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Abstract

Most false discovery rate (FDR) controlling procedures require certain assumptions on the joint distribution of p-values. Benjamini
and Hochberg [1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc.
Ser. B 57, 289–300] proposed a step-up procedure with critical constants �i = (i/m)�, 1� i �m, for a given level 0 < � < 1 and
showed that FDR �(m0/m)� under the assumption of independence of p-values, where m is the total number of null hypotheses and
m0 the number of true null hypotheses. Benjamini and Yekutieli [2001. The control of the false discovery rate in multiple testing
under dependency. Ann. Statist. 29, 1165–1188] showed that for the same procedure FDR �(m0/m)�

∑m
j=1 1/j , whatever may be

the joint distribution of p-values. In one of the results in this paper, we show that this upper bound for FDR cannot be improved
in the sense that there exists a joint distribution of p-values for which the upper bound is attained. A major thrust of this paper is
to work in the realm of step-down procedures without imposing any condition on the joint distribution of the underlying p-values.
As a starting point, we give an explicit expression for FDR specially tailored for step-down procedures. Using the same critical
constants as those of the Benjamini–Hochberg procedure, we present a new step-down procedure for which the upper bound for
FDR is much lower than what is given by Benjamini and Yekutieli. The explicit expression given for FDR and some optimization
techniques stemming from the knapsack problem are instrumental in getting the main result. We also present some general results
on stepwise procedures built on non-decreasing sequences of critical constants.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In this article, we consider the problem of simultaneously testing a finite number of null hypotheses Hi (i=1, . . . , m).
A main concern in multiple testing is the multiplicity problem. A traditional approach to solve this problem is to control
the familywise error rate (FWER), which is the probability of one or more false rejections, at a desired level. However,
when the number m of null hypotheses is large, very few false null hypotheses are rejected when one uses a multiple
testing procedure that controls FWER. Consequently, alternative measures of error rates have been considered in the
literature. Control of these measures purportedly leads to rejection of more false null hypotheses. One well-known

∗ Corresponding author.
E-mail address: wenge.guo@gmail.com (W. Guo).

0378-3758/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2008.01.003

http://www.elsevier.com/locate/jspi
mailto:wenge.guo@gmail.com


W. Guo, M. Bhaskara Rao / Journal of Statistical Planning and Inference 138 (2008) 3176–3188 3177

measure is the false discovery rate (FDR), which is the expected proportion of Type I errors among the rejected
hypotheses, proposed by Benjamini and Hochberg (1995).

In this paper, discussion is focused on multiple testing procedures controlling FDR. Benjamini and Hochberg
(1995) proposed a simple linear step-up procedure with critical constants �i = (i/m)�, 1� i�m and showed that
FDR�(m0/m)�, where m0 is the number of true null hypotheses, under the assumption of independence of the
underlying test statistics. Subsequently, Benjamini and Liu (1999a) constructed a step-down procedure with the FDR-
controlling property for independent test statistics. Benjamini and Yekutieli (2001) extended the FDR-controlling
property of the Benjamini–Hochberg procedure to the case in which the test statistics have positive regression de-
pendency on each of the test statistics corresponding to the true null hypotheses (the PRDS property). Sarkar (2002)
strengthened the result of Benjamini and Yekutieli by showing that a more general step-down–step-up procedure with
the same critical values as those of Benjamini–Hochberg procedure controls the FDR under the PRDS property. In
addition, he also showed that the Benjamini–Liu step-down procedure has the FDR-controlling property under certain
positive dependence requirements. In the absence of any knowledge of dependence among the test statistics, Benjamini
and Yekutieli (2001) showed that for the Benjamini–Hochberg step-up procedure

FDR� m0

m
�D1(m), (1)

where D1 = D1(m) = ∑m
j=11/j .

In view of (1), one can modify the Benjamini–Hochberg procedure in order to control FDR at level �. The critical
constants have to be now �′

i = (i/m)� · 1/D1, 1� i�m. If we can lower the upper bound (1) from (m0�/m)D1
to some (m0�/m)D′

1, then the modified critical constants based on D′
1 will be larger leading to more power, i.e.,

rejection of more false hypotheses. However, we show that the upper bound (1) cannot be improved in the sense
that there is a joint distribution of p-values for which the upper bound is attained (Theorem 5.1). Consequently, it
is natural to look at step-down procedures and check whether the upper bound (1) can be lowered. This is our main
pursuit in this paper. In fact, we propose a new step-down procedure using the same critical constants as those of the
Benjamini–Hochberg procedure for which the upper bound is much less than (1) (Theorem 4.1). Most of the techniques
used in the literature in deriving bounds for FDR rely on probability inequalities and an explicit expression of FDR due
to Benjamini and Yekutieli (2001). See also Sarkar (2002). As a prelude to the main result, we fine-tune the expression
for FDR specially tailored for step-down procedures. Using this expression and an optimization technique stemming
from the knapsack problem, we achieve the desired upper bound, which is smaller than (1), for the new step-down
procedure.

