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Abstract

When dealing with the problem of simultaneously testing a large number of null

hypotheses, a natural testing strategy is to first reduce the number of tested hypothe-

ses by some selection (screening or filtering) process, and then to simultaneously

test the selected hypotheses. The main advantage of this strategy is to greatly reduce

the severe effect of high dimensions. However, the first screening or selection stage

must be properly accounted for in order to maintain some type of error control. In

this paper, we will introduce a selection rule based on a selection statistic that is

independent of the test statistic when the tested hypothesis is true. Combining this

selection rule and the conventional Bonferroni procedure, we can develop a powerful

and valid two-stage procedure. The introduced procedure has several nice properties:
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(i) it completely removes the selection effect; (ii) it reduces the multiplicity effect;

(iii) it does not “waste” data while carrying out both selection and testing. Asymp-

totic power analysis and simulation studies illustrate that this proposed method can

provide higher power compared to usual multiple testing methods while controlling

the Type 1 error rate. Optimal selection thresholds are also derived based on our

asymptotic analysis.

AMS 1991 subject classifications. Primary 62J15, Secondary 62G10

KEY WORDS: screening, familywise error rate, filtering, high-dimensional, multiple

testing
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1 Introduction

Consider the multiple testing problem of simultaneously testing a large number m of hy-

potheses. When m is large, standard multiple testing procedures suffer from low “power”

and are unable to distinguish between null and alternative effects because extremely small

p-values are required if one properly accounts for Type 1 error control, such as the fami-

lywise error rate (FWER); see Lehmann and Romano (2005). It is only by weakening the

measure of error control, such as the false discovery rate (FDR), that some discoveries

may be found (Benjamin and Hochberg, 1995). But, such discoveries are not as forceful

as when they arise while controlling the FWER.

When “most” null hypotheses are “true”, a common and useful approach is to first

reduce the number of hypotheses being testing in order to construct methods which are

better able to distinguish alternative hypotheses. That is, one applies some selection,

filtering or screening technique based on some selection statistics in order to reduce the

number of hypotheses being tested. Then, one can use standard stepwise methods to

test the reduced number of tests. Such two-stage methods have been extensively used

in practice to deal with various problems of multiple testing (McClintick and Edenberg,

2006; Talloen et al., 2007; Hackstadt and Hess, 2009). As in the bulk of this paper,

such approaches are called two-stage procedures. In the first stage, some screening or

selection method is applied in order to reduce the number of tests. In the second stage,

the reduced number of tests is tested. A major limitation of these methods is there lacks a

systematic consideration of the selection effect. In other words, one cannot simply apply

some method to the reduced number of hypotheses without accounting for selection in

error control. That is, one cannot in general “forget” about the screening stage. In other

words, in order to properly control Type 1 error rates, one must in general account for

the screening stage by considering the error rate conditional on the method of selection.

Otherwise, lose of Type 1 error control, whether it is FDR, FWER, or an alternative

measure, results.

But, if screening statistics at the first stage are chosen to be independent of the testing

statistics at the second stage (at least under the null hypothesis), then error control sim-
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plifies as the conditional distributions and unconditional distributions of the test statistics

are the same (at least under its respective null distribution). Indeed, Bourgon, Gentleman,

and Huber (2010) introduced such a novel approach of independence filtering to avoid the

effect of selection, in which the selection or filtering statistics at the first stage are chosen

to be independent of the test statistics (at least when the corresponding null hypothe-

ses are true). Two new two-stage methods, which respectively combine the approach of

independence filtering with the conventional Bonferroni and Benjamini-Hochberg pro-

cedures (Benjamini and Hochberg, 1995), are proposed and shown to control both the

FWER and FDR under independence of test statistics. By using the same idea of inde-

pendence filtering, Dai et al. (2012) develop several two-stage testing procedures to detect

gene-environment interaction in genome-wide association studies. Kim and Schliekelman

(2016) further discuss some key questions on how to best apply the approach of indepen-

dence filtering and quantify the effects of the quality of the filter information, the filter

cutoff and other factors on the effectiveness of the filter.

Another commonly used approach to avoid the selection effect is sample splitting

in which the data is split in two independent parts. One uses the first part of the data

to construct the selection or filtering statistics and the second part to construct the test

statistics. By combining sample splitting with conventional stepwise procedures, one can

develop two-stage procedures that guarantee control of Type 1 error rates (Cox, 1975;

Rubin, Dudoit, and van der Laan, 2006; Wasserman and Roeder, 2009). These methods

completely remove the effect of selection; however, they often result in power loss due to

reduced sample size for testing (Skol, et al., 2006; Fithian, Sun and Taylor, 2014).

In recent years, there has been a growing interest in selective inference (Benjamin

and Yekutieli, 2005; Benjamini, 2010; Taylor and Tibshirani, 2015) and several novel

breakthroughs have been made in the context of high-dimensional regression (Berk et al

2013; Barber and Candés 2015; Lee et al 2016; Fithian et al. 2014). All of these develop-

ments take model selection rules as given and develop methods to preform valid inference

after taking into account selection effects. Along these lines, a number of selective infer-

ence/post selection inference methods have been developed for various model selection

algorithms (Barber and Candes, 2016; Benjamini and Bogomolov, 2014; Fithian et al.,
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2015; Heller et al., 2016; Tian and Taylor, 2015a, b; Weinstein, Fithian and Benjamini,

2013; Yekutieli; 2012). In this literature, the problem of how to choose selection rules

is often overlooked; however, in practice one can often choose a desired selection rule

to lead to favorable conditional properties of inference after selection. In contrast, rather

than treat the selected hypotheses as given, we can propose a rule in both stages so that

the overall procedure has good unconditional error control properties.

Another popular way of exploiting information in the data is, rather than completely

eliminating tests under consideration, to construct weights for the null hypotheses and

then develop data-driven weighted multiple testing procedures (Roeder and Wasserman,

2009; Poisson et al, 2012). The data-driven weighted methods are pretty general and

filtering methods can regarded as its special case. A limitation of such methods is that it

is not clear how to assign weights in a data-driven way to ensure control of the FWER

or FDR. Very recently, by using “covariates” to construct weights which are independent

of the test statistics under the null hypotheses, several Bonferroni-based and Benjamini-

Hochberg based data driven weighted methods have been developed that increase power

while controlling the FWER and FDR, respectively (Fino and Salmaso, 2007; Ignatiadis,

et al, 2016; Li and Barber, 2016; Lei and Fithian, 2016; Ignatiadis and Huber, 2017).

In addition, when developing more powerful multiple testing methods, there are several

other ways of using such additional covariate information that have recently introduced

in the literature, such as local FDR based approaches (Cai and Sun, 2009), stratified

Benjamini-Hochberg (Yoo, et al., 2010), grouped Benjamini-Hochberg (Hu, Zhao and

Zhou, 2010), and single-index modulated method (Du and Zhang, 2014), etc.

