independent (ρ = 0), the mdFWER of Procedure 2 is also lower than those of the existing

procedures, whereas when the test statistics are positively correlated (ρ = 0.5), the mdFWER of

Procedure 2 is generally higher than that of the directional Bonferorni procedure but lower than

those of the directional Holm and directional Hochberg procedures except for very high fractions of

false nulls.

When the fraction of false nulls is low or moderate (π1 ≤ 0.4), as is usually expected in

practical applications, Procedure 2 has the highest power followed by Procedure 1, both when the

test statistics are independent or positively correlated. However, when the fraction of false nulls is

high, even Procedure 2 loses its edge over the existing procedures. We also observe from Figure 1

that the proposed procedures and the existing procedures have different power performances with

increasing proportion of false nulls. The average powers of Procedures 1 and 2 are decreasing in

terms of the proportion of false nulls, whereas the average powers of the existing Procedures are

slightly increasing in the proportion of false nulls.

6.2 Simulation Setting 2

In this setting, we set the number of tested hypotheses n = 20, the number of false null hypotheses

n1 = 5, and the common correlation ρ to be between 0 and 1. For the values of non-null θi, we

set θi = θ0r
i−1, i = 1, . . . , n1, which are decreasing proportionally with the values of parameters

(θ0, r) = (5, 0.8) or (θ0, r) = (8, 0.5), and for the values of null θi, we set θi = 0.

Figure 2 shows the plots of mdFWER and average power of all five directional procedures plot-

ted against ρ, the common correlation. As seen from Figure 2, all the five procedures control the

mdFWER at level α and Procedure 2 has the highest average power followed by Procedure 1 for

different values of ρ. We also observe that our proposed procedures have different behaviors of per-

formance with respect to common correlation compared to the existing procedures. The mdFWER
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Figure 1: Estimated mdFWER and average powers of our suggested Procedure 1 (Proc. 1)
and Procedure 2 (Proc. 2) along with existing directional Bonferroni procedure (Bonf.),
directional Holm procedure (Holm), and directional Hochberg procedure (Hoch.) for n =
20 hypotheses with the fraction of false nulls π1 from 0.05 to 1.0 and common correlation
ρ = 0 (upper panel) or ρ = 0.5 (bottom panel).

and average powers of Procedures 1 and 2, and their power improvements over the existing three

procedures are all increasing in terms of correlation, whereas the mdFWERs of the existing three

procedures are basically decreasing in terms of correlation, except for the directional Hochberg
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Figure 2: Estimated mdFWER and average powers of our suggested Procedure 1 (Proc. 1)
and Procedure 2 (Proc. 2) along with existing directional Bonferroni procedure (Bonf.),
directional Holm procedure (Holm), and directional Hochberg procedure (Hoch.) for n =
20 hypotheses with common correlation ρ between 0 and 1 and n1 = 5 non-null θi = θ0r

i−1

with (θ0, r) = (5, 0.8) (upper panel) or (θ0, r) = (8, 0.5) (bottom panel).

procedure, its mdFWER becomes to be increasing when ρ is very large.
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7 Clinical Trial Example

The directional fixed sequence procedure comes in handy in dose-response studies or studies with

multiple endpoints where hypotheses are ordered in advance. To illustrate our procedure we use the

hypertension trial example considered in Dmitrienko et al. (2005, Page 118). This clinical trial was

conducted to test the efficacy and safety of four doses of an investigational drug versus placebo.

The four doses, from lowest to highest, were respectively labeled as D1, D2, D3 and D4 and the

placebo was labeled P. The primary efficacy endpoint was the reduction in diastolic blood pressure

(measured in mm Hg). Dose D4 was believed to be the most efficacious one (in terms of its effect on

diastolic blood pressure), followed by doses D3 and D2 and dose D1 was expected to be marginally

efficacious.

The original analysis had 8 two sided hypotheses, four were dose-placebo contrasts and four

dose-dose contrasts. For our analysis, we use these comparisons to test the hypotheses in the or-

der mentioned and conclude on the direction of efficacy. We apply the directional fixed-sequence

procedures (Procedures 1 and 2) described in the paper and for comparison, we also include the

results of the Bonferroni single-step procedure appended with directional decisions. Table 1 shows

the results of our analysis done at level α = 0.05.