The FDR has been extensively used in many applications such as microarray data analysis (Reiner et al., 2003),
clinical trials (Mehrotra and Heyse, 2004), model selection (Abramovich et al., 2006), and educational evaluation
(Williams et al., 1999). A major impetus for this work comes from genome studies, in which a large number of null
hypotheses are tested simultaneously. It is almost impossible to check from biological principles or real data sets whether
the underlying test statistics satisfy the assumption of independence or positive dependence of some type, although
based on simulation studies and general assumptions of weak dependence, it is well known among practitioners that
the Benjamini–Hochberg procedure controls the FDR at �. Thus, it is important to seek multiple testing procedures
which are operational whatever may be the joint distribution of the test statistics with a tight bound for FDR.

The paper is organized as follows. In Section 2, we describe our basic setting and terminology. We establish a finely
tuned version of the standard expression of FDR for step-down procedures in Section 3. Step-down procedures for
controlling FDR under arbitrary dependency are considered in Section 4. The first main result is presented in Theorem
4.1 and generalized in Theorem 4.2. In Section 5, step-up procedures for controlling FDR are discussed under no
assumption on dependency. The second main result is presented in Theorem 5.1.

2. Basic setting

Consider the problem of testing simultaneously m null hypotheses H1, H2, . . . , Hm, of which m0 are true and
m1 = m − m0 are false. Assume, without loss of generality, that H1, . . . , Hm0 are true. Let I = {1, 2, . . . , m} and
I0 = {1, . . . , m0}.

Suppose R is the total number of hypotheses rejected andV the number of true null hypotheses rejected. The proportion
of false discoveries is defined to be Q = V/R (and equal to 0 if R = 0) and the FDR is defined to be the expectation
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of Q, i.e.,

FDR = E(Q) = E

(
V

R

)
. (2)

When testing H1, H2, . . . , Hm, the corresponding p-values P1, P2, . . . , Pm are available to us. Multiple testing
procedures are usually built on the p-values. We assume that each of the p-values corresponding to true null hypotheses
satisfies

Pr{Pi �x}�x for any 0 < x < 1 and i ∈ I0,

and the joint distribution is arbitrary. Let the ordered p-values be denoted by P(1) �P(2) � · · · �P(m), and the associated
hypotheses by H(1), H(2), . . . , H(m). Suppose �1 ��2 � · · · ��m is a non-decreasing sequence of critical constants.

The step-up procedure based on the constants proceeds as follows. If P(m) ��m, then reject all null hypotheses;
otherwise, reject hypotheses H(1), . . . , H(r) where r is the smallest index satisfying P(m) > �m, . . . , P(r+1) > �r+1. If,
for all r, P(r) > �r , then reject none of the hypotheses. A step-up procedure begins with the least significant hypothesis
and continues accepting hypotheses as long as their corresponding p-values are greater than the corresponding critical
values. Specially, the Benjamini–Hochberg procedure is a step-up procedure with critical constants �i = (i/m)�, i ∈ I .

Similarly, the step-down procedure based on the constants �1 ��2 � · · · ��m proceeds as follows. If P(1) > �1,
reject none of the null hypotheses. Otherwise, reject hypotheses H(1), . . . , H(r) where r is the largest index satisfying
P(1) ��1, . . . , P(r) ��r . A step-down procedure starts with the most significant hypothesis and continues rejecting
hypotheses as long as their corresponding p-values are less than or equal to the corresponding critical values.

3. A refined expression for FDR

The following expression for the FDR is fundamental in deriving upper bounds for FDR.

Lemma 3.1 (Benjamini and Yekutieli, 2001; Sarkar, 2002). The FDR of the step-up or step-down procedure based on
any non-decreasing critical values �i , i ∈ I is given by

FDR =
m0∑
i=1

m∑
k=1

1

k
Pr(Pi ��k, R = k). (3)

For convenience, let �0=0, and denote Sj =(�j−1, �j ] and pijk=Pr(Pi ∈ Sj , R=k) for 1� i�m0 and 1�j �k�m.
Observe that, from Lemma 3.1, FDR can be expressed as follows:

FDR =
m0∑
i=1

m∑
k=1

k∑
j=1

1

k
pijk =

m0∑
i=1

m∑
j=1

m∑
k=j

1

k
pijk . (4)

We now proceed to refine (4) by splitting pijk further. Note that pijk is the probability that k null hypotheses are being
rejected with p-value Pi corresponding to the ith true null hypothesis lying in the jth interval Sj . We want to identify how
many true null hypotheses are rejected and where the corresponding p-values are located in the event that defines pijk .
Towards this goal, we introduce the entity (5) described below. Let k stand as a generic symbol for the number of null
hypotheses rejected and l for the number of true null hypotheses rejected. Clearly, 1�k�m and 1� l� min{k, m0}.
For convenience of notation, we denote min{k, m0} = k ∧ m0.

