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Abstract

The Benjamini–Hochberg step-up procedure controls the false discovery rate (FDR) provided the test statistics have a certain
positive regression dependency. We show that this procedure controls the FDR under a weaker property and is optimal in the sense
that its critical constants are uniformly greater than those of any step-up procedure with the FDR controlling property.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In this article, we consider the problem of simultaneously testing a finite number of null hypotheses Hi (i =

1, . . . , m). A main concern in multiple testing is the multiplicity problem. A traditional approach for solving this
problem is to control the familywise error rate (FWER), which is the probability of one or more false rejections, at a
desired level. However, when the number m of null hypotheses is large, very few false null hypotheses are rejected
when one uses a multiple testing procedure that controls FWER. Consequently, alternative measures of error rates
have been considered in the literature. Control of these measures purportedly leads to rejection of more false null
hypotheses. One well-known measure is the false discovery rate (FDR), which is the expected proportion of type I
errors among the rejected hypotheses, proposed by Benjamini and Hochberg (1995).

In this paper, discussion is focused on multiple testing procedures controlling FDR. Benjamini and Hochberg
(1995) proposed a simple linear step-up procedure with critical constants αi =

i
m α, 1 ≤ i ≤ m, and showed that

FDR =
m0
m α, where m0 is the number of true null hypotheses, under the assumption of independence of the underlying

test statistics. Finner and Roters (2001) and Storey et al. (2004) offered different proofs of the above equality result
under independence. Subsequently, Benjamini and Liu (1999) constructed a step-down procedure with the FDR
controlling property for independent test statistics. Benjamini and Yekutieli (2001) extended the FDR controlling
property of the Benjamini–Hochberg procedure to the case in which the test statistics have positive regression
dependency on each of the test statistics corresponding to the true null hypotheses (the PRDS property). Sarkar (2002)
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strengthened the result of Benjamini and Yekutieli by showing that a more general step-down–step-up procedure with
the same critical values as those of the Benjamini–Hochberg procedure controls the FDR under the PRDS property. In
addition, he also showed that the Benjamini–Liu step-down procedure has the FDR controlling property under certain
positive dependence requirements. Genovese and Wasserman (2002, 2004) investigated some operating characteristics
of the Benjamini–Hochberg procedure asymptotically under independence by using a stochastic process method.
Storey (2002) and Storey et al. (2004) derived a new family of FDR procedures based on estimates of FDR. Sarkar
(2006) provided an FDR controlling single-step procedure under a certain dependence property. Along with these
theoretical developments, the FDR has also been extensively used in many applications such as microarray data
analysis (Reiner et al., 2003), clinical trials (Mehrotra and Heyse, 2004), model selection (Abramovich et al., 2005),
and educational evaluation (Williams et al., 1999).

In this article, we mainly investigate optimality of the Benjamini–Hochberg procedure in terms of its critical
constants. We first introduce a property of the underlying test statistics and prove that it is strictly weaker than the
PRDS property. Under this new property, we provide an upper bound of the FDR for the step-up procedure with
any nondecreasing critical constants. We also show that, under the reign of the new property, the critical constants
of any FDR controlling procedure are uniformly smaller than those of the Benjamini–Hochberg procedure. That is,
the Benjamini–Hochberg procedure is optimal in terms of the critical constants, which offers new insights into the
Benjamini–Hochberg procedure. We need to point out that most of the techniques used in the literature in deriving an
upper bound for the FDR rely on probability inequalities, but the upper bound of the FDR that we have obtained uses
optimization methods stemming from the knapsack problem in analysis of algorithms.

The paper is organized as follows. In Section 2, we describe our basic setting and terminology. In Section 3, we
present a property on the underlying test statistics strictly weaker than the PRDS property. Under this property, we
then investigate the upper bound of the FDR for the step-up procedure with any nondecreasing critical constants and
prove that the Benjamini–Hochberg procedure is optimal in terms of the critical constants. Further extensions and
possible problems are discussed in Section 4.

2. Basic setting

Consider the problem of testing simultaneously m null hypotheses H1, H2, . . . , Hm , of which m0 are true and
m1 = m −m0 are false. Let I0 and I1 be the index sets of true and false null hypotheses respectively, and I = I0

⋃
I1,

the index set of all null hypotheses.
Suppose R is the total number of hypotheses rejected and V the number of true null hypotheses rejected. The

proportion of false discoveries is defined to be Q =
V
R (and equal to 0 if R = 0) and the false discovery rate (FDR) is

defined to be the expectation of Q, i.e.,

FDR = E(Q) = E

(
V

R

)
. (1)

When testing H1, . . . , Hm , the corresponding p-values P1, . . . , Pm are available to us. Multiple testing procedures
are usually built on the p-values. Theoretically, the p-value associated with a true null hypothesis has a distribution
stochastically dominating the uniform distribution U (0, 1). Here, we assume that each of the p-values corresponding
to true null hypotheses has a uniform distribution U (0, 1). Let the ordered p-values be denoted by P(1) ≤ · · · ≤ P(m),
and the associated hypotheses by H(1), . . . , H(m). Suppose α1 ≤ · · · ≤ αm is a nondecreasing sequence of critical
constants.