As seen in Table 1 even though the Bonferroni single-step procedure appended with directional

decision rejects the most number of hypotheses, two of the rejected hypotheses (D4-D1 an D3-D1)

do not make sense as the hypothesis comparing D1-P is not rejected. As a result, the proposed

Procedure 2 performs best rejecting the highest number of hypotheses at level 0.05 and also the

analysis results make valid conclusions. We can conclude that doses 4, 3 and 2 are significantly

more effective than the placebo but Dose 1 is not significantly different than the placebo.

While Procedure 1 assumes nothing about the dependence structure of the p-values, it is obvi-

ously then more conservative than Procedure 2. However, in the context here, where each p-value

corresponds to a different dose of the same drug, it is reasonable to assume positive dependence of

the outcomes. In such case, results based on Procedure 2 are valid and indicate that even Dose 2 is

significantly beneficial as compared to the placebo.
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Table 1: Results of Directional Fixed Sequence Procedures in the hypertension trial exam-
ple (P=Placebo and D1-D4 denote four doses of the investigational drug). The overall Type
I error rate α = 0.05. R: Rejected, NR: Not rejected.

Test Test Raw Procedure 1 Procedure 2 Bonferroni
Contrast statistic p-value Decision Decision Decision

(Direction) (Direction) (Direction)
D4-P 3.4434 0.0008 R R R

(More Effective) (More Effective) (More Effective)
D3-P 2.5085 0.0135 R R R

(More Effective) (More Effective) (More Effective)
D2-P 2.3642 0.0197 NR R NR

(More Effective)
D1-P -0.3543 0.7237 – NR NR

D4-D1 3.7651 0.0003 – – R
(More Effective)

D4-D2 1.0900 0.2779 – – NR

D3-D1 2.8340 0.0054 – – R
(More Effective)

D3-D2 0.1930 0.8473 – – NR

Number Rejected 2 3 4
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8 Conclusions

In this paper, we consider the problem of simultaneously testing multiple prior-ordered hypotheses

accompanied by directional decisions. The conventional fixed sequence procedure augmented with

additional directional decisions are proved to control the mdFWER under independence and some

dependence, whereas, this procedure is also shown to be far too liberal to control the mdFWER, if

no dependence assumptions are imposed on the test statistics. Through a simulation study, we nu-

merically show the good performances of the proposed procedures in terms of the mdFWER control

and average power as compared to several existing directional procedures, directional Bonferroni,

Holm, and Hochberg procedures. The proposed procedures are also implemented in the R-package

FixSeqMTP.

We need to note that in the existing literature, to our knowledge, only directional Bonferroni

procedure is theoretically proved to strongly control the mdFWER under dependence. It is still an

open problem that the directional Holm and Hochberg procedures control the mdFWER under cer-

tain dependence. Our suggested directional fixed sequence procedure can be a powerful alternative

solution to the problem of directional errors control under dependence. We hope that the approaches

and techniques developed in this paper will also shed some light on attacking the notoriously chal-

lenging problem of controlling the mdFWER under dependence for these p-value ordered stepwise

procedures.

9 Proofs

PROOF OF LEMMA 1. Let T and P denote the test statistic and the corresponding p-value for testing

H , respectively. When testing H , a type 3 error occurs if H is rejected and θT < 0. Then, the type

3 error rate is given by Pr(P ≤ α, θT < 0).
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When θ > 0, we have

Pr(P ≤ α, θT < 0) = Pr(2F0(T ) ≤ α, T < 0)

= Pr
(
T ≤ F−10

(α
2

))
= Fθ

(
F−10

(α
2

))
≤ F0

(
F−10

(α
2

))
=
α

2
.

The inequality follows from the assumption that Fθ is stochastically increasing in θ. Similarly, when

θ < 0, we can also prove that Pr(P ≤ α, θT < 0) ≤ α
2 .

PROOF OF THEOREM 1(i). Induction will be used to show that Procedure 1 strongly controls

the mdFWER at level α. First consider the case of n = 2. We show control of the mdFWER

of Procedure 1 in all possible combinations of true and false null hypotheses while testing two

hypotheses H1 and H2.

Case I: H1 is true. Type 1 or type 3 error occurs only when H1 is rejected.

mdFWER = Pr(P1 ≤ α) ≤ α.

Case II: Both H1 and H2 are false. We have no type 1 errors but only type 3 errors.

mdFWER = Pr({P1 ≤ α, T1θ1 < 0} ∪ {P1 ≤ α, P2 ≤ α, T2θ2 < 0})

≤ Pr(P1 ≤ α, T1θ1 < 0) + Pr(P2 ≤ α, T2θ2 < 0)

≤ α

2
+
α

2
= α.