Consider the event {R=k and V =l} of rejecting k null hypotheses of which l many are true. The true null hypotheses
could be any l of H1, . . . , Hm0 . Let 1� i1 < · · · < il �m0, 1�j1, . . . , jl �k, and

q
(k)
(i1,j1),...,(il ,jl )

= Pr{Pi1 ∈ Sj1 , . . . , Pil ∈ Sjl
, R = k, V = l}. (5)

In (5), we are trying to identify the true null hypotheses that are rejected and the intervals at which the corresponding
p-values are located in the make-up of the event {R = k and V = l}. In other words, q(k)

(i1,j1),...,(il ,jl )
is the probability of

rejecting k null hypotheses of which l many are true, and the indices of the l true null hypotheses are 1� i1 < · · · < il �m0,
and the corresponding p-values belong to Sj1 , . . . , Sjl

, respectively.
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As we want to tie up pijk’s with q’s, we need to introduce two more symbols. For any 1� i�m0, 1�j �k�m, and
1� l�k ∧ m0, define

�(k)
l (i, j) = {((i1, j1), . . . , (il, jl)) : 1� i1 < · · · < il �m0, 1�j1, . . . , jl �k

and (id , jd) = (i, j) for some 1�d � l} (6)

and

�(k)
l = {((i1, j1), . . . , (il, jl)) : 1� i1 < · · · < il �m0, 1�j1, . . . , jl �k}

=
⋃

1� i �m0
1� j �k

�(k)
l (i, j). (7)

Specially, observe that for l = 1, �(k)
1 (i, j) = {(i, j)} and �(k)

1 = {(i, j) : 1� i�m0, 1�j �k}. Based on (6), the event
{Pi ∈ Sj , R = k} can be expressed as a union of events of the type involved in the definition of q’s over 1� l�k ∧ m0

and ((i1, j1), . . . , (il, jl)) ∈ �(k)
l (i, j). Consequently, pijk can be expressed by

pijk =
k∧m0∑
l=1

∑
�(k)

l (i,j)

q
(k)
(i1,j1),...,(il ,jl )

, (8)

where the summation
∑

�(k)
l (i,j)

is taken over all ((i1, j1), . . . , (il, jl)) ∈ �(k)
l (i, j).

Example 3.1. For m = 3, m0 = 2, k = 3, and i = 1,

p113 = q
(3)
(1,1) + q

(3)
(1,1),(2,1) + q

(3)
(1,1),(2,2) + q

(3)
(1,1),(2,3),

p123 = q
(3)
(1,2) + q

(3)
(1,2),(2,1) + q

(3)
(1,2),(2,2) + q

(3)
(1,2),(2,3),

and

p133 = q
(3)
(1,3) + q

(3)
(1,3),(2,1) + q

(3)
(1,3),(2,2) + q

(3)
(1,3),(2,3).

We now present an explicit expression for the FDR, which is, in fact, a finely tuned version of (3) and (4) for any
step-up or step-down procedure.

Lemma 3.2. The FDR of the step-up or step-down procedure with any non-decreasing critical values �i , i ∈ I is
given by

FDR =
m0∑
l=1

m∑
k=l

∑
�(k)

l

l

k
q

(k)
(i1,j1),...,(il ,jl )

. (9)

Proof. Combining Eqs. (4) and (8), we have

FDR =
m0∑
i=1

m∑
j=1

m∑
k=j

k∧m0∑
l=1

∑
�(k)

l (i,j)

1

k
q

(k)
(i1,j1),...,(il ,jl )

=
m∑

k=1

k∧m0∑
l=1

m0∑
i=1

k∑
j=1

∑
�(k)

l (i,j)

1

k
q

(k)
(i1,j1),...,(il ,jl )

=
m0∑
l=1

m∑
k=l

m0∑
i=1

k∑
j=1

∑
�(k)

l (i,j)

1

k
q

(k)
(i1,j1),...,(il ,jl )

. (10)
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The second equality in (10) is obtained by interchanging the first two summations and the last ones in the first equality,
and the final equality is obtained by interchanging the first two summations in the second equality. For the final step,
suppose x = ((i1, j1), . . . , (il, jl)) ∈ �(k)

l . Then, from (7), x ∈ �(k)
l (i1, j1), . . . , �

(k)
l (il, jl). Note that x belongs to

only these l sets in view of the fact that x ∈ �(k)
l (i, j) if and only if (id , jd) = (i, j) for some 1�d � l. Consequently,

m0∑
i=1

k∑
j=1

∑
�(k)

l (i,j)

1

k
q

(k)
(i1,j1),...,(il ,jl )

=
∑
�(k)

l

l

k
q

(k)
(i1,j1),...,(il ,jl )

. (11)

Thus, (9) follows from (10) and (11). �

In the expression (9) for the FDR of the step-down procedure, not all q’s are positive.