The step-up procedure based on the critical constants proceeds as follows. If P(m) ≤ αm , then reject all
null hypotheses; otherwise, reject hypotheses H(1), . . . , H(r) where r is the smallest index satisfying P(m) >

αm, . . . , P(r+1) > αr+1. If, for all r , P(r) > αr , then reject none of the hypotheses. A step-up procedure begins
with the least significant hypothesis and continues accepting hypotheses as long as their corresponding p-values
are greater than the corresponding critical constants. In particular, the Benjamini–Hochberg procedure is a step-up
procedure with critical constants αi =

i
m α, i ∈ I .

The following expression for the FDR is fundamental in deriving upper bounds for FDR.
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Lemma 2.1 (Benjamini and Yekutieli 2001, Sarkar 2002). The FDR of the step-up procedure based on any
nondecreasing critical constants αi , i ∈ I , is given by

FDR =

∑
i∈I0

m∑
k=1

1
k

Pr(Pi ≤ αk, R = k). (2)

For convenience, let α0 = 0, and define pi jk = Pr(Pi ∈ (α j−1, α j ], R = k). Then, from Lemma 2.1, the FDR can
be expressed as follows:

FDR =

∑
i∈I0

m∑
k=1

k∑
j=1

1
k

pi jk =

∑
i∈I0

m∑
j=1

m∑
k= j

1
k

pi jk . (3)

3. Step-up procedure

Benjamini and Yekutieli (2001) defined a dependency property of test statistics, which they called positive
regression dependency on each one from a subset I0, or PRDS on I0. Recall that a set D is called increasing if
x ∈ D and y ≥ x imply that y ∈ D as well. Denote by X the vector of test statistics, i.e., X = (X1, X2, . . . , Xm).
The PRDS property is defined as follows.

Property PRDS. For any increasing set D, and for each i ∈ I0, Pr{X ∈ D | X i = x} is nondecreasing in x .
The PRDS property captures the positive dependency structure of the test statistics, and is a relaxed form of the

positive regression dependency property. Benjamini and Yekutieli (2001) showed that the Benjamini–Hochberg step-
up procedure controls the FDR under the PRDS property. For the step-up procedure with any nondecreasing critical
values, the following inequality (4) holds under the PRDS property.

Lemma 3.1. Under the PRDS property, the following inequality holds for the step-up procedure with any
nondecreasing critical values αi , i ∈ I :

m∑
k=1

Pr(R = k|Pi ≤ αk) ≤ 1, for i ∈ I0. (4)

Specifically, if the underlying test statistics are independent, the above inequality becomes an equality.

Proof. Note that for i ∈ I0 and k = 1, . . . , m − 1,

Pr(R = k | Pi ≤ αk) = Pr(R ≥ k | Pi ≤ αk) − Pr(R ≥ k + 1 | Pi ≤ αk)

≤ Pr(R ≥ k | Pi ≤ αk) − Pr(R ≥ k + 1 | Pi ≤ αk+1).

The inequality follows from the PRDS property and the fact that the set {R ≥ k + 1} is decreasing in the p-values.
Then,

m∑
k=1

Pr(R = k | Pi ≤ αk) ≤

m−1∑
k=1

{Pr(R ≥ k | Pi ≤ αk) − Pr(R ≥ k + 1 | Pi ≤ αk+1)}

+ Pr(R = m | Pi ≤ αm) = Pr(R ≥ 1 | Pi ≤ α1) = 1.

If the underlying test statistics are independent, for each i ∈ I0, let R(−i)
m−1 denote the number of rejections of null

hypotheses when the step-up procedure based on the subset of p-values {P1, . . . , Pn} \ {Pi } and the critical values
α2 ≤ · · · ≤ αn are used. Then

m∑
k=1

Pr(R = k | Pi ≤ αk) =

m∑
k=1

Pr(R(−i)
m−1 = k − 1) = 1. �

Remark 3.1. If the underlying test statistics are negative regression dependent on each one from I0, by an argument
similar to Lemma 3.1, the direction of inequality (4) is reversed.
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We now construct a joint distribution of the p-values, under which the inequality (4) is satisfied, but the PRDS
property does not hold. This implies that the inequality (4) is a property of the underlying test statistics strictly weaker
than the PRDS property. For convenience of notation, define k1 ∧ m0 = min{k1, m0}.

