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Abstract

For testing multiple null hypotheses, the classical approach to dealing with the multiplicity
problem is to restrict attention to procedures that control the familywise error rate (FWER), the
probability of even one false rejection. In many applications, one might be willing to tolerate
more than one false rejection provided the number of such cases is controlled, thereby increas-
ing the ability of the procedure to detect false null hypotheses. This suggests replacing control
of the FWER by controlling the probability of k or more false rejections, which is called the k-
FWER. In Hommel and Hoffmann (1987) and Lehmann and Romano (2005a), single step and
stepdown procedures are derived that control the k-FWER, without making any assumptions con-
cerning the dependence structure of the p-values of the individual tests. However, if the p-values
are mutually independent, one can improve the procedures. In fact, Sarkar (2005) provided such
an improvement. However, we show other improvements are possible which appear to be gen-
erally much better, and are sometimes unimprovable. When k=1, the procedure reduces to the
classical method of Sidak, and the stepdown procedure is unimprovable and strictly dominates
that of Sarkar. Under a monotonicity condition, an unimprovable procedure is obtained. In the
case k=2, the monotonicity condition is satisfied, and the condition can be checked numerically in
general. We then develop a stepdown method that controls the false discovery proportion. Except
for the case of k-FWER control with k=1, the gains are surprisingly dramatic, and theoretical and
numerical evidence is given.

KEYWORDS: false discovery proportion, generalized familywise error rate, multiple testing,
p-value, Sidak procedure, stepdown procedure
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1 Introduction

Consider the general problem of simultaneously testing a finite number of null hy-
potheses H; (i = 1,...,s). We shall assume that tests for the individual hypotheses
are available and the problem is how to combine them into a simultaneous test pro-
cedure. More formally, suppose data X is available from some model P € Q. A
general hypothesis H can be viewed as a subset w of 2. For testing H; : P € w;,
i =1,...,s, let I(P) denote the set of true null hypotheses when P is the true
probability distribution; that is, i € I(P) if and only if P € w;.

The usual approach to dealing with this problem is to restrict attention to
procedures that control the probability of one or more false rejections. This prob-
ability is called the familywise error rate (FWER). Here the term “family” refers
to the collection of hypotheses Hy, ..., H, that is being considered for joint testing.
Which tests are to be treated jointly as a family depends on the situation.

Once the family has been defined, control of the FWER (at joint level «)
requires that

FWER < « (1)

for all possible distributions P of the data. A quite broad treatment of methods
that control the FWER is presented in Hochberg and Tamhane (1987).

Safeguards against false rejections are of course not the only concern of multiple
testing procedures. Corresponding to the power of a single test one must also
consider the ability of a procedure to detect departures from the hypotheses when
they do occur. When the number of tests is in the tens or hundreds of thousands,
control of the FWER at conventional levels becomes so stringent that individual
departures from the hypotheses have little chance of being detected. For this
reason, we shall consider an alternative to the FWER that controls false rejections
less severely and consequently provides better power.

Specifically, we shall consider the k-FWER, the probability of rejecting at least
k true null hypotheses. Such an error rate with & > 1 is appropriate when one
is willing to tolerate one or more false rejections, provided the number of false
rejections is controlled.

More formally, the k-FWER, which depends on P is defined to be

k—FWER = P{reject at least k hypotheses H; with i € I(P)} . (2)
Control of the k-FWER requires that k-FWER < « for all P; that is,
P{reject at least k hypotheses H; with i € I(P)} <a for all P . (3)

Evidently, the case £ = 1 reduces to control of the usual FWER.

The methods in this paper will assume that tests of individual hypotheses
are based on p-values. So, before describing methods that provide control of the
k-FWER, we first recall the notion of a p-value, since multiple testing methods
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are often described by the p-values of the individual tests. Consider a single null
hypothesis H : P € w. Assume a family of tests of H, indexed by «, with level «
rejection regions S, satisfying

P{XeS,}<a foral0<a<l, Pcew (4)

and
S,C Sy, whenever a < a’ . (5)

Then, the p-value is defined by
p=pX)=inf{a: X €5,}. (6)
The important property of a p-value that will be used later is the following.

Lemma 1.1 Assume p is defined as above.
(1) If P € w, then
P{p<u}<u. (7)

(ii) Furthermore,
P{p<u}>P{Xe€S,}. (8)

Therefore, if the S, are such that equality holds in (4), then p is uniformly distrib-
uted on (0,1) when P € w.

A proof is given in Lehmann and Romano (2005a).

Two classic procedures that control the FWER, are the Bonferroni procedure
and the Holm procedure. The Bonferroni procedure rejects H; if its corresponding
p-value satisfies p; < a/s. Assuming p; satisfies

P{p;, <u} <u foranyue (0,1) andany P € w;, (9)

the Bonferroni procedure provides strong control of the FWER. Unfortunately,
the ability of the Bonferroni procedure to detect cases in which H; is false, will
typically be very low since H; is tested at level /s which - particularly if s is large
- is orders smaller than the conventional « levels.

For this reason procedures are prized for which the levels of the individual tests
are increased over a//s without an increase in the FWER. It turns out that such a
procedure due to Holm (1979) is available under the present minimal assumptions.

The Holm procedure can conveniently be stated in terms of the p-values p1, . . ., P,
of the s individual tests. Let the ordered p-values be denoted by

Py < oo S D)

and the associated hypotheses by H(y,..., H). Then, the Holm procedure is as
follows. Accept all hypotheses if py > «a/s. Otherwise, reject Hy, ..., Hj) if
Py < af(s—i+1)fori=1,...,7 (and choose the largest such j).
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The Bonferroni method is an example of a single step procedure, meaning any
null hypothesis is rejected if its corresponding p-value is less than or equal to a
common cutoff value (which in the Bonferroni case is a/s). The Holm procedure
is a special case of a class of stepdown procedures, which we now briefly describe.
Let

ap Sag << (10)

be constants. If Py > a1, reject no null hypotheses. Otherwise, if

Py S ar, .. Pey < oy (11)

reject hypotheses H(y), ..., H(y where the largest r satisfying (11) is used. That
is, a stepdown procedure starts with the most significant p-value and continues
rejecting hypotheses as long as their corresponding p-values are small. The Holm
procedure uses o; = /(s — i+ 1).