Example 3.2. This is a continuation of Example 3.1. For the step-down procedure based on the constants �1 ��2 ��3,
q

(3)
(1,3),(2,3) = 0. Recall q

(3)
(1,3),(2,3) = Pr(P1 ∈ (�2, �3], P2 ∈ (�2, �3], R = 3, V = 2). The event R = 3 can occur if and

only if the event {P(1) ��1, P(2) ��2, P(3) ��3} occurs. The later event is not compatible with {P1 ∈ (�2, �3], P2 ∈
(�2, �3], R = 3}. Also, it is true that q

(3)
(1,1) = q

(3)
(1,2) = q

(3)
(1,3) = 0.

More generally, we have the following result.

Lemma 3.3. Consider the step-down procedure based on any non-decreasing critical constants �i , i ∈ I. For any
((i1, j1), . . . , (il, jl)) ∈ �(k)

l with 1�k�m and 1� l�k ∧m0, q(k)
(i1,j1),...,(il ,jl )

=0 if either of the following inequalities
is violated.

k − l�m1, (12)

j(d) �k − l + d for any 1�d � l, (13)

where j(1) � · · · �j(l) is an ordered rearrangement of j1, . . . , jl .

Proof. In the event {R = k, V = l}, k − l is the number of false null hypotheses rejected and consequently k − l�m1.
Thus, if (12) does not hold, then q

(k)
(i1,j1),...,(il ,jl )

=0. Note that, if the event {R =k, V = l} occurs, then, for any 1�d � l,
the largest possible index j(d) occurs when all the smallest p-values correspond to the k − l false null hypotheses and
the next l p-values correspond to the true null hypotheses; that is, j(d) �(k − l) + d. So, if (13) does not hold, then

q
(k)
(i1,j1),...,(il ,jl )

= 0. �

4. A new step-down procedure

In this section, we present a new step-down procedure, for which we obtain an upper bound for FDR under arbitrary
dependency. The critical constants of the procedure are �i = (i/m)�, i ∈ I , which are the same as those of the
Benjamini–Hochberg step-up procedure. Later, more generally, we obtain an upper bound for a step-down procedure
with any non-decreasing critical constants.

We first present a lemma, which is needed in the proof of the main result, Theorem 4.1.

Lemma 4.1. Let the sequence of constants �i , i = 1, . . . , m be defined by

�i =

⎧⎪⎨⎪⎩
1

i
if 1� i�m1 + 1,

m1

i(i − 1)
if m1 + 2� i�m.

(14)
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Then, for any ((i1, j1), . . . , (il, jl)) ∈ �(k)
l with k, l and j’s satisfying (12) and (13), we have

l∑
d=1

�jd
� l

k
. (15)

Proof. We use mathematical induction to prove (15). For l = 1, note that from (12) and (13), j1 �k�m1 + 1. Hence
�j1 = 1/j1 �1/k. That is, (15) holds for l = 1.

Suppose that (15) holds for l=s. We now prove that it also holds for l=s+1. For any ((i1, j1), . . . , (is, js), (is+1, js+1))

∈ �(k)
s+1 with k, s+1 and j’s satisfying (12) and (13). Assume, without loss of generality, that js+1=max{j1, . . . , js, js+1}.

Then, from (13) and (7), ((i1, j1), . . . , (is, js) ∈ �(k−1)
s . It is easy to verify that k − 1, s and (j1, . . . , js) satisfy (12)

and (13). By the induction hypothesis,

s∑
d=1

�jd
� s

k − 1
. (16)

Note that, from (12) and (13), js+1 �k�m1 + s + 1. Then, from (14) and (16), we have

s+1∑
d=1

�jd
� s

k − 1
+ 1

k
� s + 1

k
if js+1 �m1 + 1 (17)

and

s+1∑
d=1

�jd
� s

k − 1
+ m1

k(k − 1)
� s + 1

k
if js+1 > m1 + 1. (18)

This completes the proof. �

In order to obtain an upper bound for the FDR of the proposed step-down procedure, we formulate a relevant
optimization problem in (21). Note that, for any i ∈ I0 and j ∈ I ,

m∑
k=j

pijk = Pr

{
Pi ∈

(
j − 1

m
�,

j

m
�

]
, j �R�m

}
� �

m
. (19)

Combining Eqs. (19) and (8), we have

m∑
k=j

k∧m0∑
l=1

∑
�(k)

l (i,j)

q
(k)
(i1,j1),...,(il ,jl )

� �

m
. (20)

Note that FDR as given in (9) is a linear function of q’s. In order to obtain an upper bound for FDR as low as possible,
we maximize FDR with respect to q’s, since FDR’s maximum value is FDR’s least upper bound. Combining (9) and
(20), we formulate an abstract optimization problem as follows:

maximize FDR =
m0∑
l=1

m∑
k=l

∑
�(k)

l

l

k
q

(k)
(i1,j1),...,(il ,jl )

, (21)

with respect to q
(k)
(i1,j1),...,(il ,jl )