Theorem 3.1. Consider the step-up procedure with nondecreasing critical values αk, k ∈ I . Let k1 =

arg max1≤k≤m
αk
k (there could be several k1’s satisfying k1 = arg max1≤k≤m

αk
k , and we choose the maximum of

these k1’s here). If m0
k1∧m0

αk1 ≤ 1, then there exists a joint distribution for the p-values that satisfies the inequality (4),
but does not satisfy the PRDS property.

Proof. The main idea is to construct a joint distribution under which the event Pi ≤ αk is same as the event R = k1
for i ∈ I0 and k ≤ k1. That is, Pr{R = k|Pi ≤ αk} = 1 if k = k1; otherwise it is equal to 0. So,

m∑
k=1

Pr(R = k|Pi ≤ αk) = 1. (5)

The construction of the joint distribution proceeds as follows. Let U1, . . . , Um+1 be m + 1 uniformly distributed
random variables such that Ui ∼ U (αi−1, αi ), i = 1, . . . , m, and Um+1 ∼ U (αm, 1). Let N be a random variable
taking values 1, . . . , k1, and m + 1 with respective probabilities π1, . . . , πk1 , and 1 −

∑k1
i=1 πi , and n be its realized

value. The πi ’s are predetermined as follows:

πi =


m0(αi − αi−1)

k1
if k1 ≤ m0,

αi − αi−1 elsewhere.
(6)

Given n = 1, . . . , k1, if k1 ≤ m0, then randomly pick k1 indices from I0 without replacement; if k1 > m0, also
randomly pick k1 indices, which consist of m0 indices from I0 and k1 − m0 indices from I1. Let the k1 p-values
associated with these k1 indices all be equal to Un and the p-values associated with the remaining m − k1 indices all
be equal to Um+1. Given n = m + 1, let the p-values associated with the indices from I0 and I1 be equal to Um+1 and
0, respectively. It is easy to verify that, for each i ∈ I0, the corresponding p-value Pi ∼ U (0, 1) and the event Pi ≤ αk
is the same as the event R = k1 for k ≤ k1. Thus, the inequality (4) holds. Note that {R ≤ k1} is an increasing set;
Pr{R ≤ k1|Pi ≤ αk} = 1 if k ≤ k1 and it equals 0 if k ≥ k1. So the p-values do not satisfy the PRDS property. �

Remark 3.2. Yekutieli (2002) constructed an interesting FDR controlling procedure for pairwise comparisons in
which the inequality (4) holds, but the p-values do not satisfy the PRDS property.

We now prove our main result assuming that the inequality (4) holds for the p-values.

Theorem 3.2. Consider the step-up procedure with nondecreasing critical values αk, k ∈ I , for which the inequality
(4) holds. Let k1 = arg max1≤k≤m

αk
k ; then FDR ≤

m0
k1

αk1 . Furthermore, FDR ≤
m0
m α if and only if αk ≤

k
m α for

every k ∈ I , provided m0
k1∧m0

αk1 ≤ 1.

Proof. Note that, for any i ∈ I0 and j ∈ I ,

m∑
k= j

pi jk = Pr{Pi ∈ (α j−1, α j ], j ≤ R ≤ m}

≤ Pr{Pi ∈ (α j−1, α j ]} = α j − α j−1. (7)

The inequality (4) can be rewritten as

m∑
k=1

Pr(R = k|Pi ≤ αk) =

m∑
k=1

1
αk

Pr(Pi ≤ αk, R = k)

=

m∑
k=1

1
αk

k∑
j=1

pi jk =

m∑
j=1

m∑
k= j

1
αk

pi jk ≤ 1. (8)
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Combining (3), (7) and (8), we consider the following optimization problem:

maximize FDR =

∑
i∈I0

m∑
j=1

m∑
k= j

1
k

pi jk,

with respect to pi jk
,s ≥ 0 and subject to the constraints

m∑
k= j

pi jk ≤ α j − α j−1 , for i ∈ I0, j ∈ I, and

m∑
j=1

m∑
k= j

1
αk

pi jk ≤ 1, for i ∈ I0. (9)

Problem (9) can be decomposed into a family of sub-problems indexed by i ∈ I0 as follows:

maximize Qi =

m∑
j=1

m∑
k= j

1
k

pi jk ,

with respect to pi jk
,s ≥ 0 and subject to the constraints

m∑
j=1

m∑
k= j

1
αk

pi jk ≤ 1, and

pi jk ≤ α j − α j−1 , for 1 ≤ j ≤ k ≤ m.

