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Abstract

It is a common practice to use resampling methods such as the bootstrap for calculating the
p-value for each test when performing large scale multiple testing. The precision of the boot-
strap p-values and that of the false discovery rate (FDR) relies on the number of bootstraps used
for testing each hypothesis. Clearly, the larger the number of bootstraps the better the precision.
However, the required number of bootstraps can be computationally burdensome, and it multi-
plies the number of tests to be performed. Further adding to the computational challenge is that
in some applications the calculation of the test statistic itself may require considerable computa-
tion time. As technology improves one can expect the dimension of the problem to increase as
well. For instance, during the early days of microarray technology, the number of probes on a
cDNA chip was less than 10,000. Now the Affymetrix chips come with over 50,000 probes per
chip. Motivated by this important need, we developed a simple adaptive bootstrap methodology
for large scale multiple testing, which reduces the total number of bootstrap calculations while
ensuring the control of the FDR. The proposed algorithm results in a substantial reduction in the
number of bootstrap samples. Based on a simulation study we found that, relative to the number of
bootstraps required for the Benjamini-Hochberg (BH) procedure, the standard FDR methodology
which was the proposed methodology achieved a very substantial reduction in the number of boot-
straps. In some cases the new algorithm required as little as 1/6th the number of bootstraps as the
conventional BH procedure. Thus, if the conventional BH procedure used 1,000 bootstraps, then
the proposed method required only 160 bootstraps. This methodology has been implemented for
time-course/dose-response data in our software, ORIOGEN, which is available from the authors
upon request.
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1 Introduction

Statistical analysis of high dimensional data often involves the problem of si-
multaneously testing a large number of null hypotheses. For instance, gene
expression microarray data analysis involves comparisons of gene expressions
of several thousand genes under two or more conditions (e.g. normal and tu-
mor cells). A traditional approach to dealing with this problem is to control
the familywise error rate (FWER), the probability of falsely rejecting at least
one true null hypothesis (Hochberg and Tamhane, 1987). However, when the
number of statistical hypotheses to be tested is large, control of FWER is so
stringent that often only a few false null hypotheses are rejected. Consequently,
less conservative alternative measures of error rates have been proposed in the
literature (Benjamini and Hochberg, 1995; Efron et al, 2001; Hommel and
Hoffmann, 1987; Korn et al, 2004; Lehmann and Romano, 2005; Sarkar, 2007;
van der Laan, Dudoit and Pollard, 2004). One such measure is the false discov-
ery rate (FDR), which is defined as the expected proportion of falsely rejected
null hypotheses among all rejected null hypotheses. This widely used measure
was introduced by Benjamini and Hochberg (1995). In the seminal paper,
the authors also introduced a simple FDR controlling procedure (popularly
called Benjamini-Hochberg or BH procedure) and proved that it controls the
FDR when the underlying test statistics are independently distributed. Later
Benjamini and Yekutieli (2001) and Sarkar (2002) strengthened the result of
Benjamini and Hochberg by showing that the BH procedure controls the FDR
for positively dependent test statistics.

When some of the null hypotheses are not true, the BH procedure is con-
servative by a factor π0, i.e., FDR ≤ π0α, where π0 is the proportion of true
null hypotheses among all null hypotheses. Storey (2002) and Storey, Taylor
and Siegmund (2004) introduced a more powerful adaptive FDR controlling
procedure (Storey procedure) in which π0 is estimated by using a simple esti-
mate π̂0 (which will be introduced in Section 2.4) and then the BH procedure
is applied at level α/π̂0. For other adaptive FDR procedures, see Benjamini
and Hochberg (2000) and Benjamini, Krieger and Yekutieli (2006). The BH
and Storey procedures have been extensively used in many applications such
as the analysis of data from microarray experiments, quantitative trait lo-
cus (QTL), functional magnetic resonance imaging (fMRI) and clinical trials
(Reiner, Yekutieli and Benjamini, 2003; Storey and Tibshirani, 2003; Ben-
jamini and Yekutieli, 2005; Genovese, Lazar and Nichols, 2002; Mehrotra and
Heyse, 2004).

The computation of the BH and Storey procedures requires the exact p-
value corresponding to each hypothesis. However, since the exact or even the
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asymptotic distribution of the underlying test statistic is usually unknown
or difficult to determine, the exact p-values are not always available. Quite
often, the individual p-values are obtained by using the bootstrap methods.
Since the total number of possible bootstrap samples is usually very large,
it is practically impossible to derive p-values based on all possible bootstrap
samples. Given the large number of null hypotheses to be tested, even a modest
number of bootstrap samples to calculate individual p-values may result in a
substantial increase in total computation time. For instance, if the microarray
chip (e.g. Affymetrix chip) consists of 50,000 genes then the total number of
desired bootstrap samples (at the rate of 10,000 per gene) can be as large as 500
million bootstrap calculations. Depending upon the underlying test statistic,
these calculations could be very time consuming, despite the availability of
super fast computing.