In summary, there is a growing literature of approaches to dimension reduction in

high dimensional (single and multiple) hypothesis testing, including some useful, novel,

and somewhat ad hoc procedures. The contribution of this paper is to perform a detailed

error analysis in a large scale setting. We consider an ideal Gaussian model, as is often

assumed in the literature. as described in the setup in Section 2. There, we introduce

a specific two-stage procedure that we will analyze and compare later with other pro-

cedures. Control of the FWER is presented, though the less formal argument already

appears in Bourgon, Gentleman and Huber (2010). (The analysis applies to the joint but
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single testing problem of testing all means zero against the alternative that at least one is

not, but the exposition emphasizes the multiple testing problem.) The remainder of the

paper is new. In Section 3, under a largem asymptotic framework with a sparsity assump-

tion on the number of false hypotheses, we present detection boundaries for mean levels

that can (or cannot be) detected by the two-stage procedure. In Section 4, a refinement

is obtained so that the exact cutoff is calculated. Section 5 considers the unknown vari-

ance case, where the basic finite sample control of the FWER is replaced by asymptotic

control, but the same power analysis holds as when the variance is known. In Section 6,

we allow for dependence between the test statistics. Section 7 theoretically compares the

two-stage approach with other methods: Bonferroni and split-sample methods. By proper

choice of how to split, the split sample technique can only perform as well as Bonferroni,

with neither approach performing as well as the two-stage method. A simulation study

is presented in Section 8. Both global tests of a single hypothesis (in a high dimensional

setting) as well as multiple tests are considered. In the former case, the Higher Criticism

(Donoho and Jin, 2004; Donoho and Jin, 2015) is also compared (but it cannot readily

be used in the multiple testing case). In both cases, the two-stage approach offers both

control of the Type 1 error rate as well as it performs quite well under various scenarios.

In particular, the two-stage method shows good performance even when variances are

unequal and especially under dependence.

2 The setup

A very stylized Gaussian setup is assumed, as is conventional in large scale testing. The

problem is testing m means from independent populations, where m is large.

Assume that, for i = 1, . . . ,m, a sample of size ni from a normal population with

unknown mean µi and variance σ2
i is observed; that is, data

Xij
i.i.d∼ N(µi, σ

2
i ), ; j = 1, . . . , ni,

where m is the number of hypotheses of interest representing the number of samples or
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populations, and ni is the sample size for the ith sample. The m samples are assumed

mutually independent. When m is large, it is typically assumed that the σi are known as

well, in which case one can take ni = 1 (by sufficiency). For now, we will assume ni = n

and σi = 1, though we will discuss the unknown variances case later.

For i = 1, . . . ,m, consider testing hypotheses

Hi : µi = 0 vs. H ′i : µi 6= 0 .

(One may also treat the case of one-sided alternatives with easy modifications.) Define

the following two statistics

Sn,i =
n∑
j=1

X2
i,j (1)

and

Tn,i =

√
nXn,i

σ̂n,i
, (2)

where Xn,i and σ̂2
n,i are respectively the sample mean and (unbiased) sample variance for

the ith sample, i.e., Xn,i = 1
n

∑n
j=1Xi,j and σ̂2

n,i = 1
n−1

∑n
j=1(Xi,j −Xn,i)

2.

The basic two-stage strategy for our method is as follows. The statistics Sn,i are first

used to “select” which of the hypotheses to “test” in the second stage, at which point the

statistics Tn,i are used. There are various choices for the selection statistics, as well as

test statistics. For example, one could use the t-statistics Tn,i in both stages. Regardless,

the first consideration would then be how to set critical values in each stage in order to

ensure some measure of Type 1 error control, such as the familywise error rate (FWER),

the probability of at least one false rejection. We will be specific about the critical values

soon, but the key motivation for the choice of the sum of squares selection statistic Sn,i

and test statistic Tn,i is based on the following well-known facts. First, under Hi : µi = 0

(and σi = 1) we have that

Sn,i ∼ χ2
n and Tn,i ∼ tn−1 ;

that is, Sn,i has the Chi-squared distribution with n degrees of freedom and Tn,i has the t-
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distribution with n−1 degrees of freedom. But, the more important reason motivating our

choice is that, by Basu’s theorem, Sn,i and Tn,i are independent under Hi (Lehmann and

Romano, 2005). Note that E(Sn,i) = n+ nµ2
i , so that larger values of Sn,i are indicative

of larger values of µ2
i .

A simple selection rule is used for selecting which hypotheses Hi are to be tested

at the second stage. Given a threshold u, Hi is selected iff Sn,i ≥ u. Let Ŝn denote

the indices of selected hypotheses, with |Ŝn| the number of selected hypotheses. At the

second stage, one can simply apply the Bonferroni test; that is, reject Hi iff |Tn,i| ≥
tn−1(1 − α

2|Ŝn|
), the 1 − α/2|Ŝn| quantile of the t-distribution with n − 1 degrees of

freedom.

Lemma 2.1 For any choice of the threshold u, the above two-stage procedure controls

the FWER at level α.

Like all proofs, see the appendix.

Remark 2.1 The proof of Lemma 2.1 requires that any test statistic Tn,i be independent

of the selection statistics Sn,1, . . . , Sn,m, if Hi is true. Note that it is not required that the

test statistics Tn,1, . . . , Tn,m are jointly independent of the selection statistics.

More generally, the two-stage procedure controls the familywise error rate when any

test statistic is independent of the selection statistics, even outside our stylized Gaussian

model.

The simple two-stage method can be improved by a Holm-type stepdown improve-

ment. To describe the method, simply apply the Holm method (Holm, 1979) to the p-

values based on the selected set of hypotheses. More specifically, let p̂n,i denote the

marginal p-value when testing Hi based on Tn,i. Of course, in the model above, this is

just the probability that a t-distribution with n − 1 degrees of freedom exceeds the ob-

served value of |Tn,i|. Let p̃n,i be one if Hi is not selected and equal to p̂n,i if it is selected.

Let

p̃n,r1 ≤ p̃n,r2 ≤ · · · ≤ p̃n,rm
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denote the ordered p-values, so that ri is the index of the ith most significant p-value.

Now, apply Holm’s procedure based on the p-values p̃n,ri with 1 ≤ i ≤ |Ŝn|. Thus, Hri is

rejected if p̃n,rj ≤ α/(|Ŝn| − j + 1) for j = 1, . . . , i.

Theorem 2.1 Under the setting of Lemma 2.1, apply the Holm method to the selected set

of hypotheses. Then, this modified procedure controls the FWER at level α.

Thus, one can do even better by using a Holm-like stepdown method, or even a step-

down version of Sidak’s procedure; see Lehmann and Romano (2005) and Guo and Ro-

mano (2007). Indeed, conditional on the selection statistics, all computed true null p-

values based on “detection” statistics at the second stage are conditionally uniform on

(0, 1) and hence unconditionally as well. Thus, any multiple testing method based on

p-values is available. For example, one can also apply the Benjamini-Hochberg proce-

dure based on the selected p-values for controlling the false discovery rate (Benjamini

and Hochberg, 1995). In all such cases, the motivation is that gains are possible because

at the second stage only a reduced number of hypotheses are tested, with the hopes of in-

creased ability to detect or discover false null hypotheses. Furthermore, both the selection

and detection stages are based on the full data (rather than a split sample approach which

is used to obtain independence of the stages) and there is no selection effect because of

independence between the selection and test statistics when the corresponding hypothesis

is true.

So far, the threshold for selection has been just generically set at some constant u. We

now discuss this choice. For our method, we will choose u of the form u = χ2
n(1−β), the

1−β quantile of χ2
n. Since Sn,i ∼ χ2

n whenHi is true, such a selection threshold χ2
n(1−β)

ensures that roughly βm hypotheses are selected, at least if most null hypotheses are true.

The question now is how to choose β. Let m′ = mγ and β = m′

m
= m−(1−γ), where γ is a

given positive constant satisfying 0 < γ ≤ 1. Then, roughly βm = mγ = m′ hypotheses

are selected for testing. A choice of γ must still be specified.

Since Type 1 error control is ensured regardless of the choice of γ, we now turn to

studying the power of the procedure. In our asymptotic analysis, the following is assumed.