’s �0, subject to the constraints

m∑
k=j

k∧m0∑
l=1

∑
�(k)

l (i,j)

q
(k)
(i1,j1),...,(il ,jl )

� �

m
, i ∈ I0, j ∈ I ,

and those imposed by Lemma 3.3.
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In (21), we want to maximize FDR (abuse of notation) with respect to q’s whether or not q’s come from a joint
distribution of p-values. We split the objective function in (21) into two parts: l = 1 and l�2. Note that �(k)

1 = {(i, j) :
1� i�m0 and 1�j �k}. Further, q(k)

(i,j) = 0 if k > m1 + 1 (Lemma 3.3). We remove these q’s from consideration. The
objective function in (21) is simplified as follows:

FDR =
m1+1∑
k=1

m0∑
i=1

k∑
j=1

1

k
q

(k)
(i,j) +

m0∑
l=2

m∑
k=l

∑
�(k)

l

l

k
q

(k)
(i1,j1),...,(il ,jl )

. (22)

We split the first sum in (22) into two parts: j = k and j �k − 1. That is,

FDR =
m1+1∑
k=1

m0∑
i=1

1

k
q

(k)
(i,k) +

m1+1∑
k=2

m0∑
i=1

k−1∑
j=1

1

k
q

(k)
(i,j) +

m0∑
l=2

m∑
k=l

∑
�(k)

l

l

k
q

(k)
(i1,j1),...,(il ,jl )

. (23)

The constraints in (21) are also split analogously: l = 1 and l�2. Note that �(k)
1 (i, j) = {(i, j)} and for i ∈ I0 and

j ∈ I ,

m∑
k=j

q
(k)
(i,j) +

m∑
k=j

k∧m0∑
l=2

∑
�(k)

l (i,j)

q
(k)
(i1,j1),...,(il ,jl )

� �

m
. (24)

Split the first sum in (24) into two parts: k = j and k�j + 1. Exploit q
(k)
(i,j) = 0 if k > m1 + 1. The constraint (24) now

becomes

q
(j)

(i,j) +
m1+1∑
k=j+1

q
(k)
(i,j) +

m∑
k=j

k∧m0∑
l=2

∑
�(k)

l (i,j)

q
(k)
(i1,j1),...,(il ,jl )

� �

m
, (25)

for i ∈ I0 and 1�j �m1 + 1, and for i ∈ I0 and m1 + 2�j �m,

m∑
k=j

k∧m0∑
l=2

∑
�(k)

l (i,j)

q
(k)
(i1,j1),...,(il ,jl )

� �

m
. (26)

In summary, the optimization problem stated in (21) is reformulated with the objective function now being (23) and
the constraints are (25), (26), and those imposed by Lemma 3.3.

Theorem 4.1. The FDR of the step-down procedure with critical values �i = (i/m)�, i ∈ I satisfies the following
inequality:

FDR� m0

m
�

⎧⎨⎩
m1+1∑
j=1

1

j
+ m1

m1 + 1
− m1

m

⎫⎬⎭ . (27)

Specifically, let

D2 = D2(m) = max
1�m0 �m

m0

m

⎧⎨⎩
m1+1∑
j=1

1

j
+ m1

m1 + 1
− m1

m

⎫⎬⎭ . (28)

Now, the modified step-down procedure with critical constants �′
i = (i/m)�/D2, i ∈ I will always control the FDR at

a level less than or equal to �.
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Proof. The optimization problem posed as it is in (21) is not easy to solve. We consider a closely related optimization
problem. Let xik = q

(k)
(i,k), i ∈ I0 and 1�k�m1 + 1 and introduce new variables xik, i ∈ I0 and m1 + 2�k�m. Let

�k’s be the same as those defined in (14).

maximize F̃DR =
m∑

k=1

m0∑
i=1

�kxik +
m1+1∑
k=2

m0∑
i=1

k−1∑
j=1

1

k
q

(k)
(i,j) +

m0∑
l=2

m∑
k=l

∑
�(k)

l

l

k
q

(k)
(i1,j1),...,(il ,jl )

, (29)

with respect to xik’s �0 and q’s �0, subject to the constraints, for each i ∈ I0,

xij +
m1+1∑
k=j+1

q
(k)
(i,j) +

m∑
k=j

k∧m0∑
l=2

∑
�(k)

l (i,j)

q
(k)
(i1,j1),...,(il ,jl )

� �

m
, 1�j �m1 + 1,

xij +
m∑

k=j

k∧m0∑
l=2

∑
�(k)

l (i,j)

q
(k)
(i1,j1),...,(il ,jl )

� �

m
, m1 + 2�j �m.

There is one difference between the objective function in (29) and the objective function in (21), simplified in (23),

F̃DR = FDR +
m∑

k=m1+2

m0∑
i=1

�kxik �FDR.