Although the bootstrap methods have been extensively applied in calcu-
lating marginal p-values, determination of the required number of bootstrap
samples has not been discussed in the context of multiple testing. In prac-
tice, this number is typically determined in somewhat ad hoc manner and it
is often chosen to be the same in calculating each p-value. This may not be
efficient because not all bootstrap p-values need to be estimated with the same
amount of precision. The precision depends upon the bootstrap p-value. It
seems that a better method is to adaptively choose different numbers of boot-
strap samples based on different computed p-values. For example, if a p-value
has been computed to lie in [0.2, 0.3], then it may not be necessary to continue
its computation while using the BH or Storey procedures, since we have had
enough information to make our decision.

The above observation motivates us to propose in Section 2 a computa-
tionally simple algorithm that reduces the total number of bootstrap samples
and ensures proper control of the FDR while applying the BH or Storey proce-
dure. By exploiting the confidence intervals of ideal bootstrap p-values (with
the number of bootstrap samples B →∞) estimated from a small number of
bootstrap samples, decisions regarding some of the hypotheses could be made
with fewer bootstrap samples.

For each hypothesis, the proposed sequential algorithm “calibrates” the
number of bootstrap samples according to the estimated standard error of
each bootstrap p-value. The number of bootstraps needed for making deci-
sions using the proposed algorithm is substantially smaller than if one were
to perform decisions using p-values based on the same pre-specified number of
bootstrap samples for each hypothesis.

As seen from the simulation study described in Section 3, the reduction
in the number of bootstrap calculations can be as much as a 6-fold reduction

2

Statistical Applications in Genetics and Molecular Biology, Vol. 7 [2008], Iss. 1, Art. 13

http://www.bepress.com/sagmb/vol7/iss1/art13



without sacrificing the control of FDR. In Section 4 we illustrate the proposed
algorithm by applying it to a gene expression microarray data obtained by
Lobenhoffer et al (2001). Theoretical justification for the proposed algorithm
is provided in the Appendix.

2 Methods

2.1 Notations

Suppose H1, H2, . . . , Hm are m null hypotheses of interest to be tested of which
m0 are true null hypotheses and the remaining m1 = m −m0 are false. Let
M = {Hi : 1 ≤ i ≤ m} indicate the set of all m null hypotheses, R denote the
total number of null hypotheses rejected by a multiple testing procedure of
which V denote the number of true null hypotheses rejected. The proportion
of false discoveries is defined to be Q = V

R
(and equal to 0 if R = 0) and the

false discovery rate (FDR) is defined to be the expectation of Q, i.e.,

FDR = E(Q) = E(
V

R
) . (1)

Suppose Pi is the p-value associated with the ith null hypothesis Hi, 1 ≤ i ≤ m
and P(1) ≤ P(2) ≤ · · · ≤ P(m) are the sorted p-values. Let H(i) denote the null
hypothesis corresponding to P(i), 1 ≤ i ≤ m.

The well-known Benjamini-Hochberg (BH) procedure for controlling FDR
is a linear step-up procedure with critical constants αi = i

m
α, i = 1, · · · ,m,

where α is a pre-specified significance level. The BH procedure proceeds as fol-
lows. If P(m) ≤ α, then reject all null hypotheses; otherwise, reject hypotheses
H(1), . . . , H(r) where r is the smallest index satisfying P(m) > α, . . . , P(r+1) >
r+1
m

α. If, for all r, P(r) > r
m

α, then reject none of the hypotheses. More
formally, if we define

i0(P ) = max{i : P(i) ≤ i

m
α, i = 1, · · · , m}, (2)

where P = (P1, P2, · · · , Pm)′ is the vector of p-values, then the BH procedure
rejects i0 null hypotheses H(1), · · · , H(i0) and not reject the remaining m − i0
null hypotheses. We shall denote the set of rejected null hypotheses by R(P ) =
{H(i) : 1 ≤ i ≤ i0(P )} and the set of accepted hypotheses by A(P ) = {H(i) :
i0(P ) < i ≤ m}.

The BH and other stepwise procedures, such as Benjamini-Liu and Benjamini-
Yekutieli procedures (Benjamini and Liu, 1999; Benjamini and Yekutieli, 2001),
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assume that all p-values are exact and available to us when testing H1, H2, . . . ,
Hm. However, this is not the case when the marginal p-values are estimated
using bootstrap methodology.

Based on B bootstrap samples, suppose P
(B)
i denotes the estimated p-value

for the ith null hypothesis Hi, i = 1, 2, · · · ,m. Further, suppose that [c
(B)
i , d

(B)
i ]

is a ”suitable” confidence interval for the ideal bootstrap p-value Pi, centered
at P

(B)
i , which is used to describe accuracy of the practical bootstrap p-value

P
(B)
i .