The first inequality follows from Bonferroni inequality and the second follows from Lemma 1.
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Case III: H1 is false and H2 is true. The mdFWER is bounded above by

Pr( make type 3 error when testing H1) + Pr( make type 1 error when testing H2)

≤ Pr(P1 ≤ α, T1θ1 < 0) + Pr(P2 ≤ α/2)

≤ α

2
+
α

2
= α.

The first inequality follows from Bonferroni inequality and the second follows from Lemma 1 and

P2 ∼ U(0, 1) since H2 is true.

Now assume the inductive hypothesis that the mdFWER is bounded above by α when testing

at most n− 1 hypotheses by using Procedure 1 at level α. In the following, we prove the mdFWER

is also bounded above by α when testing n hypotheses H1, . . . ,Hn. Without loss of generality,

assume H1 is a false null (if H1 is a true null, the desired result directly follows by using the same

argument as in Case I of n = 2). Then, the mdFWER is bounded above by

Pr( make type 3 error when testing H1)

+ Pr( make at least one type 1 or type 3 errors when testing H2, . . . ,Hn)

≤ α

2
+
α

2
= α.

The inequality follows from the induction assumption, noticing that H2, . . . ,Hn are tested by using

Procedure 1 at level α/2. Thus, the desired result follows.

(ii). We now prove that the critical constants are unimprovable. For instance, when H1 is true, it is

easy to see that the first critical constant, α, is unimprovable. For each given k = 2, . . . , n, when

θi > 0, i = 1, . . . , k−1 and θk = 0, that is,Hi, i = 1, . . . , k−1 are false andHk is true, we present

a simple joint distribution of the test statistics T1, . . . , Tk to show that the kth critical constant of

this procedure is also unimprovable.

Define Zk ∼ N(0, 1) and Zi = Φ−1(|2Φ(Zi+1)− 1|), i = 1, . . . , k − 1, where Φ(·) is the cdf

of N(0, 1). Let qi denote Zi’s upper α/2i quantile. It is easy to check that for each i = 1, . . . , k,
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Zi ∼ N(0, 1). Thus, −qi is Zi’s lower α/2i quantile. In addition, by the construction of Zi’s, it is

easy to see that the event Zi ≥ qi is equivalent to the event Zi+1 /∈ (−qi+1, qi+1).

Let Ti = Zi + θi, i = 1, . . . , k, thus Ti ∼ N(θi, 1). Then, as θi → 0+ for i = 1, . . . , k − 1,

we have

mdFWER =
k−1∑
j=1

Pr(T1 ≥ q1, . . . , Tj−1 ≥ qj−1, Tj ≤ −qj)

+ Pr(T1 ≥ q1, . . . , Tk−1 ≥ qk−1, Tk /∈ (−qk, qk))

=
k−1∑
j=1

Pr(Z1 ≥ q1, . . . , Zj−1 ≥ qj−1, Zj ≤ −qj)

+ Pr(Z1 ≥ q1, . . . , Zk−1 ≥ qk−1, Zk /∈ (−qk, qk))

=
k−1∑
j=1

Pr(Zj ≤ −qj) + Pr(Zk /∈ (−qk, qk))

=
k−1∑
j=1

α

2j
+

α

2(k−1)
= α.

Thus, the kth critical constant of Procedure 1 is unimprovable and hence each critical constant of

Procedure 1 is unimprovable under arbitrary dependence.
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PROOF OF LEMMA 2. Note that when θ1 > 0 and θ2 = 0, we have

mdFWER

= Pr (P1 ≤ α, θ1T1 < 0) + Pr (P1 ≤ α, θ1T1 ≥ 0, P2 ≤ α)

= Pr (P1 ≤ α, T1 < 0) + Pr (P1 ≤ α, T1 ≥ 0, P2 ≤ α, T2 > 0)

+Pr (P1 ≤ α, T1 ≥ 0, P2 ≤ α, T2 ≤ 0)

= Pr (2F0(T1) ≤ α) + Pr (2(1− F0(T1)) ≤ α, 2(1− F0(T2)) ≤ α)

+Pr (2(1− F0(T1)) ≤ α, 2F0(T2) ≤ α)

= Pr (T1 ≤ c1) + Pr (T1 ≥ c2, T2 ≥ c2) + Pr (T1 ≥ c2, T2 ≤ c1)

= Fθ1(c1) + 1− Fθ1(c2)− F0(c2) + F(θ1,0)(c2, c2) + F0(c1)− F(θ1,0)(c2, c1)

= α+ Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c2, c2)− F(θ1,0)(c2, c1). (15)

Specifically, under Assumption 1 (independence), (15) can be simplified as,

α+ Fθ1(c1)− Fθ1(c2) + Fθ1(c2)F0(c2)− Fθ1(c2)F0(c1)

= α+ Fθ1(c1)− αFθ1(c2).