Assumption A: limm→∞
logm
n

= d, 0 ≤ d <∞, where d is a nonnegative constant.
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Note that as m is equal to 10, 000, 100, 000 or 1, 000, 000, the values of logm are

respectively 9, 12 and 14. So, it is reasonable and often sufficient to characterize the

relationship between m and n by imposing Assumption A. In applications, m and n (and

hence log(m)/n) are known, and generally we will have 0 ≤ d ≤ 1. We will consider

the probability of rejecting a null hypothesis Hj having mean µj 6= 0, which without loss

of generality can be taken to be positive. Further assume without loss of generality that

it is H1 that is false with mean µ1 > 0. If µ1 is constant, then under Assumptions A and

d > 0 , we have
√
nµ1 = O(

√
2 logm). On the other hand, if µ1 varies with m (and

n) such that µ1(m) → ∞ as m approaches infinity, then limm→∞
√
nµ1√

2 logm
= ∞. Finally,

if the sample size n is very large, so that log(m) is very small compared to the sample

size n, then the value of d should be taken to be 0. In the following, we mainly perform

asymptotic power analyses under Assumption A. Sometimes, d > 0 is assumed, in which

case the case d = 0 can either be treated separately with ease, or by a limiting argument

as d tends to zero.

3 Power analysis of two-stage procedure

In order to analyze the power of the two-stage procedure, we break up the analysis in two

parts. The first part analyzes the probability of “selection” in the first stage, while the

second will analyze the probability of “detection” in the second stage. Rejection of Hi

then occurs when both Hi has been selected at the first stage and then detection occurs

at the second stage. Roughly, the basic goal will be to determine how large in absolute

value an alternative mean must be in order to ensure that the probability of rejection tends

to one.

3.1 The probability of selecting µ1

Consider the case where µ1 > 0 is a constant, so that H1 is false. We now consider the

asymptotic behavior of the probability that H1 is selected in the first stage of the two-

stage procedure. Recall that χ2
n(1− β) denotes the 1− β quantile of χ2

n, the Chi-squared
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distribution with n degrees of freedom, i.e., P (χ2
n ≥ χ2

n(1− β)) = β. Hypothesis H1 is

selected if Sn,1 > χ2
n(1−mγ−1).

Lemma 3.1 (i) Under Assumption A, if

µ2
1 > 2(1− γ)d+ 2

√
(1− γ)d , (3)

then

lim
m→∞

Pµ1{H1 selected} = 1 .

(ii) Under Assumption A, if

µ2
1 < 2(1− γ)d+

1

4

√
(1− γ)d , (4)

then

lim
m→∞

Pµ1{H1 selected} = 0 .

In Lemma 3.1(i), if d = 0, then the condition (3) always holds, while in (ii) if d = 0

the condition (4) never holds, which implies H1 is selected with probability tending to

one.

Note that there exists a gap between the two detection thresholds in Lemma 3.1, but

we will derive an improved, exact result in Section 4.

3.2 The probability of detecting µ1

We now consider the probability that µ1 is detected at the second stage using the t-statistic

Tn,1. That is, we now analyze the probability that |Tn,1| exceeds tn−1(1− α

2|Ŝn|
), regardless

of whether or not H1 is selected at the first stage. Later, we will analyze the two stages

jointly, but for now note that if H1 is false, then it is no longer the case that the selection

statistic Sn,1 and the detection statistic Tn,1 are independent.

First, in order to understand the detection probability, we need to understand |Ŝn|, the

number of selections from the first stage (as it is random). Let Im,0 denote the indices of

true null hypotheses from 1 to m, and let Im,1 denote the indices of false null hypotheses
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from 1 to m. Let |Im,0| and |Im,1| denote the number of true and false null hypotheses,

respectively, from 1, . . . ,m.

We will assume some degree of sparsity in the sense

|Im,1| � m1−ε (5)

for some 0 < ε ≤ 1. We will even allow ε = 1, treating the “needle in the haystack”

problem, where exactly one alternative hypothesis is true.

Lemma 3.2 The number of selected hypotheses |Ŝn| satisfies

E(|Ŝn|) ≥ mγ →∞ . (6)

If we assume the sparsity condition (5), then

|Ŝn|/mγ P→ 1 , (7)

and

|Ŝn|/E(|Ŝn|)
P→ 1 . (8)

as long as ε+ γ > 1.

Lemma 3.3 Under Assumptions A and (5), we have

(i) when µ2
1 > e2γd − 1, limm→∞ Pµ1{H1 detected} = 1;

(ii) when µ2
1 < e2γd − 1, limm→∞ Pµ1{H1 detected} = 0.

Obviously, if d = 0, then Pµ1{H1 rejected} → 1 for any µ1 > 0.

3.3 Asymptotic power analysis

We now combine the two stages to determine the value of µi that leads to rejection of

Hi. Let Ai be the event that Hi is selected in the first stage and let Bi be the event that
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|Tn,i| > tn−1(1 − α

2|Ŝn|
) at the second stage. Note Ai and Bi are dependent in general.

Then, the power of the two-stage method, i.e., the probability that Hi is rejected, is

Power = Pµ1{Ai
⋂

Bi} = Pµ1{Ai} − Pµ1{Ai
⋂

Bc
i } ≥ Pµ1{Ai} − P{Bc

i } . (9)

Therefore, in order for rejection of Hi to occur with probability tending to one, it is

sufficient to show both Ai and Bi have probability tending to one. Also, we have

Power ≤ min{Pµ1{Ai}, Pµ1{Bi}} . (10)

Combining Lemma 3.3 and 3.1, the following result holds.

Theorem 3.1 Under Assumption A and (5), we have

(i) when µ2
1 > max{e2γd − 1, 2(1− γ)d+ 2

√
(1− γ)d},

lim
m→∞

Pµ1{H1 rejected} = 1 ;

(ii) when µ2
1 < max{e2γd − 1, 2(1− γ)d+ 1

4

√
(1− γ)d} ,

lim
m→∞

Pµ1{H1 rejected} = 0 .

Corollary 3.1 Under Assumption A with d = 0, for any given 0 < γ ≤ 1, (5) and any

µ1 6= 0,

lim
m→∞

Prµ1{H1 rejected} = 1.

Of course, in multiple testing problems, there are many notions of power one might

wish to maximize: the probability of rejecting at least one false null hypothesis, the prob-

ability of rejecting all false null hypotheses, the probability of rejecting at least k false null

hypotheses (for any given k), the expected number (or proportion) of rejections among

false null hypothesis, etc. Theorem 3.1 and Corollary 3.1 apply directly to the expected

proportion of false null hypotheses rejected. For example, in the setting where all false
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null hypotheses have a common mean µ1, then the expected proportion of correct rejec-

tions equals the probability that any one of them is rejected, which tends to one (or not)

based on the threshold for µ1.

4 Further improvement

In order to improve Theorem 3.1, we need to derive improved bounds on extreme Chi-

squared quantiles. (Note the slack in the bounds provided in Lemmas 9.1 and 9.2.)

Let

g(x) =
ex − 1− x

x2
, (11)

which is increasing on (0,∞). Then, define

a(c) =
[
g−1

(
2/c2

)
/c
]2
, (12)

which is decreasing in c.

Lemma 4.1 Given the value γ used in stage one for selection with βm = mγ−1, and d in

Assumption A, with d > 0, define c∗ = c∗(γ, d) to be the solution of the equation

a(c) = (1− γ)d . (13)

(i) For any c > c∗ and sufficiently large n,

χ2
n(1− βm) ≤ n+ 2 log

(
1

βm

)
+ c

√
n log

(
1

βm

)
. (14)

(i) For any c < c∗ and sufficiently large n,

χ2
n(1− βm) ≥ n+ 2 log

(
1

βm

)
+ c

√
n log

(
1

βm

)
. (15)

Based on Lemma 4.1, Lemma 3.1 can be improved as follows.
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Lemma 4.2 Under Assumption A and (5), we have

(i) when µ2
1 > 2(1− γ)d+ c∗(γ, d)

√
(1− γ)d, limm→∞ Pµ1{H1 selected} = 1.