2.2 The algorithm

The algorithm, which is called Algorithm 1, consists of the following steps.

Step 1: Fix a non-decreasing sequence of numbers of bootstrap samples B0 ≤
B1 ≤ · · · ≤ BN . Set the significance level as α and the confidence level of
confidence intervals as 1 − β. Initialize i = 0, M̃ = M , and A(B) = R(B) = ∅
(null set).

Step 2: Set B = Bi. Based on B bootstrap samples, for each hypothesis

Hj ∈ M̃ , obtain bootstrap p-value P
(B)
j and the corresponding (1 − β) level

confidence interval [c
(B)
j , d

(B)
j ]. For Hj /∈ M̃ , that is hypotheses for which

decisions have been made at an earlier step, set P
(B)
j = P

(Bi−1)
j , c

(B)
j = c

(Bi−1)
j

and d
(B)
j = d

(Bi−1)
j .

Step 3: Apply the BH procedure to the vectors c(B) = (c
(B)
1 , · · · , c

(B)
m )′ and

d(B) = (d
(B)
1 , · · · , d

(B)
m )′, respectively. Let the corresponding set of accepted

hypotheses at level α be denoted by A(c(B)) and the set of rejected hypothe-
ses be denoted by R(d(B)). For convenience, we rewrite A(c(B)) as A(B) and
R(d(B)) as R(B).

Step 4: Set i ← i + 1 and M̃ ← M̃ − {
A(B)

⋃
R(B)

}
. Repeat Steps 2 and 3

until M̃ = ∅ or i = N (a pre-specified sequence length).

Step 5: If M̃ is not empty, apply the BH procedure to the p-value vector

P (BN ) = (P
(BN )
1 , · · · , P

(BN )
m ). The final sets of accepted and rejected hypothe-

ses at level α are A(P (BN )) and R(P (BN )), respectively.

Remark 1 Algorithm 1 may be viewed as a generalization of the pretest
procedure of Davidson and McKinnon (2000, section 3). The basic difference
between the two is that the Davidson and McKinnon procedure is designed for
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standard single hypothesis testing problem, while the present methodology is
derived for the multiple hypotheses testing problems.

Remark 2 Algorithm 1 can be generalized to the situation where decisions
on the acceptance and rejections of null hypotheses are made at different levels
α1 and α2, respectively. In order to guarantee accuracy of Algorithm 1, we
generally set α1 and α2 satisfying α2 ≤ α ≤ α1.

Remark 3 In implementation of Algorithm 1, choice of suitable confidence
intervals for ideal bootstrap p-values is important. We generally choose the
confidence intervals with high coverage probability at a pre-specified level 1−β.
For example, we might choose β = 0.01. In order to guarantee accuracy of
Algorithm 1, we can also choose conservative simultaneous confidence intervals
for all ideal bootstrap p-values at level 1− β

2m
.

Remark 4 In Algorithm 1, we apply the BH procedure to the less precise
p-value intervals [c

(B)
j , d

(B)
j ], which construction will be discussed in details in

next subsection. For those hypotheses in A(B)
⋃

R(B), we stop computing p-
values in all future calculations, since we are able to make decisions regarding
these hypotheses with less precise p-values.

It is interesting to note that BH acceptance and rejection sets enjoy the
following monotonicity properties.

Proposition 1 Using the notation in Algorithm 1, with c(B) = (c
(B)
1 , · · · , c

(B)
m )′

and d(B) = (d
(B)
1 , · · · , d

(B)
m )′. Assume that for each i = 1, · · · ,m, P

(B)
i ∈

[c
(B)
i , d

(B)
i ], then

A(c(B)) ⊆ A(P (B)) ⊆ A(d(B)) (3)

R(d(B)) ⊆ R(P (B)) ⊆ R(c(B)). (4)

Remark 5 Proposition 1 demonstrates, even though corresponding ideal boot-
strap p-values of null hypotheses are unknown, by (3) and (4) we can still
make correct decisions of rejection or acceptance on hypotheses in R(d(B)) and

A(c(B)) with confidence on the basis of less precise p-value intervals [c
(B)
i , d

(B)
i ], i

= 1, · · · ,m. Algorithm 1 is based on this simple fact.

We now state the main theorem of this article, which justifies the use of
Algorithm 1.

Theorem 1 Suppose Algorithm 1 is implemented to its completion then the
following results hold:
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(i) For all 0 ≤ i < N , R(d(Bi)) ⊆ R(d(Bi+1)) and A(c(Bi)) ⊆ A(c(Bi+1)).

(ii) Let, for each j = 1, · · · ,m, P̃
(BN )
j be the bootstrap p-value for hypothe-

sis Hj on the basis of BN bootstrap samples. If P̃
(BN )
j ∈ [c

(BN )
j , d

(BN )
j ],

then R(P (BN )) = R(P̃ (BN )) and A(P (BN )) = A(P̃ (BN )), where P̃ (BN ) =

(P̃
(BN )
1 , · · · , P̃

(BN )
m )′.