We add an additional term xij on the left-hand side of (26). Consequently, any solution to the constraints (25) and (26)
is also a solution to the constraint in (29) if we set xij = 0, for each i ∈ I0 and m1 + 2�j �m. Hence, the maximum
value of the objective function in (21) is less than or equal to the maximum value of the objective function in (29). We
now proceed to obtain the maximum value of (29).

Let x’s and q’s be any solution to the constraints in (29) with F̃DR = u, say. We give another solution x∗’s and
q∗’s to the constraints in (29), whose value of F̃DR is at least u. Let l�2 and ((i1, j1), . . . , (il, jl)) ∈ �(k)

l . Suppose

q
(k)
(i1,j1),...,(il ,jl )

> 0. Set x∗
id jd

= xidjd
+ q

(k)
(i1,j1),...,(il ,jl )

for 1�d � l and q
(k)∗
(i1,j1),...,(il ,jl )

= 0. The other x’s and q’s remain

the same. The new solution increases the value of F̃DR by (
∑l

d=1�jd
− l/k)q

(k)
(i1,j1),...,(il ,jl )

�0, since
∑l

d=1�jd
� l/k

by Lemma 4.1. Thus, in the optimization problem (29),we can set each q
(k)
(i1,j1),...,(il ,jl )

= 0 for any l�2. Similarly, for

any (i, j) ∈ �(k)
1 with 1�j < k�m1 + 1, we can also set q

(k)
(i,j) = 0, since �j �1/k. The optimization problem in (29)

simplifies to

maximize F̃DR =
m∑

k=1

m0∑
i=1

�kxik , (30)

with respect to xik’s �0, and subject to xik ��/m, for i ∈ I0 and k ∈ I .
Obviously, the optimal solution to the problem (30) is x∗

ik = �/m, i ∈ I0 and k ∈ I , and the maximum value of
F̃DR is

F̃DR∗ =
m∑

k=1

m0∑
i=1

�

m
�k = m0

m
�

⎧⎨⎩
m1+1∑
k=1

1

k
+

m∑
k=m1+2

m1

k(k − 1)

⎫⎬⎭
= m0

m
�

⎧⎨⎩
m1+1∑
k=1

1

k
+ m1

m1 + 1
− m1

m

⎫⎬⎭ . (31)

This leads to

FDR� m0

m
�

⎧⎨⎩
m1+1∑
j=1

1

j
+ m1

m1 + 1
− m1

m

⎫⎬⎭ . �
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Remark 4.1. Sarkar (2002) showed that the step-down analog of the Benjamini–Hochberg procedure controls the
FDR if the test statistics satisfy the PRDS property. One may contrast his result with the result stated in Theorem 4.1,
in which no assumption is made on the joint distribution of p-values.

Remark 4.2. If [m0(m1 + 2) − 1]�/m�1, we can construct a joint distribution of p-values so that for the step-down
procedure with critical constants�i=i�/m, i ∈ I, FDR=(m0�/m)

∑m1+1
j=1 1/j . The construction of the joint distribution

is as follows. Let U1, . . . , Um+1 be m + 1 uniformly distributed random variables such that Ui ∼ U [�i−1, �i], i =
1, . . . , m, and Um+1 ∼ U [�m, 1]. Let N be a random variable taking values 1, . . . , m+1 with the following probability
distribution:

Pr{N = n} =

⎧⎪⎨⎪⎩
m0(�n − �n−1) if 1�n�m1 + 1,

�n − �n−1 if m1 + 2�n�m,

1 − (m0 − 1)�m1+1 − �m if n = m + 1.

(32)

Suppose n is the realized value of N. For n=1, . . . , m1 +1, randomly pick one index from I0 and n−1 indices from I1
without replacement. Let the p-value associated with the index chosen from I0 be Un, each of the p-values associated
with those n − 1 indices chosen from I1 be U1, and each of the p-values associated with the remaining m − n p-values
equal to Um+1. For n = m1 + 2, . . . , m, let all m0 p-values from I0 be equal to Un and m1 p-values from I1 be equal
to U1. For n = m + 1, let all m p-values be equal to Um+1. It is easy to verify that the p-values from I0 are uniformly
distributed on [0, 1] and the p-values from I1 are stochastically smaller than U [0, 1], and pijn =�j −�j−1, if j =n and

1�n�m1 + 1, and equals to 0, otherwise. From (4), we have FDR = (m0�/m)
∑m1+1

j=1 1/j , which is close to the upper
bound of the FDR in Theorem 4.1. For example, if m = 100, m0 = 80, and � = 0.05, then m0(m1 + 1)�/m = 0.84�1,
FDR = (m0�/m)

∑m1+1
j=1 1/j = 0.146, and the upper bound in (27) is 0.176. The difference between these numbers

relative to the upperbound is about 17%.

Theorem 4.1 can be generalized to the step-down procedure with any non-decreasing critical values �i , i ∈ I . Let
�0 = 0. Using ideas similar to the ones in the proof of Theorem 4.1, the following result holds.