(ii) when µ2
1 < 2(1− γ)d+ c∗(γ, d)

√
(1− γ)d, limm→∞ Pµ1{H1 selected} = 0.

Combining Lemma 4.2 and Lemma 3.3, Theorem 3.1 can be improved as follows.

Theorem 4.1 Under Assumption A and (5), we have

(i) when µ2
1 > max{e2γd − 1, 2(1− γ)d+ c∗(γ, d)

√
(1− γ)d},

lim
m→∞

Pµ1{H1 rejected} = 1 ;

(ii) when µ2
1 < max{e2γd − 1, 2(1− γ)d+ c∗(γ, d)

√
(1− γ)d},

lim
m→∞

Pµ1{H1 rejected} = 0 .

Remark 4.1 Theorem 4.1 offers an approach of determining the value of tuning param-

eter γ. By minimizing the right-hand side of the inequality in Theorem 4.1 (i) or (ii)

with respect to γ, one can determine an optimal value γ∗ of γ for each given value of d,

which maximizes probability of detecting any false null or average power asymptotically.

As seen from Figure 4.1 (left), the chosen value γ∗ of γ is decreasing in d. Note that

d = limm→∞
logm
n

, thus γ∗ is roughly increasing in n if m is fixed and decreasing in m

if n is fixed. For instance, suppose m = 20, 000 and n = 20, then d ' 0.5. By check-

ing Figure 4.1 (left), the determined value γ∗ of γ is about 0.7, which implies that about

mγ∗ = 1, 025 hypotheses are selected in the first stage for detection.

Based on the optimal value γ∗ of γ, we can determine by Theorem 4.1 the upper

bound of squared mean µ2
1 for our suggested two-stage Bonferroni procedure, which con-

stitutes a sharp detection threshold. When µ2
1 is larger than the bound, we can always

detect µ1. Similarly, we can also determine by Theorem 7.1 the detection threshold of

µ2
1 for the conventional Bonferroni procedure. Figure 4.1 (right) shows the detection

thresholds of µ2
1 for these two procedures. As seen from Figure 4.1 (right), the detection
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Figure 4.1: The optimal value (left panel) of the selection parameter γ and the corresponding
detection threshold (right panel) of squared mean µ21 in Theorem 4.1 for our proposed two-stage
Bonferroni procedure (TS Bonf.) along with the detection threshold of µ21 in Theorem 7.1 for the
conventional Bonferroni procedure (Bonf.).

thresholds of our suggested procedure are always lower than those of conventional Bon-

ferroni procedure for different values of d, and their differences are increasingly larger

with increasing d. This implies that our suggested two-stage Bonferroni procedure is

more powerful than the conventional Bonferorni procedure and its power improvement

over the Bonferroni procedure becomes increasingly larger with increasing d. Specifi-

cally, the detection threshold of our suggested procedure is almost linear in terms of d

with the slope being about 2.001 and that of the conventional Bonferroni procedure is an

exponential function of d.

5 Estimating σ

The goal of this section is to show asymptotic control of the FWER is retained when σ2
i

are the same as unknown σ2 and σ2 is estimated. To this end, let σ̂2 denote an overall

estimator of σ2 which satisfies

σ̂2 − σ2 = OP

(
1√
mn

)
; (16)
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actually, (16) can be weakened but it holds if we take the average or median of the m

sample variances computed from each of them samples. Consider the modified procedure

based on the selection set

În(u) = {i : Sn,i > σ̂2u} , (17)

where u = χ2
n(1 − β) and β = mγ−1 is the critical value used in selection when it is

known that σ = 1. The modified two-stage procedure is identical in the second stage

in that, for each i ∈ În(u), Hi is rejected if its corresponding t-statistic Tn,i exceeds the

1−α/2|În(u)| quantile of the t-distribution with n−1 degrees of freedom, where |În(u)|
denotes the number of selected hypotheses at the first stage.

Theorem 5.1 Assume Assumption A.

(i) For γ > 1/2, the above modified two-stage procedure asymptotically controls the

familywise error rate as m→∞.

(ii) For γ = 1/2 and d > 0, the above modified two-stage procedure asymptotically

controls the familywise error rate as m→∞. In fact, the same is true if

γ >
1

2

[
1− ε∗

d
+

log(1 + ε∗)

d

]
,

where

ε∗ = 2(1− γ)d+ c∗(γ, d)
√

(1− γ)d,

and c∗(γ, d) defined in (13).

Remark 5.1 The power analysis used to derive Theorems 3.1 and 4.1 applies equally

well to the above modified procedure when σ is estimated. Of course, at the second

stage, the detection probability analysis remains completely unchanged since there is no

modification in the second stage. In the first stage, the argument for selection can be used

along with the assumption (16) to yield the same results, as the argument is basically the

same.
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6 Dependence

We now extend the two-stage method when the tests are dependent. The setup is similar

to that described in Section 2. Assume we have i.i.d. observations X1, . . . , Xn, where

Xj = (X1,j, . . . , Xm,j)
′ and the m components of Xj may be dependent. As before, Xi,j

is N(µi, σ
2). (Note that it is not necessary to assume Xj is multivariate Gaussian, but just

that the one-dimensional marginal distributions are Gaussian.) We firstly discuss the case

of known σ. For convenience, we still assume σ = 1. The two-stage procedure is based

on the same selection statistic Sn,i and detection statistic Tn,i as before. The two-stage

procedure selects any Hi for which Sn,i > u and then rejects Hi if also |Tn,i| exceeds

tn−1(1− α

2|Ŝn|
), where Ŝn is the set of indices i such that Sn,i > u and |Ŝn| is the number

of selections at the first stage. Let u = χ2
n(1−mγ−1) and Ŝn,0 be the set of indices of the

selected true null hypotheses, i.e.,

Ŝn,0 = {i ∈ Im,0 : Sn,i > u}.

We make the following assumptions regarding |Im,0| and |Ŝn,0|, in which the assumption

regarding |Ŝn,0| was already shown to hold under independence in Lemma 3.2.

Assumption B1: |Im,0|
m
→ π0 as m→∞, where 0 < π0 ≤ 1 is a fixed constant.

In assumption B1, π0 = 1 corresponds to sparsity. By assumption B1, we have

E{|Ŝn,0|}
mγ

=
|Im,0|
m
→ π0 as m→∞, (18)

so one can expect the following assumption B2:

Assumption B2: |Ŝn,0|
mγ

P→ π0 as m→∞.

Based on (18), to show assumption B2, one just needs

Var

(
|Ŝn,0|
mγ

)
→ 0,

which holds under weak dependence.
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Theorem 6.1 Assume Assumptions B1 and B2. The two-stage procedure discussed in

Lemma 2.1 with u = χ2
n(1 −mγ−1) asymptotically controls the familywise error rate at

level α.

Remark 6.1 It is interesting to note that in Theorem 6.1, we do not make any assumption

of dependence on false null statistics. Only some weak dependence is imposed on true

null statistics.

Remark 6.2 By checking the whole proof of Theorem 6.1, one can see that if the follow-

ing assumption instead of B2 is imposed,

lim inf
m→∞

|Ŝn|
mγ
≥ 1 ,

Theorem 6.1 still holds.

Remark 6.3 When the selection statistics Sn,i are weakly dependent, assumption B2 is

satisfied. In the following, we present such an example of block dependence satisfying

assumption B2.