Some important implications of the above theorem are provided in the
following remarks.

Remark 6 From Theorem 1(i) we deduce that if a null hypothesis has been
either accepted or rejected by the BH procedure at an earlier step, then that
decision will not change in the subsequent steps of the algorithm.

Remark 7 According to Theorem 1 (ii), in theory, Algorithm 1 will produce
the same overall decisions of acceptance or rejection as the conventional BH
procedure. Note that the BH procedure makes decisions based on p-values
obtained from a pre-specified large number BN of bootstrap samples.

2.3 Implementation of algorithm 1

Implementation of the proposed algorithm requires the computation of confi-
dence intervals [c

(B)
i , d

(B)
i ], i = 1, 2, · · · ,m. For the ith hypothesis Hi, based on

a random sample of size n, suppose xi denotes the observed value of the test
statistic. Suppose B bootstrap samples of size n each are drawn for testing
Hi and suppose the bootstrap test statistics are T ∗

i,1 ≤ T ∗
i,2 ≤ · · · ≤ T ∗

i,B. Then
the estimated bootstrap p-value is given by

P
(B)
i =

#{T ∗
i,j ≥ xi, j = 1, · · · , B}

B
,

where the numerator is the number of bootstrap test statistics that are greater
than or equal to the observed value xi. The ideal bootstrap p-value Pi is the
conditional expectation of P

(B)
i given xi, i.e., E(P

(B)
i |xi) = Pi. The random

variable #{T ∗
i,j ≥ xi, j = 1, 2, · · · , B} is binomially distributed with B tri-

als and probability of “success” given by Pi. Several methods exist in the
literature for estimating confidence interval of the form [c

(B)
i , d

(B)
i ] for the un-

known ideal bootstrap p-value Pi. Some of the well-known methods include
Wald asymptotic method without or with continuity correction (Vollset, 1993;
Blyth and Still, 1983), Wilson score method without or with continuity cor-
rection (Wilson, 1927; Blyth and Still, 1983), Clopper-Pearson exact method
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(Clopper and Pearson, 1934), and Likelihood-based method (Miettinen and
Nurmine, 1985) etc.

Agresti and Coull (1998) and Newcombe (1998) have demonstrated that the
Clopper-Pearson exact confidence interval tends to have a very high coverage
probability, a desirable feature for our algorithm. Therefore, in implementation
of Algorithm 1, we use the Clopper-Pearson exact method to derive the (1−β)

level confidence interval [c
(B)
i , d

(B)
i ], which is described as follows. Suppose that

X ∼ Binomial (B, p) and let H(·) be its cumulative distribution function, i.e.,

H(B, p, k) = Pr{X ≤ k}, for 0 ≤ k ≤ B.

Given B and k, an inverse function is defined as a map H−1
B,k(·) : [0, 1] → [0, 1]

satisfying H
(
B, H−1

B,k(p), k
)

= p for any p ∈ [0, 1]. Using the notation, the

lower and upper limits c
(B)
i and d

(B)
i is expressed as

c
(B)
i = H−1

B,ri−1(1− β/2) and d
(B)
i = H−1

B,ri
(β/2), (5)

where ri = #{T ∗
i,j ≥ xi, j = 1, 2, · · · , B} = BP

(B)
i , and c

(B)
i and d

(B)
i can be

numerically calculated using the bisection method at a pre-specified accuracy
level γ. Typically, we might set γ = 10−6.

In implementation of Algorithm 1, we generally choose a high confidence
level for confidence intervals and use a simple rule to generate the non-decreasing
sequence B0 ≤ B1 ≤ · · · ≤ BN such as setting Bi+1 = 2Bi, 0 ≤ i < N ,
where BN is the pre-specified number of bootstrap samples by standard boot-
strap methodology (Andrews and Buchinsky, 2000; Davidson and MacKinnon,
2000).

2.4 Extension to adaptive procedure

In this subsection, we extend our proposed algorithm to the Storey adaptive
BH procedure. Benjamini and Hochberg (1995) showed that for the BH proce-
dure, FDR ≤ π0α, where π0 = m0/m is the ratio of the true null hypotheses
among all hypotheses. By introducing a simple estimate π̂0 of π0, Storey
(2002) and Storey et al (2004) proposed a more powerful adaptive step-up
procedure with critical constants αi = i

π̂0m
α, i = 1, · · · ,m, and showed that

the procedure controls the FDR at α under the assumption of independence
of the underlying test statistics. Given p-value vector P = (P1, · · · , Pm), the
estimate π̂0 is defined as

π̂0(P ) =
m−Q(P ) + 1

m(1− λ)
,
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where λ is a pre-specified positive constant, Q(P ) =
∑m

i=1 I(Pi ≤ λ) is the
number of hypotheses with p-values less than or equal to λ, and I(·) denotes the

indicator function. Using the same notations as in Algorithm 1, let P
(B)
i denote

bootstrap p-values corresponding to hypotheses Hi, i = 1, · · · ,m on the basis
of B bootstrap samples and [c

(B)
i , d

(B)
i ] denote associated confidence intervals.