Theorem 4.2. The FDR of the step-down procedure with any non-decreasing critical values �i , i ∈ I satisfies the
following inequality:

FDR�m0

⎧⎨⎩
m1+1∑
j=1

�j − �j−1

j
+

m∑
j=m1+2

m1(�j − �j−1)

j (j − 1)

⎫⎬⎭ .

Specifically, let

D3 = D3(m) = max
1�m0 �m

m0

�

⎧⎨⎩
m1+1∑
j=1

�j − �j−1

j
+

m∑
j=m1+2

m1(�j − �j−1)

j (j − 1)

⎫⎬⎭ . (33)

Now, the modified step-down procedure with critical constants �′
i = �i/D3, i ∈ I will always control the FDR at a

level less than or equal to �.

We now contrast the Benjamini–Yekutieli step-up procedure and the new step-down procedure with respect to the
constants D1(m) in (1) and D2(m) in (28). The values of D1(m) and D2(m) are tabulated along with 1−D2(m)/D1(m)

in Table 1. For the range of values of m considered, the difference between D1(m) and D2(m) relative to D1(m) is at
least 20%. For lower values of m (�25), the relative difference is at least 35%.

We now give a real data example illustrating the usefulness of the new step-down procedure. We revisit a clinical
trial in patients with hypertension analyzed in Dmitrienko et al. (2007, Section 5). The trial is conducted to compare an
experimental drug to an active control with respect to four endpoints: mean reductions in systolic and diastolic blood
pressures, proportion of patients with controlled systolic/diastolic blood pressure, and average blood pressure based on
ambulatory blood pressure monitoring. For each of the four endpoints, a non-inferiority and a superiority hypothesis
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Table 1
The constants D1(m) and D2(m) based on (1) and (28)

m D1(m) D2(m) 1 − D2(m)/D1(m)

10 2.929 1.84 0.372
25 3.816 2.467 0.354
50 4.499 2.992 0.335

100 5.187 3.545 0.317
250 6.101 4.306 0.294
500 6.793 4.898 0.279

1000 7.486 5.499 0.265
2500 8.402 6.306 0.249
5000 9.095 6.924 0.239

10 000 9.788 7.547 0.229

are established, so there are eight null hypotheses of interest. For these hypotheses, the corresponding raw p-values
are 0.001, 0.008, 0.026, 0.003, 0.208, 0.302, 0.010, and 0.578, respectively. By using our new step-down procedure in
Theorem 4.1, which works for all joint distributions of p-values, four hypotheses are rejected at level 0.05. In contrast,
the Benjamini–Yekutieli step-up procedure rejects only two hypotheses at level 0.05.

5. Step-up procedure

We now consider the problem of controlling FDR in step-up procedures. The following is the main result of this
section. The first part of the result is due to Benjamini and Yekutieli (2001). We give an alternative proof of this result.
Benjamini and Yekutieli (2001) used a certain probability inequality to establish their result. We use optimization
techniques. Our technique provides a deeper insight when the upper bound is attained. In addition, we also construct a
joint distribution of the p-values under which the upper bound is attained.

Theorem 5.1. (i) For the step-up procedure with critical constants �i = (i/m)�, i ∈ I , the following inequality holds:

FDR =
m0∑
i=1

m∑
j=1

m∑
k=j

1

k
pijk � m0

m
�

m∑
j=1

1

j
, (34)

where m0 is the number of true null hypotheses.
(ii) Equality in (34) holds if and only if for each i ∈ I0, pijk = �/m if j = k and equal to 0 if j < k.
(iii) As long as {m1/m + (m0/m)

∑m0
j=1 1/j}��1, there exists a joint distribution of the p-values for which the

inequality in (34) is equality.

Proof. (i) Combining (4) and (19), we consider the following optimization problem:

maximize FDR =
m0∑
i=1

m∑
j=1

m∑
k=j

1

k
pijk , (35)

with respect to pijk’s �0 and subject to the constraints

m∑
k=j

pijk � �

m
for i ∈ I0, j ∈ I .

Problem (35) can be decomposed into a family of sub-problems indexed by i ∈ I0, j ∈ I as follows:

maximize Qij =
m∑

k=j

1

k
pijk , (36)

with respect to pijk’s �0, and subject to
∑m

k=j pijk ��/m.
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Obviously, the maximum value of the objective function in (35) is the sum of the maximum values of all sub-problems
(36), and its optimal solution is a combination of optimal solutions of the sub-problems.

Problem (36) has a simple unique solution p∗
ijk = �/m if j = k and equal to 0 if j < k. This optimization problem

is a special case of the general knapsack problem (see Martello and Toth, 1990). Consequently, the maximum value of
FDR is

FDR∗ =
m0∑
i=1

m∑
j=1

m∑
k=j

1

k
p∗

ijk = m0

m
�

m∑
j=1

1

j
. (37)

In view of the uniqueness of the solution p∗
ijk in (36), equality in (34) holds if and only if for i ∈ I0, 1�j �k�m,

pijk = p∗
ijk . This proves (i) and (ii).