Similarly, when θ1 < 0 and θ2 = 0, we can prove that

mdFWER = 1 + Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c1, c1)− F(θ1,0)(c1, c2).

PROOF OF LEMMA 3. By using the same arguments as in Theorem 1, we can easily prove control

of the mdFWER of Procedure 2 in the case of n = 2 when H1 is true or both H1 and H2 are false.

In the following, we prove the desired result also holds when H1 is false and H2 is true.

Note that H1 is false and H2 is true imply θ1 6= 0 and θ2 = 0. To show that the mdFWER is

controlled for θ1 > 0 and θ2 = 0, we only need to show by Lemma 2 that α+Fθ1(c1)−αFθ1(c2) ≤
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α. This is equivalent to show

Fθ1(c2) (F0(c2)− F0(c1)) ≤ Fθ1(c2)− Fθ1(c1). (16)

For proving (16), it is enough to prove the following, as 0 ≤ F0(c2) ≤ 1,

Fθ1(c2) (F0(c2)− F0(c1)) ≤ F0(c2) (Fθ1(c2)− Fθ1(c1)) . (17)

Dividing both sides of (17) by Fθ1(c2)F0(c2), we see that we only need to prove,

1− F0(c1)

F0(c2)
≤ 1− Fθ1(c1)

Fθ1(c2)
,

which follows directly from (5) and Assumption 2 (MLR).

Similarly, to show that the mdFWER is controlled for θ1 < 0 and θ2 = 0, we only need to

show by Lemma 2 that 1 + αFθ1(c1)− Fθ1(c2) ≤ α. This is equivalent to showing

(1− α) (1− Fθ1(c1)) ≤ Fθ1(c2)− Fθ1(c1).

Writing 1− α as (1− F0(c1))− (1− F0(c2)) and writing Fθ1(c2)− Fθ1(c1) as

(1− Fθ1(c1))− (1− Fθ1(c2)), we get that it is equivalent to prove

[(1− F0(c1))− (1− F0(c2))] (1− Fθ1(c1)) ≤ (1− Fθ1(c1))− (1− Fθ1(c2)) . (18)

Since 0 ≤ 1− F0(c1) ≤ 1, to prove inequality (18), it is enough to prove the following,

(1− Fθ1(c1)) [(1− F0(c1))− (1− F0(c2))]

≤ (1− F0(c1)) [1− Fθ1(c1)]− [1− Fθ1(c2)] . (19)

Dividing both sides of (19) by (1− Fθ1(c1)) (1− F0(c1)), we see that proving (18) is equivalent to
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showing

1− Fθ1(c2)

1− Fθ1(c1)
≤ 1− F0(c2)

1− F0(c1)
, (20)

which follows directly from (6) and Assumption 2 (MLR). By combining the arguments of the

above two cases, the desired result follows.

PROOF OF THEOREM 2. The proof is by induction on number of hypotheses n. We already proved

strong control of the mdFWER for n = 2 in Lemma 3. Let us assume the result holds for testing

any n = k hypotheses, that is, mdFWER ≤ α while testing any k pre-ordered hypotheses. We now

argue that is will hold for n = k + 1 hypotheses. Without loss of generality, assume H1 is a false

null, as in the proof of Theorem 1.

Let V (−1)
k+1 denote the total number of type 1 or type 3 errors committed while testingH2, . . . ,Hk+1

and excluding H1. Then, by the inductive hypothesis, the mdFWER while testing the k hypothe-

ses H2, . . . ,Hk+1 is Pr(V (−1)
k+1 > 0) ≤ α. Then, the mdFWER of testing k + 1 hypotheses

H1, . . . ,Hk+1 is defined by

Pr
(
{P1 ≤ α, T1θ1 < 0} ∪ {P1 ≤ α, T1θ1 ≥ 0, V

(−1)
k+1 > 0}

)
= Pr (P1 ≤ α, T1θ1 < 0) + Pr (P1 ≤ α, T1θ1 ≥ 0) · Pr

(
V

(−1)
k+1 > 0

)
≤ Pr (P1 ≤ α, T1θ1 < 0) + α Pr (P1 ≤ α, T1θ1 ≥ 0) . (21)

The equality follows by Assumption 1 (independence) and the inequality follows by the inductive

hypothesis. Note that (21) is the same as (8) under independence, which is equal to the mdFWER of

Procedure 2 in the case of two hypotheses. So again by applying Lemma 3, we get that mdFWER ≤

α for n = k + 1. Hence, the proof follows by induction.