Suppose A(P (B)) and R(P (B)) respectively denote the sets of accepted and
rejected null hypotheses while applying the Storey procedure to the p-value
vector P (B) = (P

(B)
1 , · · · , P

(B)
m )′.

Based on vectors c(B) = (c
(B)
1 , · · · , c

(B)
m )′ and d(B) = (d

(B)
1 , · · · , d

(B)
m )′, two

new estimates π̂0
1 = π0(c

(B)) and π̂0
2 = π0(d

(B)) of π0 can be constructed. Based
on π̂0

1 and π̂0
2, two different Storey procedures can be obtained. We apply the

first Storey procedure to to c(B) and the second one to d(B). Suppose A1(c
(B)),

R1(c
(B)) and A2(d

(B)), R2(d
(B)) are the corresponding sets of accepted and

rejected null hypotheses, respectively. Similar to Proposition 1, we can obtain
the following result.

Proposition 2 Assume that for each i = 1, · · · ,m, P
(B)
i ∈ [c

(B)
i , d

(B)
i ], then

A1(c
(B)) ⊆ A(P (B)) ⊆ A2(d

(B)) (6)

R2(d
(B)) ⊆ R(P (B)) ⊆ R1(c

(B)). (7)

Based on Proposition 2, if we use more powerful Storey procedure instead
of BH procedure in our proposed algorithm, we only need to modify Step 3 of
Algorithm 1 as follows.
Step 3′. Apply the first Storey procedure with estimate π̂0

1 to c(B) = (c
(B)
1 , · · · ,

c
(B)
m )′ and the second one with estimate π̂0

2 to d(B) = (d
(B)
1 , · · · , d

(B)
m )′, respec-

tively. Let A1(c
(B)) be the corresponding set of accepted hypotheses at level

α for the first procedure and R2(d
(B)) be the set of rejected hypotheses for

the second one. For convenience, we rewrite A1(c
(B)) as A(B) and R2(d

(B)) as
R(B), respectively.

3 Simulation study

We performed a simulation study to evaluate the reduction in the number
of bootstrap replicates achieved by the proposed algorithm, relative to the
standard BH procedure. To generate a gene expression data with a realistic
correlation structure between gene expressions, we used the data of Lobenhofer
et al (2002). The published data consisted of gene expression of 1,900 probes
at 6 different time points with 8 cDNA microarray chips at each time point.
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Thus, there were 48 chips with each chip containing 1,900 probes. We ran-
domly selected 8 chips from 48 chips (with replacement) and assigned them to
Group 1 and another random sample (with replacement) of 8 chips to Group
2. Thus, two new groups were created which preserved the underlying corre-
lation structure among the 1,900 probes. Further, apart from any difference
due to randomization, there was no difference between Group 1 and Group 2.
To create a non-null data, we added a value of 1 to the last π1 = 5% or 10%
probes in Group 2. Thus either 95% or 90% of the probes are not differentially
expressed between the two groups.

In this simulation study we chose the FDR levels as α = 0.01 or 0.05 and
performed two-sided tests with symmetric bootstrap p-values as

P
(B)
i = #

{|T ∗
i,j| ≥ |x|, j = 1, · · · , B

}
/B, for i = 1, · · · ,m.

We choose a confidence level 1 − β = 0.99 for the Clopper-Peason exact con-
fidence intervals of ideal bootstrap p-values, which is numerically solved by
the bisection method with accuracy level, γ = 10−6. We use a simple rule
to generate the non-decreasing sequence B0 ≤ B1 ≤ · · · ≤ BN . For B0, we
set B0 = 125, 250 or 500; for BN , we set BN = 2, 000; for other Bi’s, we set
Bi+1 = 2Bi, 0 ≤ i < N . We repeated this simulation experiment 200 times for
estimating various performance criteria described below.

In the simulation study, we compared the proposed Algorithm 1 with the
conventional BH procedure based on BN = 2, 000 bootstrap samples. The
performance criteria of our interest are:

• Average number of bootstrap samples (aveB): It is defined as aveB =
1
m

∑N
i=0 MiBi, where Mi is the number of tested hypotheses in the ith

stage of Algorithm 1.

• Fold reduction of number of bootstraps (Fold red.): It is defined as
BN/aveB.