Recently, several new methods have been proposed which utilize error rates
that are less stringent than the FWER. Control of the k-FWER as well as meth-
ods based on the FDP was first suggested in Victor (1982). An important initial
paper is the now well-known method of Benjamini and Hochberg (1995), which
controls the so-called false discovery rate (FDR). The false discovery rate is de-
fined as the expected value of the false discovery proportion (FDP), where FDP
is the ratio of the number of rejections of true null hypotheses to the total num-
ber of rejections (defined as 0 if there are no rejections). The original method of
Benjamini and Hochberg (1995) was derived under independence of the individ-
ual p-values, but a modification was proved in Benjamini and Yekutieli (2001).
Genovese and Wasserman (2004) study asymptotic procedures that control the
FDP (and the FDR) in the framework of a random effects mixture model. These
ideas are extended in Perone Pacifico, Genovese, Verdinelli and Wasserman (2004),
where in the context of random fields, the number of null hypotheses is uncount-
able. In Hommel and Hoffmann (1987) and Lehmann and Romano (2005a), single
step and stepdown methods for control of the k-FWER are derived under no de-
pendence assumptions on the p-values. Stepdown and stepup improvements are
provided in Romano and Shaikh (2006a, 2006b). Under independence assump-
tions on the p-values, further improvements are derived in Sarkar (2005). Korn,
Troendle, McShane and Simon (2004) provide methods that control both the k-
FWER and FDP; they provide some justification for their methods, but they are
limited to a multivariate permutation model. Alternative methods of control of
the k-FWER and FDP are given in van der Laan, Dudoit and Pollard (2004); they
include both finite sample and asymptotic results. Further methods are discussed
in Dudoit, van der Laan and Pollard (2004), van der Laan and Birnker (2004) and
van der Laan, Birkner and Hubbard (2005). Like these papers, Romano and Wolf
(2005) also provide methods for control of generalized error rates which account
for the dependence structure of the individual test statistics or p-values. In this
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paper, the goal is modest. We make the strong assumption of independence, but it
allows us to provide greatly improved methods. In fact, it was initially surprising
that such dramatic improvements could be obtained (except for k~-FWER, control
when & = 1). However, theoretical and numerical results support this claim of
dramatic improvement. Even if the assumption of independence is unwarranted,
these results point to the need for reliable methods that account for dependence.

The outline of the paper is as follows. In Section 2, we first consider single
step control of the k-FWER and provide the optimal such procedure under in-
dependence. A stepdown improvement of this procedure is provided in Section
3 and can be viewed as a generalization of the classical Siddk procedure. In the
case k = 1, this procedure is unimprovable among such stepdown procedures. In
Section 4, we consider further improvements and, under a monotonicity condition,
the optimal procedure is obtained. In the case k = 2, the monotonicity condition
is satisfied. Control of the false discovery proportion, the ratio of false rejections
to total number of rejections is considered in Section 5, and a new procedure is
obtained. Throughout, improvements are provided under the assumption of inde-
pendence. Such an assumption is obviously quite restrictive, but the results aid to
deepen our understanding of the theory of multiple testing procedures.

2 Single Step Control of the .--FWER

The usual Bonferroni procedure compares each p-value p; with «/s. Control of
the k&-FWER allows one to increase a/s to ka/s, and thereby greatly increase
the ability to detect false hypotheses. Part (i) of the following result is given in
Hommel and Hoffmann (1987) and also in Lehmann and Romano (2005a), who
derive (ii).

Theorem 2.1 /Generalized Bonferroni/ For testing H; : P € w;, i = 1,...,s,
suppose p; satisfies (9). Consider the procedure that rejects any H; for which
pi < ka/s.

(1) This procedure controls the k-FWER, so that (3) holds. Equivalently, if each
of the hypotheses is tested at level ka/s, then the k-FWER is controlled.

(i1) For this procedure, the inequality (3) is sharp in the sense that there exists a
joint distribution for (p1,...,ps) for which equality is attained in (3).

Under independence, one can improve the constant ka/s, but first some no-
tation is useful. Suppose {y; : i € K} is a collection of real numbers indexed by
a finite set K having |K| elements. Then, for k£ < |K|, the k-min(y; : i € K) is
used to denote the kth smallest value of the y; with i € K. So, if the elements y;,
i € K, are ordered as y1) < --- < y(kJ), then

k-min(y; :i € K) =y -
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Let Uy, ..., Us be i.i.d. uniform on (0,1). For k < s, let
Hy, (u) = P{k-min(Uy,...,Us) < u}

be the distribution function of the kth order statistic. As is standard, we have

Hio(u) = Z (5> w(l— ) (12)

=k

Consider a single step procedure that rejects any H; whose corresponding p-
value p; is < C. Then, in order to control the k-FWER at level «, the choice of
C = Cjs(a) satisfying

Hk,s(Ck’s(a)) =« (13)

would work, because the chance that there are k or more false rejections is the
chance that k-min(p; : ¢ € I(P)) < C. So, assuming all hypotheses are true and
p-values are i.i.d. U(0, 1), we should take

C = H,;;(a) )

Furthermore, if D > C', then using the critical value D instead of C' would not
control the k-FWER, because assuming all hypotheses are true, the k-FWER
would be Hj (D) > Hj, (C) = a. The following establishes strong control (not
just weak control when all hypotheses are true) of the k-FWER.

Theorem 2.2 [Generalized Siddk] For testing H; : P € w;, i = 1,...,s, suppose
p; satisfies (9). Further assume the p-values are mutually independent. Consider
the procedure that rejects any H; for which p; < Cj. s, where Cy s = Cy s(a) satsifies
Hka(Ckys(a)) = .

(1) This procedure controls the k-FWER, so that (3) holds. Equivalently, if each
of the hypotheses is tested at level Cy s(«), then the k-FWER is controlled.

(11) For this procedure, the inequality (3) is sharp in the sense that there exists
a joint distribution of independent p-values for (pi,...,ps) for which equality is
attained in (3).

ProoF. (i) Fix any P and suppose H; with i € I = I(P) are true and the
remainder false, with |I| denoting the cardinality of I. Order the |I| p-values
corresponding to true null hypotheses as

day < - < q4q) -

Assume |I| > k or there is nothing to prove. Let N be the number of false
rejections. Then,
PAN > k} = P{qu) < Cys(@)} -
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But, using (7),
Plgny < Crs(@)} < Hi 1 (Crs(@))

with equality if and only if the p-values are all U(0, 1). Now, for any u,
Hyjr(u) < Hyo(u)

because the chance that, in a sample of i.i.d. U(0, 1) variables, k& or more p-values
are < u increases with the number of trials. Hence,

P{N > k} < Hys(Crs(a))

and the right hand side is « by definition (13).