Let Ii = I(Sn,i > u) for i = 1, . . . ,m. Suppose (Ii)i∈Im,0 forming g blocks of sizes

s each, which are reformulated as (Ĩi,j)
s
j=1 for i = 1, . . . , g blocks, are independent to

each other, with |Im,0| = gs ≤ m, |Im,0|/m → π0 and s/mγ → 0 as m → ∞, where

0 < π0 ≤ 1. Note that E(Ĩi,j) = m−(1−γ). In the following, we show that assumption B2

is satisfied under such block dependence. Note that

|Ŝn,0| =
∑
i∈Im,0

Ii =

g∑
i=1

s∑
j=1

Ĩi,j .

Thus, by block independence of Ĩi,j , we have

Var(|Ŝn,0|) =

g∑
i=1

Var

(
s∑
j=1

Ĩi,j

)
≤

g∑
i=1

(
s∑
j=1

Var1/2(Ĩi,j)

)2

.
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We know that

Var(Ĩi,j) = E(Ĩi,j)
(

1− E(Ĩi,j)
)
≤ E(Ĩi,j) = m−(1−γ) .

Combining the above two inequalities,

Var(|Ŝn,0|/mγ) ≤ gs2m−(1−γ)/m2γ ≤ s/mγ → 0 as m→∞ .

Note that

E
{
|Ŝn,0|/mγ

}
→ π0 as m→∞ .

By Chebychev’s inequality, we have

|Ŝn,0|/mγ P→ π0 as m→∞ ,

and thus assumption B2 is satisfied.

When σ2
i are the same as unknown σ2 and σ2 is estimated, we consider the modified

two-stage procedure discussed in Theorem 5.1. By using similar arguments as in the

proof of Theorem 6.1, we can also show that asymptotic control of the FWER is retained

for this procedure under dependence.

For any given 0 < cn < 1 and u = χ2
n(1−mγ−1), define

Ŝn,0(cn) = {i ∈ Im,0 : Sn,i > cnσ
2u}.

Except for assumption B1, we also make the following two assumptions regarding σ̂2 and

Ŝn,0(cn):

Assumption B3: σ̂2 − σ2 = OP

(
1√
mn

)
.

Assumption B4: |Ŝn,0(1−δn)|
mγ

P→ π0 as m→∞, where δn = τn√
mn

for some τn →∞
slowly.

We should note that assumption B3 has been presented in Section 5 and assumption B4

is a slight extension of assumption B2.
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Theorem 6.2 Assume Assumptions B1, B3 and B4. The two-stage procedure discussed

in Theorem 5.1 asymptotically controls the familywise error rate at level α.

When the selection statistics Sn,i are block dependent, if the overall estimate σ̂2 is

chosen as

σ̂2 =
1

m

m∑
i=1

σ̂2
n,i ,

we can similarly show that assumptions B3 and B4 are satisfied under block dependence

by using the similar arguments as in the case of known variance where we showed in

Remark 6.3 that assumption B2 is satisfied under block dependence.

7 Alternative Methods

In this section, we perform a corresponding power analysis with some alternative meth-

ods.

7.1 Bonferroni

First, we consider the Bonferroni method, which rejects Hi if |Tn,i| > tn−1(1− α
2m

). We

consider the power or rejection probability of Hi when µi is the mean.

Theorem 7.1 Assume Assumption A. For the original Bonferroni method,

(i) when µ2
1 > e2d − 1,

lim
m→∞

Pµ1{H1 rejected} = 1 .

(ii) when µ2
1 < e2d − 1,

lim
m→∞

Pµ1{H1 rejected} = 0 .

Remark 7.1 In Theorem 7.1, if d = 0, then the stated condition in (i) always holds, which

implies H1 is rejected by the Bonferroni procedure with probability tending to one. On

the other hand, the stated condition in (ii) holds for any large µ if d is large enough, which

implies H1 is rejected with probability tending to zero.
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Remark 7.2 In the case of known variance, one can use a z-statistic with a normal quan-

tile z1− α
2m

. Similar to the proof of Theorem 7.1, it can be shown that the threshold e2d− 1

can be replaced by 2d.

7.2 Split Sample Method

A common way (Skol et al. 2006; Wasserman and Roeder 2009) to achieve a reduction

in the number of tests is to split the sample in two n = n1 + n2 independent parts.

The first part, based on n1 observations is used to determine which hypotheses will be

selected. Then, those selected hypotheses are tested based on the independent set of

n2 observations. Since the two subsamples are independent (as we have been assuming

all n observations are i.i.d.), it is easy to control the FWER. Indeed, suppose the first

subsample produces a reduced set of hypotheses with indices Ŝn, so that the number of

selected hypotheses is |Ŝn|. Then, the Bonferroni procedure applied to the remaining

n2 observations evidently controls the FWER. Specifically, for k = 1, 2, suppose T (k)
n,i

denotes the t-statistic computed on the kth subsample of size nk for testing Hi. Here, Hi

is selected if |T (1)
n,i | > u, for some cutoff u. Here, we will take u to be of the form

u = tn1−1(1−mγ−1/2)

for some 0 < γ ≤ 1. If |Ŝn| denotes the number of T (1)
n,i satisfying the inequality so that

Hi is selected, then Hi is rejected at the second stage if also

|T (2)
n,i | > tn2−1(1−

α

2|Ŝn|
) .

For any cutoff u used for selection, this procedure controls the FWER. We would like to

determine the smallest value of |µ1| where such a procedure has limiting power one.

Theorem 7.2 Assume Assumption A. Also assume n1/n → r and the sparsity condition

(5). For the above split sample method,
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(i) when µ2
1 > max

[
exp(2(1−γ)d

r
), exp( 2γd

1−r )
]
− 1,

lim
m→∞

Pµ1{H1 rejected} = 1 .

(ii) when µ2
1 < max

[
exp(2(1−γ)d

r
), exp( 2γd

1−r )
]
− 1,

lim
m→∞

Pµ1{H1 rejected} = 0 .

Remark 7.3 By Theorem 7.2, the detection threshold (or rather its square) of the split

sample method is equal to

max

[
exp(

2(1− γ)d

r
), exp(

2γd

1− r
)

]
− 1 ,

which depends on d, which we set as log(m)/n, a choice of γ, as well as the choice of r to

determine the split sample sizes. We want the threshold to be as small as possible. With

d fixed, minimizing over both γ and r requires minimizing max[(1− γ)/r, γ/(1− r)]. If

r is fixed, the optimizing choice of γ is γ = 1 − r, in which case the threshold becomes

exp(2d)− 1, which is the same as the original Bonferroni procedure. Note that there are

infinitely many optimizing combinations of r and γ as long as γ = 1− r. Regardless, no

claim can be made to an improvement over the Bonferroni procedure. (On the other hand,

we could also apply the split sample method and then apply Holm method in the second

stage, which if compared to the usual Holm method based on the full data could offer an

improvement because critical values now change more rapidly at each step.)

8 Simulation Studies

In this section, we performed two simulation studies to evaluate the performances of our

suggested two-stage Bonferroni method as a high-dimensional global testing method and

as an FWER controlling method.
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8.1 Numerical comparison for high dimensional global tests

We performed a simulation study to compare the performance of our suggested modified

two-stage Bonferroni method (See Section 5) with those of several existing global testing

methods with respect to type 1 error rate and power. The methods we chose for compari-

son include the conventional Bonferroni test, Simes test (Simes, 1986), Higher Criterion

method (Donoho and Jin, 2004, 2015), and sample-split Bonferroni test (Cox, 1975; Skol

et al, 2006).