• Degree of consistency with the standard procedure (Degree cons. ): It

is defined as 100 · (1− |FR1−FR2|
FR2

), where FR1 and FR2 are respectively
the numbers of rejected hypotheses using Algorithm 1 and the conven-
tional BH procedure. If FR1 ≥ FR2, then |FR1−FR2|

FR2
is interpreted as

the percent increase in false discoveries relative to the regular procedure;
otherwise, it is interpreted as the ratio of missing discoveries relative to
the regular procedure. Theoretically we expect that, whenever the num-
ber of rejections is same between the two procedures, the same sets of
hypotheses are rejected by both procedures. This is because, the opera-
tion of multiple testing procedures involves first ranking the hypotheses
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Table 1: Simulation results.

π1 = 0.05 π1 = 0.1
α B0 aveB Fold Degree aveB Fold Degree

red. cons. (%) red. cons. (%)
0.01 125 317 6.3 98 488 4.1 99

250 431 4.6 100 589 3.4 99
500 651 3.1 100 788 2.5 99

0.05 125 357 5.6 99 534 3.7 99
250 478 4.2 95 640 3.1 100
500 686 2.9 99 833 2.4 98

based on the individual p-values and then choosing cutoff based on the
rankings.

The simulation results are reported in Table 1. The degree of consistency of
our proposed algorithm with the BH procedure was very high. For almost all
settings of parameters, it is more than 98%. Compared with the conventional
BH procedure, the average number of the bootstrap samples was greatly re-
duced while applying the proposed algorithm. Although the gain in efficiency
depends upon the initial number of bootstraps B0, it was usually very high.
According to our simulations, even in the worst case scenario it achieved al-
most a 2-fold reduction and in the best case scenario it was as much as 6-fold
reduction. In addition, the degree of consistency of our proposed algorithm
was not affected by the choice of B0 (Table 1). Thus the proposed algorithm
would require nearly one fifth to two fifths of the time the conventional BH
procedure would take while guaranteing high degree of consistency of decisions
with the BH procedure.

4 Illustration

We illustrate the proposed methodology by applying it to the time-course data
of Lobenhofer et al (2002), which was briefly described in the previous section.
The goal is to select significant genes and cluster them by their expression
patterns over the six time points, namely, 1, 4, 12, 24, 36 and 48 hours after
the breast cancer cells were treated with estradiol. For each gene, we establish
a null hypothesis versus an alternative as in Peddada et al (2003). We then
applied the order-restricted inference methodology of Peddada et al (2003) and
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Peddada et al (2005) to derive the p-value corresponding to each test needed
for using the proposed methodology.

Briefly, the order-restricted inference methodology of Peddada et al (2003)
and Peddada et al (2005) is useful for selecting significant genes and clustering
them by their expression patterns. Unlike many of the methods available in
the literature for analyzing time-course data (e.g. Storey et al, 2005; Liu et al,
2005), this methodology does not use a mathematical/statistical model to de-
scribe the relationship between gene expression and the explanatory variable
such as time/dose values. Instead, it exploits the underlying mathematical
inequalities between mean expression values. As a consequence, in addition
to time-course/dose-response studies, the proposed methodology is also appli-
cable to studies where the explanatory variable is an ordinal variable, such
as, for clustering gene expressions by severity of a lesion (normal-hyperplasia-
adenoma-carcinoma).

As in Peddada et al (2003) we considered 10 different patterns of mean
expression associated with the Lobenhofer et al (2002) data: decreasing with
time, umbrella pattern with peak at 4, 12, 24 and 36 hours, increasing pattern
with time, inverted umbrella pattern with minimum at 4, 12, 24 and 36 hours.
We set the FDR level to be 0.05, B0 =1,250, and BN =10,000. As in Section
3 we use the same confidence level 99% and the same double rule to generate
the sequence Bi’s.

The proposed methodology selected a total of 206 significant genes and the
conventional BH procedure selected 201 significant genes with the number of
bootstraps BN = 10, 000. Among these two lists, 199 genes are common and
all of the top 50 genes selected by Peddada et al (2003) were also selected
by the proposed algorithm. The average number of bootstraps required by
the proposed algorithm was only 2,175 in comparison to BN =10,000. Thus
the number of bootstraps required by the proposed adaptive method is about
22% of the “full” bootstrap of the conventional method, an almost 4.5 times
reduction in the number of bootstraps, a very substantial reduction. On our
computer, the conventional BH procedure took about 16 minutes. Whereas
our procedure took 2 minutes.

5 Discussion

The FDR methodology has been extensively applied in large scale multiple
testing problems where the BH and Storey procedures are two most commonly
used methods for controlling the FDR. Similar to other stepwise procedures in
multiple testing, usage of the BH and Storey procedures relies on the availabil-
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ity of true p-values. In many instances, especially in the context of high dimen-
sional data such as microarray data, the true p-values are usually unavailable
and one has to contend with bootstrap p-values. Unfortunately, one cannot
obtain the true bootstrap p-values (known as ideal bootstrap p-values) either,
because that would entail drawing all possible bootstrap samples. Hence, typ-
ically one needs to contend with the practical bootstrap p-value, an estimate
of ideal bootstrap p-value obtained from a finite number of bootstrap samples.
The precision of the estimate depends upon the number of bootstraps drawn.
Existing literature suggests that researchers have used a wide range of number
of bootstrap samples to estimate the ideal bootstrap p-value. Depending upon
the application and context some have used as few as 200 bootstraps and as
many as 10,000 bootstraps (e.g. Suzuki and Shimodaira, 2006). Some even use
as many as 100,000 bootstraps (Meuwissen and Goddard, 2004). Obviously,
larger the number of bootstraps the more precise is the estimated bootstrap
p-value.