To prove (ii), consider the following construction. Let all hypotheses be true,
so that |I| = s and assume the p; are i.i.d. U(0, 1) variables. Then, the inequalities
in the proof of (i) are all equalities. m

In words, the single step procedure that rejects any hypothesis whose corre-
sponding p-value is < Cj s(«) controls the k--FWER. Furthermore, the constant
Cy.s() is tight in the sense that for any value D > Cj s(«), the single step proce-
dure using the cutoff value D could violate control of the k-FWER.

Having derived the best possible improvement under independence, a natural
question is whether or not such an improvement is appreciable. In fact, for control
of the k-FWER when k = 1, it is well-known that no big improvement over Bon-
ferroni is possible. Indeed, Miller (1981) remarks that the Bonferroni method “is
not as crude as one might think”. For k = 1, the ratio of critical values satisfies:

lim Chs(a) _ —log(1 — )
S—00 Oé/s (6%

i

which equals 1.026 when a = 0.05; see Lehmann and Romano (2005b), Problem
9.2. Thus, the gain is clearly negligible for large s. However, we now will argue
this only holds when k = 1 and, for k£ > 1, the gain can be dramatic.

First, we perform some numerical comparisons of the critical constants of the
new single step generalized Sidak method using the critical constant Cy (o) with
Lehmann and Romano (2005a)’s generalized Bonferroni critical value ka/s, which
does not make any assumption concerning the dependence structure of the p-values.
Some results are obtained in Table 1. We see that, for s = 100 and a = 0.05, even
for k = 2, the ratio of critical constants is substantial and is equal to 3.53. The
effect increases with k and the ratio is over 10 when k£ = 10.

We now give a theoretical explanation of the above surprising results. For
testing H;,© = 1,...,s, suppose H; with i € I are true and the remainder false,
with |I| denoting the cardinality of I. Let ¢;,i = 1,...,|I| denote the |I| p-values
corresponding to true null hypotheses, and assume the §; are mutually independent
and uniformly distributed. If we use the generalized Bonferroni procedure with
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Table 1: Single step constants for k-FWER control with s = 100 and o = 0.05

| k [|A=ka/s| B=Cys(a) | B/A |
1 0.0005 0.00051 1.026
2 0.0010 0.00353 3.530
3 0.0015 0.00806 5.376
4 0.0020 0.01337 6.686
5 0.0025 0.01913 7.653
6 0.0030 0.02518 8.392
7 0.0035 0.03140 8.972
8 0.0040 0.03774 9.436
9 0.0045 0.04416 9.814
10 | 0.0050 0.05062 | 10.124

critical constant ka/s to control k-FWER, then each true null hypothesis H; with
i € I will be rejected with probability ka/s. Define X; = I{¢; < ka/s}, where I(-)
is indicator function. The X; are i.i.d. Bernoulli random variables with success
probability ka/s. Let N be the number of false rejections, then N = ZLI:I1 X,
and so N is a Binomial random variable with parameters |I| and ka/s , i.e., N ~
Binomial(|/|,ka/s) . Note that, the success probability ka/s is very small. So,
when |I| is large, N is approximately Poisson distributed with mean A = |I|ka/s ,
as is standard for fixed & with s and |I| tending to oo. For a Poisson distributed
random variable with mean A\, we prove the following result.

Lemma 2.1 If N is a Poisson distributed random wvariable with mean X, then
P{N >k} <\~

PROOF.
_ k
P{N > k} = exp(— Zk = exp(—A)A ; A
< exp(— Z i = exp(=M) M\ exp(\) = A . m

Based on Lemma 2.1 and (2), we find that the k-FWER is bounded above
(asymptotically for large s) by A\* = (|Ilka/s)* < (ka)k; that is,

k—FWER = P{N >k} = O(a")

as a — 0. Note that for the usual small nominal values of «, the k-FWER is
approximately « in the case £ = 1. But when £ > 1, the k-FWER decreases
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dramatically below «. In other words, if all null hypotheses are true and p-values
are mutually independent, using the critical value Cj, ;(«) results in FWER equal
to a, but using the critical value ka/s results in the FWER equal to O(a*), which
can be very much smaller than «, and hence is way too conservative. So, in this
case, we can greatly increase the critical constant of the generalized Bonferroni
procedure and still control the k-FWER at level «, even when k = 2. This is the
reason why there is a big difference between the critical constants of the generalized
Bonferroni and Sidék procedures.

3 Stepdown control of the .--FWER

As is the case for the Bonferroni method, the previous single step procedure can be
strengthened by a Holm type of improvement. Consider the stepdown procedure
described in (11), where now we specifically consider

ka < k
=1 (14)
stk L~ k

Of course, the a; depend on s and k, but we suppress this dependence in the
notation. The following result is stated in Hommel and Hoffmann (1987) and
proved in Lehmann and Romano (2005a); it can be viewed as a generalization of
Holm (1979).

Theorem 3.1 [Generalized Bonferroni-Holm] For testing H; : P € w;, i =1,...,s,
suppose p; satisfies (9).

(1) The stepdown procedure described in (11) with «; given by (14) controls the
k-FWER; that is, (3) holds.

(1) One cannot increase even one of the constants «; for i > k without violating
control of the k-FWER.

Remark 3.1 Evidently, one can always reject the hypotheses corresponding to
the smallest £ — 1 p-values without violating control of the k--FWER. That is, we
could always apply a stepdown procedure with a; = 1 for ¢ < k. However, it seems
counterintuitive to consider a stepdown procedure whose corresponding «; are not
monotone nondecreasing. In addition, automatic rejection of & — 1 hypotheses,
regardless of the data, appears at the very least a little too optimistic. To ensure
monotonicity, Lehmann and Romano (2005a) suggest using «; = ka/s for i < k.

Sarkar (2005) showed that, under the assumption of mutual independence of
the p-values, the above procedure can be improved by using

k ) 1/k
/ J .
_ ) i—k s, 15
az <aj1_115_i+j> ks (15
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For ¢ < k, one can set o/, = 1 like in the above remark, but a more sensible choice
is o). It is easily checked that o > «;, at least if 1 < k < 1/a. However, under the
independence assumption, an alternative procedure also provides an improvement,
which we will see can be much greater.