PROOF OF THEOREM 3 . Without loss of generality, we assume θi > 0 if θi 6= 0 for i = 1, . . . , n.

Also, if there exists an i with θi = 0, by induction, we can simply assume i0 = n. Thus, to prove

the mdFWER control of Procedure 2, we only need to consider two cases:
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(i) θi > 0 for i = 1, . . . , n;

(ii) θi > 0 for i = 1, . . . , n− 1 and θn = 0.

Case (i). Consider the general case of θi > 0, i = 1, . . . , n. By Assumption 3, the test statistics

T1, . . . , Tn are positively regression dependent. For j = 1, . . . , n− 1, let En−j denote the event of

making at least one type 3 error when testing Hj+1, . . . ,Hn using Procedure 2 at level α. By using

induction, we prove the following two lemmas hold.

Lemma 4 Assume the conditions of Theorem 3. For j = 1, . . . , n − 1, the following inequality

holds.

Pr(En−j |T1 > c2, . . . , Tj > c2) ≤ α. (22)

PROOF OF LEMMA 4. We prove the result by using reverse induction. When j = n− 1, we have

Pr(En−j |T1 > c2, . . . , Tj > c2)

= Pr(Tn < c1|T1 > c2, . . . , Tn−1 > c2)

=
Pr(Tn < c1)Pr(T1 > c2, . . . , Tn−1 > c2|Tn < c1)

Pr(T1 > c2, . . . , Tn−1 > c2)

≤ Pr(Tn < c1) ≤ α.

The inequality follows from Assumption 3.

Assume the inequality (22) holds for j = m. In the following, we prove that it also holds for
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j = m− 1. Note that

Pr(En−m+1|T1 > c2, . . . , Tm−1 > c2)

= Pr
(
{Tm < c1}

⋃(
{Tm > c2}

⋂
En−m

) ∣∣T1 > c2, . . . , Tm−1 > c2

)
= Pr

(
Tm < c1

∣∣T1 > c2, . . . , Tm−1 > c2
)

+ Pr
(
{Tm > c2}

⋂
En−m

∣∣T1 > c2, . . . , Tm−1 > c2

)
= Pr

(
Tm < c1

∣∣T1 > c2, . . . , Tm−1 > c2
)

+ Pr
(
Tm > c2

∣∣T1 > c2, . . . , Tm−1 > c2
)
Pr
(
En−m

∣∣T1 > c2, . . . , Tm > c2
)

≤ Pr
(
Tm < c1

∣∣T1 > c2, . . . , Tm−1 > c2
)

+ αPr
(
Tm > c2

∣∣T1 > c2, . . . , Tm−1 > c2
)

≤ α.

Therefore, the desired result follows. Here, the first inequality follows from the assumption of

induction and the second follows from Lemma 5 below.

Lemma 5 Assume the conditions of Theorem 3. For j = 1, . . . , n − 1, the following inequality

holds:

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

+ αPr
(
Tj > c2

∣∣T1 > c2, . . . , Tj−1 > c2
)
≤ α. (23)

Specifically, for j = 1, we have

Pr (T1 < c1) + αPr (T1 > c2) ≤ α.

PROOF OF LEMMA 5. To prove the inequality (23), it is enough to show that

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)
≤ αPr

(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
)
,
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which is equivalent to

(1− α)Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
)

≤ Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
)
− Pr

(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)
.

Note that

1− α = Prθj=0(Tj < c2)− Prθj=0(Tj < c1).

Thus, the above inequality is equivalent to

Prθj=0(Tj < c2)− Prθj=0(Tj < c1) ≤ 1−
Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
) ,

which in turn is implied by

1−
Prθj=0(Tj < c1)

Prθj=0(Tj < c2)
≤ 1−

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
) . (24)

Note that by Assumption 2, we have

Pr(Tj < c1)

Pr(Tj < c2)
≤
Prθj=0(Tj < c1)

Prθj=0(Tj < c2)
.