Clearly, if the number of bootstraps is small then the list of null hypothe-
ses rejected by a stepwise FDR controlling procedure may greatly change with
repeated application of the procedure. More severely, it may lose the control
of the FDR. On the other hand, increasing the number of bootstraps to a very
large number will certainly come at the expense of computation time, espe-
cially in the face of high dimensional data. Therefore it is crucial to develop
adaptive algorithms such as the one described here to reduce the total number
of computations without sacrificing the control of the FDR. Computational
issues raised in this article are relevant to any large scale multiple testing
problem involving high-dimensional data, and is not limited to microarray
data.

We provided a simple adaptive algorithm for determining the number of
bootstrap samples in large scale multiple testing. The algorithm not only
reduces the average number of bootstraps substantially but it also produces
results consistent with the conventional BH procedure based on a large number
of bootstraps. In addition, it also maintains the FDR to a desired level. As we
extended the proposed idea to Storey’s procedure, in a similar way the idea
could also be applied to other multiple testing procedures to achieve significant
reduction in the number of computations.

In passing, we like to comment about the difference between the non-
parametric bootstrap and the permutation methodology for estimating the
p-vlue of a test. While nonparametric bootstrap, considered in this paper, is
a resampling procedure where the samples are drawn with replacement, the
permutation methodology is a resampling procedure where samples are drawn
without replacement. The permutation p-value based on B permutations is
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given by P̂ (B) = #
{
1 + T ∗

j ≥ x, j = 1, · · · , B
}

/(B + 1). Both, bootstrap as
well as permutation procedures have some desirable features. For instance,
the permutation procedure satisfies the required stochastic ordering under the

null hypothesis, i.e. PrH0

{
P̂ (B) ≤ x

}
≤ x, for all 0 ≤ x ≤ 1. Although this

is not necessarily true for bootstrap for small sample sizes, it is asymptoti-
cally satisfied. Furthermore, relative to bootstrap, the permutation tests are
computationally less intensive. However, a distinct advantage of bootstrap is
that it is more broadly applicable than the permutation tests. It is useful for
testing the equality of various parameters of interest rather than the equality
of distributions.

In conclusion we believe that, with the influx of high-dimensional data from
high-throughput technologies, there is a need for developing computationally
efficient algorithms for multiple testing problems that control the FDR (e.g.
Datta and Datta, 2005). Although a considerable literature exists on the mul-
tiple comparison procedures for high dimensional data, almost no work has
been done on the computational challenges associated with this problem. One
exception is Ge, Dudoit and Speed (2003), in which computational issues asso-
ciated with implementation of Westfall and Young (1993)’s resampling-based
minP method are discussed carefully and a fast algorithm for implementing the
minP method are proposed. In addition, a few computational issues have also
been discussed in the context of traditional small scale multiple testing prob-
lems, such as the closed testing method of Marcus, Peritz and Gabriel (1976).
Although our solution seems to perform well for the problem considered in
this article, more needs to be done along these lines.

APPENDIX

A Proofs

We now provide the proofs of the results stated in Section 2.

Lemma 1 For any m-dimensional vector P , i0(P ) defined as (2) is decreasing
in each component of P .

Proof of Lemma 1: Consider two m-dimensional vectors X = (X1, · · · , Xm)′

and Y = (Y1, · · · , Ym)′, we say X ≥ Y if and only if Xi ≥ Yi for any i =

1, · · · ,m. Let the ordered forms of these two vectors be denoted by X̃ =
(X(1), X(2), . . . , X(m))

′ and Ỹ = (Y(1), Y(2), . . . , Y(m))
′, where X(1) ≤ X(2) ≤
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· · · ≤ X(m) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(m). Note that, if X ≥ Y , then X̃ ≥ Ỹ .
The result follows by recalling the definition of i0(P ).