Theorem 3.2 [Generalized Siddk-Holm] Under the assumptions of Theorem 3.1,
further assume the p-values are mutually independent. Consider the stepdown pro-
cedure using critical constants

ap <<,
where
= =aqp = Hk_i(a) = Crs()
and, for j >0,
ey = Hig_j(@) = Crsj(a) . (16)

(1) This procedure controls the k-FWER (as does the stepdown procedure replacing
a; with 1ifi < k).

(ii) For k =1, it is not possible to increase even one of the a; with i > k without
violating control of the k-FWER.

PROOF. Fix any P and let I(P) be the indices of the true null hypotheses. Assume
|I(P)| > k or there is nothing to prove. Order the p-values corresponding to the
|I(P)| true null hypotheses; call them

duy < -+ < qrepy) -
Let j be the smallest (random) index satisfying p(jy = ), so
k<j<s—|I(P)|+k (17)

because the largest possible index 7 occurs when all the smallest p-values corre-
spond to the s — |I(P)| false null hypotheses and the the next |I(P)| p-values
correspond to the true null hypotheses. Then, the stepdown procedure commits
at least k false rejections if and only if

Py < a1, pe) < g, D) S,
which certainly implies that
duy =Dy < oy =Hyy ()
But by (17), since j > k and the «; are monotone,
a; < a5 1Pk = Hyjyopy (@) -
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So, the probability of at least k false rejections is bounded above by

P{‘ﬂk) < Hk_,|11<P>|(O‘)} :

By Theorem 2.2(i), the chance that the kth smallest among [(P) p-values is <
H,;‘II(P)I(Q) is < a.

We now prove in the case & = 1 that one cannot improve even one of the
critical values without violating error control. To see this with constant oy, just
take all hypotheses to be true, and it reduces to the single step result. For ¢ > 1,
let there be s — 7 + 1 true null hypotheses and the rest false. Furthermore, let the
false ones have p-values which are identically zero and let the true ones be i.i.d.
U(0,1) variables. Then, following the argument in (i) for this scenario, the false
null hypotheses will be immediately rejected by the stepdown procedure and the
event that the FWER is violated is identical to the event that gq) < a;. But,

Qq = Hl_,sl—i-i-l(a) = Hf,ﬁ](p)\@) )
and so the FWER becomes
P{(j(l) < H;lll(P)l(a)} =a.nm
Remark 3.2 In the case k =1, Hy 4(u) =1 — (1 — u)® and
Hij(a)=1-(1— o)V
So, the critical values reduce to Sidak’s method, where the «; are given by
Q; = Hf,sl—iﬂ(a) =1-(1- 04)1/(5%“) .

Remark 3.3 The proofs of Theorem 2.2 and 3.2 show that the results remain true
under the weaker condition that the p-values corresponding to true null hypotheses
are mutually independent. The p-values corresponding to false null hypotheses can
have an arbitrary dependence structure and can even be dependent on the p-values
corresponding to true null hypotheses.

Remark 3.4 In the case k = 1, it is known that Siddk’s method also controls the
1-FWER under certain types of positive dependence. For example, this holds if
the p-values py, ..., ps are positively orthant dependent in the sense that

P{py <wy,...,ps <axs} > 15 P{p; < @} ; (18)

see Holland and Copenhaver (1987). Unfortunately, this result does not carry
over in general when k& > 1. The following construction was based on a personal
communication with S. Sarkar. Assume s = k and that all null hypotheses are true.

http://www.bepress.com/sagmb/vol 6/issl/art3 10
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Then, a; = o = o'/*. The p-values of the true null hypotheses are §i, ..., g,

assumed to be equal to a common variable U which is uniformly distributed on
(0,1). Then, the &-FWER is given by

P{k-min(gy,...,q) < apt =a’* > a .
In general, if the §;s are positively dependent in the sense of (18), then
P{k-min(Gy,...,q) < as} > 7 P{g; < o}
= a) = [H (o))" = [ = a.

Remark 3.5 The results in this paper can be viewed as special cases of a general-
ized closure method given in Romano and Wolf (2005). A variant of this principle
is given in Guo and Rao (2006). In Romano and Wolf (2005), it is further shown
how to construct tests that control generalized error rates under dependence, in-
cluding some examples with exact finite sample control (such as parametric models
and models where randomization or permutation tests apply), as well as general
approximate methods based on bootstrap resampling or subsampling.

We now perform some numerical comparisons of the critical constants of the
new generalized Sidak-Holm stepdown procedure in Theorem 3.2 and Lehmann and
Romano (2005a)’s generalized Bonferroni-Holm stepdown procedure, which does
not make any assumption concerning the dependence structure of the p-values.
We plot in Figures 1 and 2 the two sequences of constants described in (14) and
(16) for the cases in which k£ = 10,s = 200, = 0.05 and k£ = 2, s = 50, « = 0.05,
respectively. Panel (a) displays the critical constants based on (14), where panel
(b) displays the critical constants based on (16). Panel (c¢) displays the ratio of the
constants in panel (b) with the constants in panel (a). The dashed horizontal lines
in panel (b) are of height 0.05. It is clear from panel (¢) in Figures 1 and 2 that
the constants in panel (b) are much larger than the constants of panel (a). Thus,
if the assumption of independence of p-values is satisfied, the stepdown procedure
based on the constants in panel (b) is clearly preferable to the one based on the
constants in panel (a).

An interesting result we observe from Figures 1 and 2 is that there is a big
difference if £ > 1 between the critical constants of generalized Holm procedure
and the new stepdown procedure presented here. It means that the assumption of
independence gives us a large gain in power. For k = 1, the stepdown improvement
over Holm is not dramatic, but it immediately becomes so when k = 2.

4 Further stepdown improvements

Consider the critical constants «; defined in (16). Recall the argument in attempt-
ing to show optimality of the constant a;. For ¢ > k, let there be s — ¢ + k true
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Figure 1: The critical constants of two k-FWER stepdown procedures based on
(14) and (16) for £ = 10, s = 200, and a = 0.05.
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Figure 2: The critical constants of two k-FWER stepdown procedures based on
(14) and (16) for k = 2,5 = 50, and a = 0.05.
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null hypotheses and the rest false. Furthermore, let the false ones have p-values
which are identically zero. Then, the event that k-FWER is violated is identical
to the event

{Qrs—ivk < Qicgts ooy Qs—ith < Qi) s
(which is not equivalent to the event {{g.s—i+x < c;} unless k = 1), where
él:sfi+k S cee S Cjk:sfiwtk

are the first k ordered p-values corresponding to the s — i+ k true null hypotheses.
So, it is possible to improve the constant c«; if k > 1.