Thus, to prove the inequality (24), we only need to show that

Pr
(
Tj < c1

∣∣T1 > c2, . . . , Tj−1 > c2
)

Pr
(
Tj < c2

∣∣T1 > c2, . . . , Tj−1 > c2
) ≤ Pr(Tj < c1)

Pr(Tj < c2)
,

which is equivalent to

Pr
(
T1 > c2, . . . , Tj−1 > c2

∣∣Tj < c1
)
≤ Pr

(
T1 > c2, . . . , Tj−1 > c2

∣∣Tj < c2
)
,

which follows from Assumption 3. Therefore, the desired result follows.
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Based on Lemmas 4 and 5, we have

mdFWER = Pr(T1 < c1) +
n∑
j=2

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

= Pr(T1 < c1) + Pr(T1 > c2)

n∑
j=2

Pr(T2 > c2, . . . , Tj−1 > c2, Tj < c1|T1 > c2)

= Pr(T1 < c1) + Pr(T1 > c2)Pr(En−1|T1 > c2)

≤ Pr(T1 < c1) + αPr(T1 > c2)

≤ α.

Therefore, the mdFWER is controlled at level α for Case (i). Here, the first inequality follows from

Lemma 4 and the second follows from Lemma 5.

Case (ii). Consider the general case of θi > 0, i = 1, . . . , n− 1 and θn = 0. Under Assumption 3,

Ti, i = 1, . . . , n−1 are positively regression dependent and under Assumption 4, Tn is independent

of Ti’s . Note that

mdFWER

=

n−1∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

+ Pr(T1 > c2, . . . , Tn−1 > c2, Tn < c1) + Pr(T1 > c2, . . . , Tn > c2)

=

n−1∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1) + αPr(T1 > c2, . . . , Tn−1 > c2).

The second equality follows from Assumption 4.

For m = 1, . . . , n− 1, define

∆m =
m∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1) + αPr(T1 > c2, . . . , Tm > c2).

Thus, mdFWER = ∆n−1. By using induction, we prove below that ∆m ≤ α for m = 1, . . . , n−1.
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For m = 1, by using Lemma 5, we have

∆1 = Pr (T1 < c1) + αPr (T1 > c2) ≤ α.

Assume ∆m ≤ α. In the following, we show ∆m+1 ≤ α. Note that

∆m+1 =

m+1∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

+ αPr(T1 > c2, . . . , Tm > c2, Tm+1 > c2)

=

m∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1)

+ Pr(T1 > c2, . . . , Tm > c2) [Pr(Tm+1 < c1|T1 > c2, . . . , Tm > c2)

+ αPr(Tm+1 > c2|T1 > c2, . . . , Tm > c2)]

≤
m∑
j=1

Pr(T1 > c2, . . . , Tj−1 > c2, Tj < c1) + αPr(T1 > c2, . . . , Tm > c2)

= ∆m ≤ α. (25)

The first inequality follows from Lemma 5 and the second follows from the inductive hypothesis.

Thus, ∆m ≤ α for m = 1, . . . , n− 1. Therefore, mdFWER = ∆n−1 ≤ α, the desired result.

Combining the arguments of Cases (i) and (ii), the proof of Theorem 3 is complete.

PROOF OF PROPOSITION 1. From the proof of Theorem 1 and by Lemma 1, it is easy to see that

we only need to prove the mdFWER control of Procedure 2 when H1 is false and H2 is true, i.e.,

θ1 6= 0 and θ2 = 0.

Case I: θ1 > 0 and θ2 = 0. By Lemma 2, the mdFWER of Procedure 2 is controlled at level α if

we have the following:

Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c2, c2)− F(θ1,0)(c2, c1) ≤ 0.

After rewriting F(θ1,0)(x, y) as Pr(T1 ≤ x, T2 ≤ y) and then dividing through by Pr(T1 ≤ c2), we
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get,

Pr (T2 ≤ c2|T1 ≤ c2)− Pr (T2 ≤ c1|T1 ≤ c2) ≤ 1− Pr(T1 ≤ c1)
Pr(T1 ≤ c2)

.

Dividing by Pr (T2 ≤ c2|T1 ≤ c2), we get,

1− Pr (T2 ≤ c1|T1 ≤ c2)
Pr (T2 ≤ c2|T1 ≤ c2)

≤ 1

Pr (T2 ≤ c2|T1 ≤ c2)

(
1− Pr(T1 ≤ c1)

Pr(T1 ≤ c2)

)
. (26)

For proving (26), it is enough to prove the following inequality, as 1
Pr(T2≤c2|T1≤c2) ≥ 1.