Each simulated data set is obtained by generating m = 1000 dependent normal ran-

dom samples N(µi, σ
2)(i = 1, . . . ,m), with a common correlation ρ and a sample size

n = 15. Among the 1,000 mean values µi, 0 or m1−ε are drawn from U(−1, 1) and the

remaining are equal to 0, where 0 ≤ ε ≤ 1. The common variance σ2 is drawn from

U(0.5, 1.5). For i = 1, . . . ,m, consider using one-sample t-statistic for testing individ-

ual hypothesis Hi : µi = 0 against Ki : µi 6= 0. We then use the aforementioned five

global testing methods for testing the global hypothesis
⋂m
i=1Hi against

⋃m
i=1Ki at level

α = 0.05. For our suggested modified two-stage Bonferroni method, we use the sum

of squares as the selection statistic for performing selection of the individual hypotheses.

The selection threshold we chose is σ̂2χ2
n(1−mγ−1) in Section 5, which roughly ensures

mγ of hypotheses to be selected. For the sample-split Bonferroni test, we use one-sample

t-statistics for both selection and testing, which are respectively constructed based on the

first and second half samples. The selection threshold we chose is tn/2−1(1 − mγ−1) in

Section 7. In addition, we always set γ = 0.5 in the simulations.

The simulation is repeated for 2000 times. The type 1 error rate and power are both

estimated as the proportions of simulations where
⋂m
i=1Hi is rejected when

⋂m
i=1Hi is

respectively true and false. In Figure 8.1 we compared the estimated type 1 error rates

and powers of the aforementioned five global testing methods with respect to the com-

mon correlation. As seen from Figure 8.1, our suggested modified two-stage Bonferroni

method always controls the type 1 error rate at level α for all values of correlation while

performing best in terms of power. However, for the Higher Criterion test, it completely

loses the control of type 1 error rate even when the correlation is weak; and even though
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Figure 8.1: Estimated type 1 error rates and powers of our suggested modified two-stage Bonfer-
roni test (TS Bonf.) along with original Bonferroni test (Bonf.), Simes test (Simes), sample-split
Bonferroni test (SS Bonf.), and Higher Criterion test (HC) under equal correlation ρ with values
from 0 to 0.95 and equal variance σ2 ∼ U(0.5, 1.5). For the left and middle panels, all µi are
equal to zero and for the right panel, m1−ε µi’s are drawn from U(−1, 1) and the rest are equal to
zero. In addition, m = 1000, n = 15 and α = 0.05.

for its inflated type 1 error rate, it is still less powerful than our suggested method.

In Figure 8.2 we compared the estimated power of the aforementioned five meth-

ods under independence in the cases of equal and unequal variances with respect to ε

with values from 0.5 to 1.0. As seen from Figure 8.2, our suggested modified two-stage

Bonferroni method performs best under equal variance in terms of power and its power

improvements over the existing four methods are always pretty large for different val-

ues of ε. Under unequal variance, our suggested modified two-stage Bonferroni method

still performs well compared to the existing methods, although the power improvements

become smaller when the variability of variances becomes larger.

8.2 Numerical comparison for FWER controlling procedures

We also performed a simulation study to compare the performance of our suggested mod-

ified two-stage Bonferroni method (Section 5) with those of several existing multiple

testing methods with respect to the FWER control and average power. The methods we

chose for comparison include conventional Bonferroni procedure, Hochberg procedure,
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Figure 8.2: Estimated powers of our suggested modified two-stage Bonferroni test (TS Bonf.)
along with original Bonferroni test (Bonf.), Simes test (Simes), sample-split Bonferroni test (SS
Bonf.), and Higher Criterion test (HC) under independence in the cases of equal variance with
σ2i = σ2 ∼ U(0.5, 1.5) (left panel) and unequal variance with σ2i ∼ U(0.8, 1.2) (middle panel)
and σ2i ∼ U(0.5, 1.5) (right panel). Among all these three panels, m1−ε µi’s are drawn from
U(−1, 1) with values of ε from 0.5 to 1.0 and the rest are equal to zero. In addition, m = 1000,
n = 15 and α = 0.05.

and sample-split Bonferroni procedure (Section 7).

Each simulated data set is obtained by generatingm = 100 dependent normal random

samples N(µi, σ
2)(i = 1, . . . ,m), with a common correlation ρ and a sample size n =

15. Among the 100 µi’s, 100π1 are drawn from U(−1, 1) and the remaining are equal

to 0, where π1 is the proportion of µi 6= 0. The common variance σ2 is drawn from

U(0.5, 1.5). For all of these four procedures, we use one-sample t-test statistics for testing

the hypotheses Hi : µi = 0 against Ki : µi 6= 0. For our suggested modified two-stage

Bonferroni method, we use the sum of squares as the selection statistic for performing

selection of the tested hypotheses. The selection threshold we chose is σ̂2χ2
n(0.5), which

roughly ensures about 50 hypotheses to be selected. Here, σ̂2 is the average of the sample

variances of the m samples and χ2
n(0.5) is the 0.5 quantile of chi-square distribution with

degrees of freedom n. For the sample-split Bonferroni procedure, we use one-sample

t-statistics for performing selection of all of the 100 hypotheses, which are constructed

based on the first half sample with sample size n1 = 7. The selection threshold we chose

is tn1(0.75), the 0.75 quantile of t-distribution with degrees of freedom n1, which also

roughly ensures about 50 hypotheses to be selected. For testing the selected hypotheses,
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we also use one-sample t-statistics, which are constructed based on the second half sample

with sample size n2 = 8.

The aforementioned four procedures are then applied to test Hi against Ki simulta-

neously for i = 1, . . . , 100 at level α = 0.05. The simulation is repeated for 2000 times.

The FWER is estimated as the proportion of simulations where at least one true null hy-

pothesis is falsely rejected and the average power is estimated as the average proportion

of rejected false null hypothesis among all false nulls across simulations. In Figure 8.3 we

compared the estimated FWER and average power of these four procedures with respect

to the proportion of false null hypotheses π1 with values from 0 to 0.5 in the cases of ρ = 0

(upper panel) or ρ = 0.5 (bottom panel). As seen from Figure 8.3, our suggested modified

two-stage Bonferroni method performs best in terms of average power while controlling

the FWER at level α, and its power improvements over the existing three methods are

decreasing with the increasing proportion of false nulls.

In Figure 8.4 we compared the estimated FWER and average power of these four

procedures with respect to the common correlation ρ with values from 0 to 0.95. We

observe from Figure 8.4 that for different values of correlation ρ, our suggested modi-

fied two-stage Bonferroni method always performs best in terms of average power while

controlling the FWER at level α. In addition, we also observe that the average powers of

these methods are not affected by the correlation and the estimated FWERs are basically

decreasing in terms of the correlation.

9 Technical Details

PROOF OF LEMMA 2.1 : Assume Hi is true. Then, we claim the detection statistic

Tn,i is independent of all the selection statistics (Sn,1, . . . , Sn,m). For the univariate nor-

mal model with mean 0 and unknown variance, the t-statistic Tn,i is independent of Sn,i

by Basu’s theorem (because Tn,i is ancillary and Sn,i is a complete sufficient statistic).