A new sequence of critical constants {«;,7i =1,..., s}, is defined as follows:
a; =aoy, fori<k (19)
and
P{Uis—ivk < Qg1 - Unis—igh S i} =, fori >k | (20)

where Uy, < ... < Uj, are the first j order statistics of v i.i.d. U(0, 1) variables.
Note that, if i = k, then

P{Ups <o, Ups < ap} = P{Ups < i} .
SO, . = H,;;(oz) .
We now prove that there exists a unique sequence of critical constants satisfying

(19) and (20).

Lemma 4.1 There exists a unique sequence of critical constants {a;,i =1,...,s}
satisfying (19) and (20).

PROOF. Let o = Hk_;(a) and o; = ay, for i < k. For ¢ > k, suppose
Qq,...,q;—1 > o have been determined and satisfy (19) and (20). A function
G(u) is defined by
G(u) = P{Urs—ivk < Qiprts - Up—visivk < i1, Upss—ipr < u} - (21)
where, 0 < u <1 . Note that the event
{Uts—ivrrr < @ik Unisiprr < Qicpgts oy Upssmiprpr < i1}

implies the event

{Utis—ith < 0ipy1, Uss—inne < Qimpgoy ooy Uk tis—ipn < it}
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So,
G(1) = P{Urs—isk < Vg1, Unis—ie < Qtipqos o Up—vomin < in }
> P{Ur.s—itir1 < @ig, Unis—iirt < Qigorty - ooy Ups—iphrn < i1}
=«

In addition, the event {Uy.s_;1r < ay} implies the event {U.; < ay}. So,

Glog) = P{Urs—ivk < Qimprts oo Uptisink < @1, Upes—ine < Qi }
< PlUks—ivr < g} < P{Ups < i}
=«

From the continuity of G(u), there exists ug € [y, 1] satistying G(ug) = «; that
is, a solution satisfying (20) exists for a;.

Next, we show that the solution «; is unique. Suppose there exist two solutions
uy and us satisfying (19), (20) and u; < ug; that is,

G(uy) = G(uz) = « (22)
Then,
G(uz)—G(w) = P{Urs—ivk < Qipi1s - Qrotos—ivk < @im1, U1 < Upes—ipr, <ug} =0,

and note that o; > o, > 0, for j =7 —k+1,...,i— 1. So, u; = us.

Hence, the result is proved by induction. m

Later, through some numerical computations, we will find that, in some cases,
the sequence {«;,i =1,2,...,s} satisfying (19) and (20) is not monotone increas-
ing (see Figure 6). However, in the case kK = 2, monotonicity of the sequence
{a;,1=1,2,...,s} is proved to hold.

Lemma 4.2 Suppose {a;,i = 1,...,s} be the sequence of critical constants sat-
isfying (19) and (20). For k = 2, the sequence {a;,1 = 1,...,s} is monotone

Increasing.

For the proof, see Appendix A.

To construct a stepdown procedure using the sequence {ay,i = 1,2,...,s}
satisfying (19) and (20), the sequence must be modified to be monotone. We will
consider the modified sequence {o/,i =1,2,..., s}, defined by

o, =a, and o) =min(q;, of,,), fori=1,...,s—1. (23)

The modified constants satisfy the following property.
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Lemma 4.3 Let {a;,i = 1,...,s} be any sequence of critical constants, and
{a,i = 1,...,s} be a modified sequence of {a;,i = 1,...,s}, which is defined
(1) The sequence {a},i =1,...,s} is monotone increasing.

(11) of < ay, for 1 < i <'s, and if the sequence {c;,i = 1,2,...,s} is monotone
increasing, then o), = oy .

PROOF. The proof is obvious. =
We now prove the k-FWER controllability of the stepdown procedure using
the modified sequence {a},i = 1,..., s} defined in (23).

Theorem 4.1 Under the assumptions of Theorem 3.1, further assume the p-values
are mutually independent. Consider the stepdown procedure using critical constants
afl <. < a;

Y

defined in (23), and based on the sequence {c;,i = 1,...,s} satisfying (19) and
(20).

(i) This procedure controls the k-FWER at level o .

(11) If the sequence {cy,i = 1,...,s} is monotone increasing, then it is not possible
to increase even one of the o; with © > 1 without violating control of the k-FWER.
(111) For k = 2, it is not possible to increase even one of the oy with i > 1 without
violating control of the k-FWER.

ProoF. Fix any P and let I = I(P) be the indices of the true null hypotheses.
Assume |I| > k or there is nothing to prove. Order the p-values corresponding to
the |/| true null hypotheses; call them

Gun < - < Q-

Let j be the smallest (random) index satisfying p;y = k7). Then, the stepdown
procedure commits at least &k false rejections if and only if the event

{P) < ay,po) <, Py < o)
which implies the event

~ / A~ / ~ !
{Gun < & g1y Gon < QG pigs 5 Qreyr) < G} (24)

occurs. Note that, |/| < s— j+ k. Then, the event (24) implies the event

A / ~ / ~ !/
{qlzs—j-l-k S a];]nglv q2:s—j+k: S aj7k+27 .. 7qk:s—j+k S Oéj} .
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So, the probability of at least k false rejections is bounded above by

A / ~ ! ~ !
P{Ql:sf]?%k S aj_k+17 42:5—j+k S Olj_k;+2) v Qkis—j4k S a]’}
< PlGus—jrk < Qg1 Gois—jtk < Qg2 - oy Qhis—jrk < O}
< P{Uss—jir < 0pr1, Unis—jin < 0jpros ooy Uks—jrn < o}
=

The second inequality follows from the assumption (9).

We now prove that one cannot improve even one of the critical values without
violating error control. Since a; is monotone increasing, o), = oy, fori =1,...,s.
For i < k, one cannot improve the constant a; = a4, since we demand the «; to
be monotone increasing. For ¢ = k, the constant o4 cannot be improved, as seen
by the argument for Theorem 2.2 (ii). For ¢ > k, let there be s — i + k true null
hypotheses and the rest false. Furthermore, let the false ones have p-values which
are identically zero and let the true ones be i.i.d. U(0, 1) variables. Then, the false
null hypotheses will be immediately rejected by the stepdown procedure and the
event that the k--FWER is violated is identical to the event

{Qs—ivh < Qg1 Qs—ink < Qimgray oy Qros—itk < QG )

So, the k-FWER is
P{Grs—ivk < Qipt1, Qrs—ik < Qiekry ooy Qhs—ik < Qi =

Hence, it is impossible to increase «; and the k-FWER is bounded above by « .