To prove (iii), the construction of the joint distribution proceeds as follows: let U1, . . . , Um, Um+1 be m+1 uniformly
distributed random variables such that Ui ∼ U[(i − 1)�/m, i�/m], i = 1, . . . , m, and Um+1 ∼ U[�, 1]. Let N be a
random variable taking values 1, 2, . . . , m + 1 with the following probability distribution:

Pr{N = n} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0

m
� · 1

n
if 1�n�m0,

�

m
if m0 + 1�n�m,

1 −
{

m1

m
+ m0

m

m0∑
j=1

1

j

}
� if n = m + 1.

(38)

We want to associate a p-value to each of the indices 1, 2, . . . , m. The association proceeds in three distinct phases.
Phase 1: For each given N =n ∈ {1, 2, . . . , m0}, choose n many indices i1, i2, . . . , in randomly without replacement

from I0. Each of these chosen indices has the same p-value Pij = Un. Each of the indices s in I − {i1, i2, . . . , in} has
the same p-value Ps = Um+1.

Phase 2: For each given N = n ∈ {m0 + 1, . . . , m}, choose the indices 1, 2, . . . , m0 and (m − n) indices randomly
without replacement from I1. Each of these indices is associated with the same p-value Un. Each of the remaining
unaccounted indices from I1 is associated with the same p-value Um+1.

Phase 3: Given N = m + 1, each of the indices in I0 is associated with the same p-value Um+1, and each of the
indices in I1 is associated with the same p-value U1. It is easy to verify that, for each i ∈ I0, each p-value Pi ∼ U
[0, 1] and

pijk = Pr

{
Pi ∈

(
(j − 1)

m
�,

j

m
�

]
, R = k

}

= Pr

{
R = k

∣∣∣∣Pi ∈
(

(j − 1)

m
�,

j

m
�

]}
Pr

{
Pi ∈

(
(j − 1)

m
�,

j

m
�

]}
. (39)

Thus, for each i ∈ I0, pijk = �/m if j = k and equal to 0 if j < k. This proves part (iii). �

Remark 5.1. As pointed out by one referee, the above constructed example is very artificial as the distribution of the
p-value corresponding to some index in I1 may be stochastically greater than U[0, 1].

Remark 5.2. The upper bound (34) is useful only when (m0�/m)
∑m

j=11/j �1. In such a situation, the condition
{m1/m + m0/m

∑m0
j=1 1/j}��1 is easy to meet as it is close to (m0�/m)

∑m
j=1 1/j for large m0 relative to m.

We generalize Theorem 5.1 for the step-up procedure with any non-decreasing critical constants �i , i ∈ I . A proof
can be fashioned along the lines of the proof of Theorem 5.1.
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Theorem 5.2. (i) For the step-up procedure with non-decreasing critical constants �i , i ∈ I , the following inequality
holds:

FDR =
m0∑
i=1

m∑
j=1

m∑
k=j

1

k
pijk �m0

m∑
j=1

�j − �j−1

j
, (40)

where m0 is the number of true null hypotheses.
(ii) Equality in (40) holds if and only if for each i ∈ I0, pijk = �j − �j−1 if j = k and equal to 0 if j < k.
(iii) As long as {(�m − �m0) + m0

∑m0
j=1(�j − �j−1)/j}�1, there exists a joint distribution of the p-values for which

the inequality in (40) is equality.

6. Conclusion

In this paper, we have mainly focused on controlling the FDR under no assumption on dependency of the underlying
p-values. Benjamini and Yekutieli (2001) have given an upper bound for the FDR of the Benjamini–Hochberg step-up
procedure that is valid whatever may be the joint distribution of the p-values. We have shown that this upper bound is
optimal in the sense that there is a joint distribution of p-values for which the upper bound is attained. We have proposed
a new step-down procedure with the same critical constants as those of the Benjamini–Hochberg step-up procedure
and provided an upper bound of its FDR. In the process, we have fine-tuned the standard expression for FDR specially
tailored to step-down procedures. Using this expression and a certain optimization technique, we have established our
upper bound. Through some numerical computations, we have shown that our upper bound is much less than that of
Benjamini and Yekutieli (2001).

We point out that, in Hart and Weiss (1997), optimization techniques were used for solving some different multiple
testing problems. Benjamini and Liu (1999b) introduced a step-down FDR controlling procedure and showed that
the procedure can control the FDR at � under general dependence. However, Romano and Shaikh (2006) recently
independently introduced the same step-down procedure, but by using a similar proof, they only showed the FDR
controllability of the procedure under a weak condition (viz. the p-value corresponding to a true null hypothesis is
dominated by the uniform distribution conditional on the observed p-values of the false null hypotheses). We checked
carefully these two proofs, and it seems that there is a gap in the proof of Benjamini and Liu (1999b), but we may be
wrong.
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