Hence, Tn,i is independent of Sn,i, and therefore independent of Sn,1, . . . , Sn,m. Let I0 be
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Figure 8.3: Estimated FWER and powers of our suggested modified two-stage Bonferroni proce-
dure (TS Bonf.) along with original Bonferroni procedure (Bonf.), Hochberg procedure (Hoch.),
and sample-split Bonferroni procedure (SS Bonf.) under equal correlation ρ with ρ = 0 (upper
panel) or ρ = 0.5 (bottom panel) and equal variance σ2 ∼ U(0.5, 1.5). For the mean values µi,
π1m µi’s are equal to one and the rest are equal to zero. Here, the value of π1 is from 0 to 0.5,
m = 100, n = 15, and α = 0.05.
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Figure 8.4: Estimated FWER and powers of our suggested modified two-stage Bonferroni proce-
dure (TS Bonf.) along with original Bonferroni procedure (Bonf.), Hochberg procedure (Hoch.),
and sample-split Bonferroni procedure (SS Bonf.) under equal correlation ρ with values from 0 to
0.95 and equal variance σ2 ∼ U(0.5, 1.5). For the mean values µi, 0.2m µi’s are equal to one and
the rest are equal to zero. In addition, m = 100, n = 15 and α = 0.05.

the indices of the true null hypotheses. Thus, the FWER is given by

FWER = P

{⋃
i∈I0

{Sn,i > u, |Tn,i| > tn−1(1−
α

2|Ŝn|
)}

}
(19)

This probability, conditional on the selection statistics Sn,1, . . . , Sn,m is

P

 ⋃
i∈I0

⋂
Ŝn

{|Tn,i| > tn−1(1−
α

2|Ŝn|
)}
∣∣∣Sn,1, . . . , Sn,m

 , (20)

which by Bonferroni’s inequality is bounded above by

∑
i∈I0

⋂
Ŝn

α/|Ŝn| =
|I0
⋂
Ŝn|

|Ŝn|
· α ≤ α . (21)

Therefore, the unconditional probability is bounded above by α, as required.

PROOF OF THEOREM 2.1: As in the proof of Lemma 2.1, compute the probability of
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at least one false rejection conditional on the selection statistics. Let î be the smallest

(or first) i for which Hri is true and p̃n,ri ≤ α/(|Ŝn| − i + 1). Such an event implies

that the smallest p-value among the true null hypotheses which have been selected is

less than or equal to α/|Ŝn
⋂
I0|. Indeed, the largest possible value for î (leading to the

largest possible critical value for the first true null hypothesis tested) is given if, out of

the |Ŝn| selected hypotheses, all of the |Ŝn
⋂
Ic0| false null hypotheses are rejected first in

the stepdown procedure, where Ic0 is the set of indices of the false null hypotheses. This

occurs when î = |Ŝn
⋂
Ic0|+ 1, in which case

α

|Ŝn| − î+ 1
=

α

|Ŝn| − (|Ŝn
⋂
Ic0|+ 1) + 1

=
α

|Ŝn
⋂
I0|

.

By Bonferroni, the conditional probability is bounded above by α because it is the condi-

tional probability that the minimum of |Ŝn
⋂
I0| true null p-values is bounded above by

α/|Ŝn
⋂
I0|. Thus, the unconditional probability of FWER is bounded above by α.

Before proving Lemma 3.1, we will make use of the following lemmas.

Lemma 9.1 (Laurent and Massart, 2000). For every n ≥ 1 and every β ∈ (0, 1), we

have

χ2
n(1− β) ≤ n+ 2 log

(
1

β

)
+ 2

√
n log

(
1

β

)
.

Lemma 9.2 (Inglot, 2010). For every n ≥ 17 and every β ∈ [e−560n, 1
17

], we have

χ2
n(1− β) ≥ n+ 2 log

(
1

β

)
+

1

4

√
n log

(
1

β

)
.

PROOF OF LEMMA 3.1: To show (i), it is enough to show that Sn,1 exceeds an upper

bound to χ2
n(1− β) with probability tending to one. By Lemma 9.1 and the specification

β = mγ−1, we have:

χ2
n(1− β) ≤ n+ 2 log(1/β) + 2

√
n log(1/β)

= n+ 2(1− γ) log(m) + 2
√
n(1− γ) log(m) .
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Now, if Sn,1 is normalized to form Zn, then by the Central Limit Theorem, it follows that

Zn ≡
Sn,1 − (n+ nµ2

1)√
2n+ 4nµ2

1

d→ N(0, 1) .

Thus, it suffices to show that Zn ≥ cn with probability tending to one, where

cn =
−nµ2

1 + 2(1− γ) log(m) + 2
√
n(1− γ) log(m)√

2n+ 4nµ2
1

.

But,

cn/
√
n =

−µ2
1 + 2(1− γ) log(m)/n+ 2

√
(1− γ) log(m)/n√

2 + 4µ2
1

→
−µ2

1 + 2(1− γ)d+ 2
√

(1− γ)d√
2 + 4µ2

1

< 0 ,

by the assumption on µ1. Therefore, cn → −∞ and so Zn > cn with probability tending

to one.

To prove (ii), we argue similarly. By Lemma 9.2, when n is sufficiently large, we

have

χ2
n(1− β) ≥ n+ 2 log

(
1

β

)
+

1

4

√
n log

(
1

β

)
= n+ 2(1− γ) log(m) +

1

4

√
n(1− γ) log(m) . (22)

Therefore, it suffices to show

Sn,1 > n+ 2(1− γ) log(m) +
1

4

√
n(1− γ) log(m)

with probability tending to 0. In terms of Zn, it suffices to show Zn ≥ dn with probability

tending to 0, where

dn =
−nµ2

1 + 2(1− γ) log(m) + 1
4

√
n(1− γ) log(m)√

2n+ 4nµ2
1

.
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But

dn/
√
n→

−µ2
1 + 2(1− γ)d+ 1

4

√
(1− γ)d√

2 + 4µ2
1

> 0 .

Hence, dn →∞ and the result follows.

PROOF OF LEMMA 3.2: For i = 1, . . . ,m, let Ii = I{Sn,i ≥ χ2
n(1 − β)}, where I{·}

denotes the indicator function. Recall that the number of selected hypotheses is |Ŝn|, so

|Ŝn| =
∑m

i=1 Ii. Note that, for any true null hypothesis Hi, Sn,i ∼ χ2
n, in which case

Pr{Sn,i ≥ χ2
n(1− β)} = β ,

where

β = m′/m = m−(1−γ) .

Then, if Hi is true, E(Ii) = β and V ar(Ii) = β(1 − β). In fact, since the Chi-squared

family of distributions (with fixed degrees of freedom and varying noncentrality param-

eter) has monotone likelihood ratio, its power function is increasing in the noncentrality

parameter; thus, E(Ii) ≥ β regardless of whether or not Hi is true. So,

E(|Ŝn|) ≥ mβ = m′ = mγ →∞ ,

as stated in (6) of the lemma.

Now,

E(|Ŝn|) =
∑
i∈Im,0

E(Ii) +
∑
i∈Im,1

E(Ii) = |Im,0|β +
∑
i∈Im,1

E(Ii)

So,

β|Im,0| ≤ E(|Ŝn|) ≤ mβ + |Im,1| = mγ + |Im,1| . (23)

Thus,

E(|Ŝn|/mγ)− 1 ≤ |Im,1|/mγ = O(m1−ε−γ) = o(1) , (24)
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as long as ε+ γ > 1. Combining (24 ) and (6) yields

E(|Ŝn|/mγ)→ 1 . (25)

Using indicators again to approximate the variance of |Ŝn| yields

V ar(|Ŝn|) =
m∑
i=1

E(Ii)[1− E(Ii)] ≤ E(|Ŝn|) .

Therefore, making use of (25).

V ar(|Ŝn|/mγ) ≤ E(|Ŝn|)/m2γ = O(m−γ)→ 0 .

Thus, by Chebychev’s inequality, |Ŝn|/mγ P→ 1, yielding (7). Combining (7) and (25)

yields (8).