Part (iii) directly follows Lemma 4.2 and (ii). =

We now discuss how to compute the critical constants {«a;,i = 1,2,...,s}
satisfying (19) and (20).

If o; is monotone increasing, one could apply a recursive formula for order
statistics in Finner and Roters (1994). If 0 < 23 < 25 < ... <z, < 1 is an
increasing sequence, then the following formula holds:

k-1

s i
PU <1 U < i} = 1-3 (J) PU <1, Upy < 3} (1=j0)"0
§=0
(25)
For i > k, suppose that aq,...,«; 1 have been computed. By using (25), a;
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can be obtained by solving the following equation,

P{Ul:sfijtk < QG k41, UQ:sfiJrk < QG2 -+ - Uk:sfz#k < ai}
k-2 .
s—i1+k o
=1— ( j )P{U1;j < Qkot 1y - - -y Uj;j < Oéifk+j}(1 _ aifk+j+1)s i+k—j
=0
(26)
s—i+k »
- ( k1 )P{Ul:kl <@gty Uppr < @b (1—ap)*
= s
where P{U1.; < &i—j41,...,Uj;j < a;_py;} is recursively computed by using (25),
P{Uy; < aj_js1,Usj < @ipyo, o, Ujj < gy} (27)
j=1 /.
=1- Z 6) P{U1s < @icpsrs - Ug < i} (1 = i)
1=0

If «; is not monotone increasing, one could apply Newton’s method in numerical
analysis to approximate ;. Let H(u) = G(u) — a, where G(u) is defined in (21).
Then, H(c;) = 0. Note that, Up.s—irr/Uks—itky- -+ Up—1.s—itk/Uk.s—isr are the
order statistics of £k — 1 i.i.d. U(0,1) on (0,1), independent of U.s_;+x. Then,

H(u) = P{Urs—itk < @ity s Un—tis—iph < Qi1 Ups—ipr < U} —

o v (077 | (S —1 + k)' k—1
/0 P{Ultk—lg T )"')Uk—lzk—l < }(]{?—]_>|(S—Z)'x

izt (1—2)"dr —a

and so
(s —i+k)!
}(k — (s —1)!

H'(4) = P{Upp, < S5 dict WL — )t

[ Uk*l:kfl S

Newton’s method can be described by

Tpi1 = T — H(x,)/H' (x,)

o P{Usss—ivk < @imgorts - Upssmivw S 20} —
oom i i —i+k)! _ i
P{Ulzkfl S . $:+1; ey kal:kfl S axnl}(k(jl)zg(s_)i)!xlfb 1(1 — xn)s ¢

(28)

Although the solution a? of equation (26) is not the correct value of the un-
known o if a; is less than a;_; , of is still close to ;. In addition, «;_; is also
close to a;, so one could choose af or ;1 as the initial point z .

Also, Newton’s iteration has a local convergence property since H'(a;) > 0.
That is, the iteration will converge to q; if the stating point af (or a;_;) is close

enough to «; (Kantrovich and Akilov 1964).
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Remark 4.1 When the constants ¢y, ..., ¢; are given, even though the constants
are not monotone increasing, one could also use (25) to compute the probability
P{Uy., < ci,...,Ujy < ¢;}. The extra work just requires setting ¢; = min(¢;, 1) ,
for I =1,...,7, and then modifying ¢/, ...,¢; according to (23).

Remark 4.2 Before computing «; using (26), one does not know whether the
critical constants are monotone increasing. If the solved «; is monotone increasing,
ie., a; > oy_1, it shows that «; is the correct solution. Otherwise, the solved «; is
not correct, and one could use Newton’s method to compute the correct constant.

We now perform some numerical comparisons of the critical constants of two
new stepdown procedures in Theorems 3.2 and 4.1 and Sarkar’s procedure based
on (15) with o) = ). We first plot in Figure 3 the two sequences of constants
described in (15) and (16) for the case in which & = 10,s = 200, and o = 0.05.
Panel (a) displays the critical constants based on (15), where panel (b) displays
the critical constants based on (16). Panel (c) displays the ratio of the constants
in panel (b) with the constants in panel (a). The dashed horizontal lines in panel
(a) and (b) are of height 0.05. It is clear from panel (¢) that the constants in panel
(b) are much larger than the constants of panel (a). For example, more than 90%
of the constants of panel (b) are at least 40% larger than the constants of panel
(a). Thus, if the assumption of independence of p-values is satisfied, the stepdown
procedure based on the constants in panel (b) is preferable to the one based on
the constants in panel (a).

Next, we plot in Figure 4 the two sequences of constants described in (15),
and (19), (20) and (23) for the case in which & = 10,s = 200, and a = 0.05.
Panel (a) displays the critical constants based on (15), where panel (b) displays
the critical constants based on (19), (20) and (23). Panel (c) displays the ratio of
the constants in panel (b) with the constants in panel (a). It is clear from panel
(c) that the constants in panel (b) are uniformly larger and typically much larger
than the constants of panel (a). Comparing panel (¢) in Figure 3 and Figure 4, we
find that their patterns are very similar except that there are a short sequence of
irregular changes in Figure 4.

In Figure 5, we plot the two sequences of constants described in (16), and (19)
and (20) for the case in which & = 8, s = 200, and o = 0.05. Panel (a) displays
the critical constants based on (16), where panel (b) displays the critical constants
based on (19) and (20). Panel (c) displays the ratio of the constants in panel (b)
with the constants in Panel (a), and panel (d) displays a short sequence of ratios
in panel (c) from the first to the 160th one. It is clear from panel (c) that the
constants in panel (b) are almost the same as the constants of panel (a), except for
the last twenty constants. Further, we find from panel (d) that there is less than
0.2% difference between the first 160 constants in panels (a) and (b), and neither
set of critical constants is uniformly larger than the another one. In addition,
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Figure 3: The critical constants of two k-FWER stepdown procedures based on
(15) and (16) for £ = 10, s = 200, and a = 0.05.
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Figure 4: The critical constants of two k-FWER stepdown procedures based on
(15) and (19), (20), and (23) for k = 10, s = 200, and « = 0.05.
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Figure 5: The critical constants of two k-FWER stepdown procedures based on
(16), and (19) and (20) for £k = 8,s = 200, and o = 0.05.
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Figure 6: The critical constants based on (19) and (20), and (23) for k

200, and « = 0.05.
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note that the critical constants in panel (b) satisfying (19) and (20) are monotone
increasing in this case. Thus, it seems that the stepdown procedure based on the
constants in panel (a) is almost unimprovable.