1− Pr (T2 ≤ c1|T1 ≤ c2)
Pr (T2 ≤ c2|T1 ≤ c2)

≤ 1− Pr(T1 ≤ c1)
Pr(T1 ≤ c2)

. (27)

By Assumption 2 and (5), it follows that F0(c2)
F0(c1)

≤ Fθ1 (c2)

Fθ1 (c1)
, which is equivalent to, 1− Pr(T2≤c1)

Pr(T2≤c2) ≤

1− Pr(T1≤c1)
Pr(T1≤c2) . Thus for proving (26), it is enough to prove the following:

1− Pr (T2 ≤ c1|T1 ≤ c2)
Pr (T2 ≤ c2|T1 ≤ c2)

≤ 1− Pr(T2 ≤ c1)
Pr(T2 ≤ c2)

. (28)

But, (28) is equivalent to showing

Pr (T1 ≤ c2|T2 ≤ c1) ≥ Pr (T1 ≤ c2|T2 ≤ c2) ,

which follows directly from Assumption 5.

Case II: θ1 < 0 and θ2 = 0. Similarly, by Lemma 2, the mdFWER of Procedure 2 is controlled at

level α if we have the following:

1 + Fθ1(c1)− Fθ1(c2) + F(θ1,0)(c1, c1)− F(θ1,0)(c1, c2) ≤ α, (29)
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which after some rearrangement and rewriting 1− α as F0(c2)− F0(c1) gives,

(
F0(c2)− F(θ1,0)(c1, c2)

)
−
(
F0(c1)− F(θ1,0)(c1, c1)

)
≤ (1− Fθ1(c1))− (1− Fθ1(c2)) . (30)

Thus, proving (29) is equivalent to proving that

Pr (T1 ≥ c1, T2 ≤ c2)− Pr (T1 ≥ c1, T2 ≤ c1) ≤ Pr (T1 ≥ c1)− Pr (T1 ≥ c2) .

Dividing through by Pr(T1 ≥ c1), we get

Pr (T2 ≥ c1|T1 ≥ c1)− Pr (T2 ≥ c2|T1 ≥ c1) ≤ 1− Pr(T1 ≥ c2)
Pr(T1 ≥ c1)

. (31)

Thus to prove (29), it is enough to prove the following,

1− Pr (T2 ≥ c2|T1 ≥ c1)
Pr (T2 ≥ c1|T1 ≥ c1)

≤ 1− Pr(T1 ≥ c2)
Pr(T1 ≥ c1)

,

which is equivalent to proving,

Pr (T2 ≥ c2|T1 ≥ c1)
Pr (T2 ≥ c1|T1 ≥ c1)

≥ Pr(T1 ≥ c2)
Pr(T1 ≥ c1)

. (32)

By Assumption 2 and (6), it follows that for θ1 < 0, Pr(T1≥c2)Pr(T1≥c1) ≤
Pr(T2≥c2)
Pr(T2≥c1) . Thus to prove (29), it

is enough to prove the following,

Pr (T2 ≥ c2|T1 ≥ c1)
Pr (T2 ≥ c1|T1 ≥ c1)

≥ Pr(T2 ≥ c2)
Pr(T2 ≥ c1)

. (33)

But (33) is equivalent to showing

Pr (T1 ≥ c1|T2 ≥ c2) ≥ Pr (T1 ≥ c1|T2 ≥ c1) , (34)
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which follows directly from Assumption 5. By combining the arguments of the above two cases,

the desired result follows.

PROOF OF PROPOSITION 2. By Corollary 1, without loss of generality, assume that θi > 0, i = 1, 2

and θ3 = 0, that is, H1 and H2 are false and H3 is true. Note that

mdFWER (35)

= Pr(T1 ≤ c1) + Pr(T1 ≥ c2, T2 ≤ c1) + Pr (T1 ≥ c2, T2 ≥ c2, T3 /∈ (c1, c2)) .

In the following, we prove that

Pr(T1 ≥ c2, T2 ≤ c1) + Pr (T1 ≥ c2, T2 ≥ c2, T3 /∈ (c1, c2))

≤ Pr (T1 ≥ c2, T3 /∈ (c1, c2)) . (36)

To prove (36), it is enough to show the following inequality:

Pr(T2 ≤ c1|T1) + Pr (T2 ≥ c2, T3 /∈ (c1, c2)|T1) ≤ Pr (T3 /∈ (c1, c2)|T1) . (37)

Note that

Pr (T2 ≥ c2, T3 ≤ c1|T1) = Pr(T3 ≤ c1|T1)− Pr (T2 < c2, T3 ≤ c1|T1) (38)

and

Pr (T2 ≥ c2, T3 ≥ c2|T1)