Proof of Proposition 1: Note that, for each i = 1, 2, · · · ,m, c
(B)
i ≤ P

(B)
i ≤

d
(B)
i and hence c(B) ≤ P (B) ≤ d(B). Applying Lemma 1, we have

i0(c
(B)) ≥ i0(P

(B)) ≥ i0(d
(B)). (A.1)

For any Hi ∈ A(c(B)), we note

c
(B)
i >

i0(c
(B))

m
α ≥ i0(P

(B))

m
α. (A.2)

Thus P
(B)
i > i0(P (B))

m
α. Hence we deduce that Hi ∈ A(P (B)), implying A(c(B))⊆

A(P (B)). Similarly, it can be demonstrated that R(d(B)) ⊆ R(P (B)).
Since A(P (B))

⋃
R(P (B)) = M , therefore

R(d(B)) ⊆ R(P (B)) = M − A(P (B))

⊆ M − A(c(B)) = R(c(B)). (A.3)

Similarly,

A(c(B)) ⊆ A(P (B)) = M −R(P (B))

⊆ M −R(d(B)) = A(d(B)). (A.4)

Proof of Theorem 1: (i) For any 0 ≤ i < N , let the ordered values of d
(Bi)
1 , · · · ,

d
(Bi)
m be denoted by d

(Bi)
(1) ≤ · · · ≤ d

(Bi)
(m) . Then by the definition of i0(P ) we

have

d
(Bi)
(k) ≤ i0(d

(Bi))

m
α, k = 1, · · · , i0(d

(Bi)).

From step 2 of Algorithm 1, we know that

d
(Bi+1)
(k) = d

(Bi)
(k) , k = 1, · · · , i0(d

(Bi)). (A.5)

Therefore

d
(Bi+1)
(k) ≤ i0(d

(Bi))

m
α, k = 1, · · · , i0(d

(Bi)). (A.6)

By the definition of i0(P ) we have

i0(d
(Bi)) ≤ i0(d

(Bi+1)). (A.7)
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For any Hj ∈ R(d(Bi)), we note d
(Bi)
j ≤ i0(d(Bi))

m
α. By (A.6) and (A.7) we have

d
(Bi+1)
j = d

(Bi)
j ≤ i0(d

(Bi))

m
α ≤ i0(d

(Bi+1))

m
α. (A.8)

Therefore, we deduce that Hj ∈ R(d(Bi+1)), implying R(d(Bi)) ⊆ R(d(Bi+1)).
Through a set of similar arguments, we conclude that A(c(Bi)) ⊆ A(c(Bi+1)).

(ii) Note that for each j = 1, 2, · · · ,m, P̃
(BN )
j ∈ [c

(BN )
j , d

(BN )
j ]. By Proposition

1 we have

R(d(BN )) ⊆ R(P̃ (BN )) and A(c(BN )) ⊆ A(P̃ (BN )). (A.9)

From Algorithm 1, we know that for any Hj /∈ R(d(BN ))
⋃

A(c(BN )), P
(BN )
j =

P̃
(BN )
j . Based on the above facts, we show in the following that i0(P

(BN )) =

i0(P̃
(BN )).

Assume that i0(P
(BN )) 6= i0(P̃

(BN )). Without loss of generality, we suppose

i0(P
(BN )) < i0(P̃

(BN )). For simplicity’s sake, let i0 = i0(P
(BN )) and i′0 =

i0(P̃
(BN )). By the definition of i0(P ), we have

P
(BN )

(i′0) >
i′0
m

α ≥ P̃
(BN )

(i′0) .

Thus,

H(i′0) ∈ A(P (BN ))
⋂ (

R(d(BN ))
⋃

A(c(BN ))
)

. (A.10)

Note that in Algorithm 1, P (BN ) ≤ d(BN ). By Proposition 1 and (A.10),
we have H(i′0) ∈ A(c(BN )). Similarly, by Proposition 1 and the definition of

i0(P̃
(BN )), we have

H(i′0) ∈ R(P̃ (BN )) ⊆ R(c(BN )),

which leads logically to a contradiction. Therefore, i0(P
(BN )) = i0(P̃

(BN )), and
then the result follows.

Proof of Proposition 2: Note that P
(B)
i ∈ [c

(B)
i , d

(B)
i ] for all i = 1, · · · ,m,

therefore c(B) ≤ P (B) ≤ d(B). Then

Q(d(B)) ≤ Q(P (B)) ≤ Q(c(B)) for any given λ.

It follows that π̂0
1 ≤ π̂0 ≤ π0

2. By the definition of i0(P ), we have

i0(c
(B)) = max

{
i : c

(B)
(i) ≤

i

π̂0
1m

α

}
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i0(P
(B)) = max

{
i : P

(B)
(i) ≤ i

π̂0m
α

}
,

where c
(B)
(1) ≤ · · · ≤ c

(B)
(m) is the ordered values of c(B). Then we have i0(c

(B)) ≥
i0(P

(B)). For any Hi ∈ A1(c
(B)), we have

P
(B)
i ≥ c

(B)
i >

i0(c
(B))

π̂0
1m

α ≥ i0(P
(B))

π̂0m
α. (A.11)

Hence Hi ∈ A(P (B)), implying A1(c
(B)) ⊆ A(P (B)). Similarly, we can show

R2(d
(B)) ⊆ R(P (B)). The result follows by using A(P )

⋃
R(P ) = M for any

vector P .
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