Next, we plot in Figure 6 the two short sequences of constants described in
(19) and (20), and (23) for the case in which £ = 10,s = 200, and o = 0.05.
Panel (a) displays the critical constants based on (19) and (20), where Panel (b)
displays the modified constants based on (23). Panel (c) displays the ratio of the
constants in panel (b) with the constants in panel (a). Panel (a) shows that the
critical constants satisfying (19) and (20) are not monotone increasing, and panel
(c) shows that the modified constants in panel (b) are reduced by at most 7%.
Thus, it seems that the stepdown procedure based on the constants in panel (b)
is close to being unimprovable.

Remark 4.3 To appreciate why the stepdown method based on (16) is nearly
unimprovable, consider a stepdown method using constants aq,...,a, which is
assumed to control the k-FWER under independence. Then, we show that the
critical constants «; for ¢ > k must satisfy

HliIl(Oéi, “ee ,OéiJrk,l) S Ck:7577;+1(06> . (29)
In the case where the constants «; are nondecreasing for ¢ > k, this says
@; < Cpo—iv1(a) . (30)

Here Cj 5_;+1(c) is the critical constant that the stepdown procedure given in (16)
uses, not at step 4, but at step i+k — 1. Since, the constants Cj, s_;(a) do not vary
much with j (except for very large j) for fixed small k, Cy s_i11() is not much
bigger than Cy s_;+(a) anyway.

To prove (29), suppose ¢ — 1 hypotheses are false with p-values identically 0
and s — i + 1 hypotheses are true, with p-values i.i.d. uniform. Let

qay < < s—it1)

be the ordered p-values corresponding to the true hypotheses. Then, k£ or more
false rejections occurs is the event

{do) < @iy qo) < igrs ey Gy < Qigr )
and the k-FWER is probability of this event. But, then a lower bound to the
k-FWER is
P{(j(k) S IIliIl(lei7 ce 7CMH_]§_1)} = Hk,s_iﬂ(min(ai, PN 7ai+k—1)> N

and this much be < « since we are assuming the procedure controls the k-FWER.
But, since

Hys—it1(Crs—iv1(@)) = a,
(29) follows.
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5 Stepdown control of the FDP

In this section, we discuss the control of the false discovery proportion (FDP),

which is defined by,
v
ppp—{® >0 (31)
0 R=0

where, V' is the number of false rejections, and R is the total number of rejections.
The FDP is the proportion of rejected hypotheses that are rejected erroneously.
For a given v and « in (0,1), we require

P{FDP >~} <« (32)

To develop a stepdown procedure satisfying (32), we want to control FDP < ~
at each step. That is, at step i, having rejected i — 1 hypotheses, we want to
guarantee V/i < ~, i.e., V < |vi], where |x] is the greatest integer < z. So, if
k(i) = |vi] 4+ 1, then V > k(i) should have probability no greater than «; that is,
we must control the number of false rejections to be < k(). Based on the above
heuristics, Lehmann and Romano (2005a) constructed the constant «; with this
choice of k(i) like in Theorem 3.1, i.e.,

([vi] + Da
s+ |vi] +1—1

o; = 5 (33)
and proved that the stepdown procedure using the constants (33) controls the FDP

at level o under mild conditions on the dependence structure of p-values. Under
the independence assumption, this procedure can be improved, as we now show.

Theorem 5.1 Under the assumptions of Theorem 3.1, further assume the p-values
are mutually independent. Consider the stepdown procedure using critical constants

o <<y,

where

Qi = Hk_(i),s—i—kk(i) (@) (34)
and,

k(i) =|vi]+1, for1<i<s.
Then, this procedure controls the FDP at level o.
PROOF. Assume the number of true null hypotheses is [/| > 0 and the number of
false null hypothesesis f = s—|I|. Let ¢i, ..., ;] denote the p-values corresponding

to the |I| true null hypotheses, and 74, ..., 7, denote the p-values of the false null
hypotheses. Let ap = 0 and R; be the number of 7; in the interval (a;_1, a;].
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(Actually, assume Ry includes the value 0 as well.) Given the values of 7q,..., 7y,
define j = j(71,...,7f) as

j =min{m :m — Z R; > m~}. (35)

i=1

Following the proof of Theorem 3.1 in Lehmann and Romano (2005a), observe
that, conditional on the {7;}, the event that FDP > ~ is violated implies that the
event that at least k(j) of the ¢; < a;. That is,

P{FDP > ~|ry,...,7;} < P{at least k(j) of the ¢; < o;|f1,..., 7}
Then, by Theorem 3.2 and the independence assumption, we have
P{FDP > y|iy,...,7;} <« (36)

For some values of 71,...,7, the set {m :m — """ R; > m~} is empty; that
is, for each m,m — 3" | R; < m~. It is equivalent to FDP < ~y. So, we have

P{FDP > ~|f1,...,#;} =0 (37)

By (36) and (37), P{FDP > v} < a is proved. m

We now perform some numerical comparisons of the critical constants of the
stepdown procedure in Theorem 5.1 with that of Lehmann and Romano’s stepdown
procedure based on (33). We plot in Figure 7 the two sequences of constants for
the case in which s = 1000,y = 0.1, and a = 0.05. Panel (a) displays the critical
constants based on (33), where panel (b) displays the critical constants based on
(34). Panel (c) displays the ratio of the constants in panel (b) with the constants
in panel (a). The dashed horizontal lines in panel (b) and (c) are of height 0.05 and
1, respectively. It is clear that the constants in panel (b) are dramatically larger
than the constants of panel (a). For example, more than 90% of the constants
of panel (b) are 10 times larger than the constants of panel (a). Thus, if the
assumption of independence of p-values is satisfied, the stepdown procedure based
on the constants in panel (b) is preferable to the one based on the constants in

panel (a).