= 1− Pr(T2 < c2|T1)− Pr(T3 < c2|T1) + Pr (T2 < c2, T3 < c2|T1) . (39)
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In addition, we have

Pr (T3 /∈ (c1, c2)|T1) = 1 + Pr(T3 ≤ c1|T1)− Pr(T3 < c2|T1). (40)

Thus, in order to show (37), by combining (38)-(40), we only need to prove the following inequality:

Pr (T2 < c2, T3 < c2|T1)− Pr (T2 < c2, T3 ≤ c1|T1)

≤ Pr(T2 < c2|T1)− Pr(T2 ≤ c1|T1). (41)

Note that (41) can be rewritten as

Pr (T2 < c2, T3 < c2|T1)
[
1− Pr (T2 < c2, T3 ≤ c1|T1)

Pr (T2 < c2, T3 < c2|T1)

]
≤ Pr(T2 < c2|T1)

[
1− Pr(T2 ≤ c1|T1)

Pr(T2 < c2|T1)

]
. (42)

Thus, to prove (41), it is enough to show

1− Pr (T2 < c2, T3 ≤ c1|T1)
Pr (T2 < c2, T3 < c2|T1)

≤ 1− Pr(T2 ≤ c1|T1)
Pr(T2 < c2|T1)

. (43)

That is,

Pr(T2 ≤ c1|T1)
Pr(T2 < c2|T1)

≤ Pr (T2 < c2, T3 ≤ c1|T1)
Pr (T2 < c2, T3 < c2|T1)

. (44)

By Assumption 6 (BMLR), we have

Pr(T2 ≤ x2|T1)
Pr(T3 ≤ x2|T1)

≥ Pr(T2 ≤ x1|T1)
Pr(T3 ≤ x1|T1)

. (45)

By (45), to prove (44), it is enough to show

Pr(T3 ≤ c1|T1)
Pr(T3 < c2|T1)

≤ Pr (T2 < c2, T3 ≤ c1|T1)
Pr (T2 < c2, T3 < c2|T1)

. (46)

36



That is,

Pr (T2 < c2|T3 < c2, T1) ≤ Pr (T2 < c2|T3 < c1, T1) . (47)

The inequality (47) holds under Assumption 5. Therefore, the inequality (36) holds.

Based on (35)-(36) and Proposition 1, we have

mdFWER = Pr(T1 ≤ c1) + Pr (T1 ≥ c2, T3 /∈ (c1, c2)) ≤ α.

Thus, the desired result follows.

PROOF OF THEOREM 4. By Corollary 1, without loss of generality, assume that θi > 0, i =

1, . . . , n− 1 and θn = 0, that is, Hi, i = 1, . . . , n− 1 are false and Hn is true. Note that

mdFWER (48)

=

n−1∑
j=1

Pr(T1 ≥ c2, . . . , Tj−1 ≥ c2, Tj ≤ c1) + Pr(T1 ≥ c2, . . . , Tn−1 ≥ c2, Tn /∈ (c1, c2)).

In the following, we prove that

Pr(T1 ≥ c2, . . . , Tn−2 ≥ c2, Tn−1 ≤ c1) + Pr (T1 ≥ c2, . . . , Tn−1 ≥ c2, Tn /∈ (c1, c2))

≤ Pr (T1 ≥ c2, . . . , Tn−2 ≥ c2, Tn /∈ (c1, c2)) . (49)

To prove (49), it is enough to show the following inequality:

Pr(Tn−1 ≤ c1|T1, . . . , Tn−2) + Pr (Tn−1 ≥ c2, Tn /∈ (c1, c2)|T1, . . . , Tn−2)

≤ Pr (Tn /∈ (c1, c2)|T1, . . . , Tn−2) . (50)

By using the same argument as in proving (37) in the case of three hypotheses, we can prove that
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the inequality (50) holds under Assumptions 5 and 7. Then, by combining (48) and (49), we have

mdFWER (51)

≤
n−2∑
j=1

Pr(T1 ≥ c2, . . . , Tj−1 ≥ c2, Tj ≤ c1) + Pr(T1 ≥ c2, . . . , Tn−2 ≥ c2, Tn /∈ (c1, c2)).

Note that the right-hand side of (51) is the mdFWER of Procedure 2 when testing H1, . . . ,Hn−2,

Hn. By induction and Proposition 1, the mdFWER is bounded above by α, the desired result.
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