(10)

This falls in the realm of the classical fractional knapsack problem (Martello and Toth, 1990). Let k1 =

arg max1≤k≤m{
αk
k }, and define p∗

i jk as below.

p∗

i jk =

{
α j − α j−1 , if k = k1 and 1 ≤ j ≤ k1,

0 elsewhere.
(11)

Note that

m∑
j=1

m∑
k= j

1
αk

p∗

i jk =

k1∑
j=1

α j − α j−1

αk1

= 1. (12)

Thus, p∗

i jk, 1 ≤ j ≤ k ≤ m, is the optimal solution of the problem (10) for each i ∈ I0. It is easy to verify that

m∑
k= j

p∗

i jk ≤ α j − α j−1, for i ∈ I0 and j ∈ I. (13)

Consequently, p∗

i jk, i ∈ I0 and 1 ≤ j ≤ k ≤ m, is the optimal solution of the problem (9). Thus,

FDR ≤

∑
i∈I0

m∑
j=1

m∑
k= j

1
k

p∗

i jk =

∑
i∈I0

k1∑
j=1

1
k
(α j − α j−1) =

m0

k1
αk1 . (14)

Note that in Theorem 3.1, the constructed joint distribution of the p-values satisfies pi jk = p∗

i jk for i ∈ I0 and
1 ≤ j ≤ k ≤ m, and then FDR =

m0
k1

αk1 . So, to make FDR ≤
m0
m α, we must have m0

k1
αk1 ≤

m0
m α; that is, for each

k ∈ I, αk ≤
k
m α. Conversely, if αk ≤

k
m α, for each k ∈ I , then FDR ≤

m0
k1

αk1 ≤
m0
m α. �

Theorem 3.2 implies that, in the setting of p-values where the inequality (4) is satisfied, the Benjamini–Hochberg
procedure is optimal. That is, for any step-up procedure with nondecreasing critical values αk, k ∈ I , if it can control
the FDR at α, then αk ≤

k
m α for each k ∈ I .

Remark 3.3. The first result of Theorem 3.2 also holds for the step-down procedure with any nondecreasing critical
values αk, k ∈ I .
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4. Discussion

For the Benjamini–Hochberg procedure, if we do not impose any assumption on the joint distribution of the
underlying test statistics, the value of

∑m
k=1 Pr{R = k|Pi ≤ αk} will become much larger. Using the same approach

as was used in Theorem 3.2, we consider the following optimization problem:

maximize
m∑

k=1

Pr{R = k|Pi ≤ αk} =

m∑
j=1

m∑
k= j

1
αk

pi jk,

with respect to pi jk
,s ≥ 0 and subject to the constraints

m∑
k= j

pi jk ≤ α j − α j−1 , for i ∈ I0, j ∈ I.

(15)

It is easily solved that the maximum value of
∑m

k=1 Pr{R = k|Pi ≤ αk} equals
∑m

k=1 1/k. So, for arbitrary joint
distribution of the underlying test statistics, the following inequality:

m∑
k=1

Pr{R = k|Pi ≤ αk} ≤ c (16)

holds for some given constant c satisfying 1 ≤ c ≤
∑m

k=1 1/k.
It is easy to see that, for a different value of c, we can obtain a different upper bound of the FDR for the

Benjamini–Hochberg procedure. We now consider an optimization problem similar to (9), in which the only difference
is that the constraint (4) is replaced by (16). Following the technique used in Theorem 3.2, we obtain that the maximum
value of the FDR is cm0α/m. So, the smaller the value of c is, the more powerful the FDR step-up procedure
constructed is.

We note that, in the setting of the underlying test statistics satisfying (4), an undesirable result arises for step-up
procedures. For example, consider quasi-single-step procedures with critical constants αi = 0, i = 1, . . . , k − 1, and
αi = β, i = k, . . . , m, for some 2 ≤ k ≤ m. By Theorem 3.2, the step-up procedure with above critical constants
cannot control the FDR at α when k

n α < β < k+1
n α under the inequality (4), although the critical constants of the

Benjamini–Hochberg procedure are almost uniformly greater than those of the step-up procedure. A question arises:
Can we find a joint distribution of the p-values satisfying the PRDS property, under which the FDR of the above
procedure is also greater than α? Specifically, under stronger assumptions like independence of the p-values, does
the undesirable result still hold? Sarkar (2006) had extensively investigated the single-step control of the FDR. In
future, we will discuss the control of FDR for the quasi-single-step procedures and answer the above questions using
techniques of Sarkar (2006).
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