6 Conclusions

We have seen that very simple single step and stepdown procedures are available
to control the k-FWER under the assumption of independence of the p-values.
Therefore, the methods are an improvement over Hommel and Hoffmann (1987)
and Lehmann and Romano (2005a) if independence holds, and can be viewed as
a generalization of Siddk’s method as a means of controlling the k-FWER. In
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Figure 7: The critical constants of two FDP stepdown controlling procedures based
on (33) and (34) for s = 1000,y = 0.1, and o = 0.05.
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the case k = 1, the method cannot be improved. We discuss the improvability
in general and obtain an optimality result under a monotonicity condition. In
the case k = 2, the monotonicity condition is satisfied. In other cases, it can be
verified numerically. We also develop a method that controls the FDP. The perhaps
surprising result of the wrok is that, for generalized error rates, the assumption
of independence can yield dramatic gains. At the very least, if the independence
is unwarranted, the results enforce the need for reliable methods that take into
account the dependence structure, such as those in Dudoit, et. al. (2004), van der
Laan, et. al. (2004, 2005) and Romano and Wolf (2005).

APPENDIX

A Proof of Lemma 4.2

For convenience of notation, let 3; = (G5 and 3; = Hzfijz(oc) fort=2,...,s. The
(; are monotone increasing and satisfy the following equality,
P{UQ:S_rL’+2 S ﬂz} =, for i = 2, ceey S (A].)

When k = 2, the critical constants a;,7 = 1,...,s based on (19) and (20)
satisfy the following equation,

P{Uis—iy2 < i1, Ups_iyo < i} =, fori =2,...,s, (A.2)

where a; = ay. For i = 2, oy = ag = 3, follows from (A.2). So, G2 < ay < (5 .
We now prove the following inequality using induction rule,

ﬂigaigﬂiﬂ, fOfiZQ,...,S—l. (AS)

For i = 2, (A.3) holds. For i > 2, suppose 3;_1 < a;_1 < [3; hold. Comparing (A.1)
with (A.2), and using «;_1 < f3;, we have 3; < «; . Similarly, comparing (A.2) with
(A.21) in Lemma A.4, and using 3i—1 < a;_1, then a; < Biq . So, 8 < a; < Big,
and then (A.3) is proved by induction.

Based on (A.3), the inequality a; > (s can be similarly obtained. So, the
critical constants «;,7 = 1,2,...,s are monotone increasing when k£ = 2. Thus,
Lemma 4.2 is proved. m

In the following, we prove Lemma A.4. Before proving Lemma A.4, we present
several equalities and lemmas.

Note that, (A.1) can be expressed as,

1—(1-3)"" - (s—i+2)3(1-3)""=a. (A.4)
So,

1l —«

_ As—HL
(1—5) 1+ (s—i+1)5

,fori=2,... s. (A.5)
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Lemma A.1 For any —1 < x < 1, and positive integer m, the following inequality
holds:
(I+z)">1+mz. (A.6)

PROOF. The proof is obvious. =

Lemma A.2 For any positive integer s > 2, the following inequality holds:
(s—)Bin1 <(s—i+ 1), fori=2,...,s—1. (A.7)
ProoOF. Note that,
( 1-5 )s—i+1 = (1+ Bit1 — @')s—iﬂ
1= fBina 1= Bita
Bit1 — B

- Mi+1

The above inequality follows from Lemma A.1. From (A.5), the left hand side of
(A.8) can be simplified as,

1= 0B eist _ 1+ (s —1)Bin1
R 1 oy Py g 3 (8-9)

Combining (A.8) and (A.9), (A.7) is proved. m
Lemma A.3 For any positive integer s > 2, the following inequality holds:
(S —1+ 1)61’—&-1 2 (S —1+ 2)51_1(1 - ﬁ,‘+1)7 for i = 27 e, S — 1. (AlO)

PROOF. Similar to the proof of Lemma A.2, the following inequality follows from
Lemma A.1:

1= Biv1 s_ito Bis1 — Bis_ita
s—i —(1— s—1
(1—@-,1) ( 1—@'71)
> (542l (A.11)
1—Bia
From (A.5), the left hand side of (A.11) can be simplified as
1— ; . 1-— i 2 1 —1 2 i—
( — 5'4»1 )871+2 _ ( ﬁJrl) [ +_(S .Z + )6 1} . (A12)
1 61_1 1+ (S Z)ﬁz-&-l

Combining (A.11) and (A.12), we have

(1= Bi1)(A=Fi1)?[1 + (5 — i + 2) ;4]
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Simplifying (A.13),

(s—i+1)287, >(s—i+2)87 1+ (s —i+ 1)(s —i+2)Bi—18in
(st DB s — i+ DFfir (ALY

+(s—i+2)87 157, -

Note that
(s=i+2)87, + (s —i+1)(s —i+2)Bi10in
= (s —i+2)Bi-1[Bi-1 + (s =i+ 1)Bi] (A.15)
> (S_Z+2)2 i2—1 )
and from Lemma A.2,

—(s—i+1)Bi1B = _%@Aﬂiﬂ[(s — 1) Biy1]

> i DEZidD g g (A.16)

s—1

Then, the second part of the right hand side of (A.14) is expressed as

—(s—i+ 1B, —2(s—i+2)B Bia+ (s —i+2)37 .57,
s—1+1

> (s =i+ 2)0 B [-(2+ ) Tl (A.17)
Note that L
(s—¢+1)(1—@+l)+[(s—¢+1)—%1zo; (A.18)
that is, .
et s s s i (24 B) (A.19)

Combining (A.14), (A.15), (A.17), and (A.19), we have,

(S —i+ 1)2 z’2+1 = (3 —i+ 2)2( i2—1 - 2@'2—15141 + @'2—1 i2+1)
= (s —i+2)°[Bi1(1 - Bis1)]? . (A.20)

So, (A.10) is proved. m
We now prove Lemma A.4.

Lemma A.4 For any positive integer s > 2, the following inequality holds:

P{Urs—iv2 < Bic1,Usg—iva < Bia} >, fori=2,...,s — 1. (A.21)
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ProoF. Note that,

P{Ur.s—it2 < Bic1,Uss—iyo < Bipa}
= 1 — (1 — ﬁi,1)87i+2 — (S — Z + 2)5271(1 — ﬁiJrl)SiiJrl . (A22)

Comparing (A.4) with (A.22), we find that, (A.22) is > « if and only if

L= (1= Bima)™ = (s =i+ 2)Bi-1(1 = Brpn)™
>1—(1—=Fi) ™ = (s —i+3)Bia (1= i)™

that is, ‘ ‘
(1- 5i71)s_1+2 > (1- ﬁz‘+1)s_z+1 . (A.23)

By (A.5) and Lemma A.3, (A.23) is obtained, and then (A.21) is proved. m
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