9.1 The probability of detecting µ1

In the second stage of the two-stage method, we need to be able to approximate the

very upper tail quantiles of the normal and t distributions. The approximation z1−α/m ≈√
2 log(m) is well-known for large m. In our application, we will apply this with random

m, and so some care must be taken to get good lower and upper bounds to the quantile.

Lemma 9.3 For any fixed α and any δ > 0, the following inequalities hold for all large

enough m: √
(1− δ)2 log(m) ≤ z1− α

m
≤
√

2 log(m) . (26)

Remark 9.1 In fact the approximations hold uniformly for α ∈ [η, 1 − η] for any η > 0

and for all large enough m.

PROOF OF LEMMA 9.3: If φ(·) denotes the standard normal density and Z ∼ N(0, 1),

then the following inequalities are well-known (see Feller (1968), Lemma 2 in Chapter

VII): for any t > 0,

(
1

t
− 1

t3
)φ(t) < P{Z ≥ t} ≤ φ(t)

t
. (27)
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It follows from the right inequality that

P{Z ≥
√

2 log(m)} ≤
φ(
√

2 log(m))√
2 log(m)

=
1

2m
√
π log(m)

< α/m

as soon as
√

log(m) > 1/(2
√
πα). Therefore, the 1− α/m quantile of the standard nor-

mal distribution must be bounded above by
√

2 log(m) as soon as
√

log(m) > 1/(2
√
πα).

The first inequality is similar.

Let Fn be the cdf of student’s twith n degrees of freedom, and Φ be the cdf ofN(0, 1).

Consider the equation Fn(x) = Φ(u) and let xn(u) be the solution of the equation. Let

Ln(u) =
√
n
(
e
u2

n − 1
) 1

2

and

Un(u) =
√
n
(
e

u2

n−0.5 − 1
) 1

2

.

We will make use of the following result.

Lemma 9.4 (Fujikoshi and Mukaihata, 1993). For all u > 0, we have

(i) xn(u) ≥ Ln(u) (n > 0);

(ii) xn(u) ≤ Un(u) (n > 0.5).

As before, let z1−α and tn−1(1 − α) denote the 1 − α quantiles of N(0, 1) and tn−1,

respectively. Then

Fn−1(tn−1(1− α)) = Φ(z1−α) = 1− α .

Lemma 9.5 Fix any 0 < α < 1 and δ > 0. Then, for all m large enough,

tn−1(1−
α

m
) ≥
√
n− 1

[
exp(

(1− δ)2 log(m)

n− 1
)− 1

]1/2
(28)

and

tn−1(1−
α

m
) ≤
√
n− 1

[
exp(

2 log(m)

n− 1.5
)− 1

]1/2
. (29)
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PROOF OF LEMMA 9.5: First, we show (29). By Lemma 9.4, we have

tn−1(1−
α

m
) ≤ Un−1(z1− α

m
) .

But since Un−1(·) is an increasing function, we can replace z1− α
m

by the upper bound√
2 log(m) provided for in Lemma 9.3, at least for all large m. This gives the bound on

the right side of (29).

Similarly, for all large m, we have

tn−1(1−
α

m
) ≥ Ln−1(z1− α

m
) ≥ Ln−1(

√
(1− δ)2 log(m)) ,

which gives the lower bound in (28).

PROOF OF LEMMA 3.3: To prove (i), detection occurs when |Tn,1| exceeds tn−1(1 −
α/2|Ŝn|), where |Ŝn| is the number of selected hypotheses from the first stage. By Lemma

3.2, |Ŝn|
P→∞, and so by Lemma 9.5,

tn−1(1− α/2|Ŝn|) ≤
√
n− 1

[
exp(

2 log(2|Ŝn|)
n− 1.5

)− 1

]1/2

with probability tending to one. Hence,

Pµ1{|Tn,1| > tn−1(1−
α

2|Ŝn|
)} = P{|

√
n(X̄n,1 − µ1)

σ̂n,1
+

√
nµ1

σ̂n,1
| > tn−1(1−

α

2|Ŝn|
)}

≥ P{|tn−1 +

√
nµ1

σ̂n,1
| >
√
n− 1

[
exp(

2 log(2|Ŝn|)
n− 1.5

)− 1

]1/2
}+ o(1) ,

where tn−1 denotes a generic random variable having the t-distribution with (n − 1)

degrees of freedom. The quantity inside the probability to the left of > divided by
√
n

tends in probability to |µ1/σ| = |µ1|, i.e.,

|tn−1√
n

+
µ1

σ̂n,1
| P→ |µ1| .
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But, using Lemma 3.2 and Assumption A, the quantity inside the probability to the right

of> divided by
√
n tends in probability to

√
exp(2γd)− 1. Hence, by Slutsky’s theorem,

the probability will tend to one if µ2
1 > exp(2γd)− 1.

Similarly, to prove (ii), with probability tending to one we have

tn−1(1− α/2|Ŝn|) ≥
√
n− 1

[
exp(

(1− δ)2 log(2|Ŝn|)
n− 1

)− 1

]1/2
.

Call the expression on the right side r̂n. Then, the detection probability can be bounded

above as

Pµ1{|Tn,1| > tn−1(1−
α

2|Ŝn|
)} ≤ P{|tn−1 +

√
nµ1

σ̂n,1
| > r̂n} .

Note that the left side inside the last probability divided by
√
n tends in probability

to to |µ1/σ| = |µ1|, while the right side, r̂n divided by
√
n tends in probability to√

exp[(1− δ)2γd]− 1. Hence, if for some γ > 0, we have

µ2
1 <

√
exp[(1− δ)2γd]− 1 , (30)

then the probability of detection tends to 0. By continuity, if µ2
1 <

√
exp(2γd)− 1, then

we can choose δ small enough so that (30) holds, and the result follows.

PROOF OF LEMMA 4.1 We first argue that for any α > 0 and n sufficiently large,

χ2
n(1− α) ≤ n+ 2 log

(
1

α

)
+ c

√
n log

(
1

α

)
, (31)

where c is a given positive constant satisfying 0 < c < 2. Along the proof of Theorem

4.1 in Inglot (2010), to prove the above inequality, it is enough to show that

n
(
c
√
v − log(1 + 2v + c

√
v)
)

+ 2 log

(
2√
n

+
2t√
n

+ c
√
t

)
+ log π ≥ 0,
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where t = log
(
1
α

)
and v = t

n
. Then, it is in turn enough to show the following inequality

when n is sufficiently large,

c
√
v > log(1 + 2v + c

√
v). (32)

But for given v, v > a(c) is equivalent to g(c
√
v) > 2/c2, which in turn implies the

inequality (32). Therefore, (31) holds if 1
n

log
(
1
α

)
> a(c), where a(c) is defined in (12).

Specifically, if α = βm = m−(1−γ), under assumption A, we have v = 1
n

log
(
1
α

)
→

(1 − γ)d. Thus, for given c ∈ (0, 2) and sufficiently large n, as (1 − γ)d > a(c), (31)

holds. Thus, as c ∈ (c∗, 2), (i) holds.

To prove (ii), the proof is similar. When n is sufficiently large, the lower bound of

χ2
n(1− α) in Lemma 9.2 can be improved as

χ2
n(1− α) ≥ n+ 2 log

(
1

α

)
+ c

√
n log

(
1

α

)
,

where c ∈ (1/4, 2).

By using the similar arguments as in the proof of Theorem 5.2 of Inglot (2010) and

wherein letting u∗ = n + 2t + c
√
nt, to prove the above inequality, it is enough to show

that

n
(
log(1 + 2v + c

√
v)− c

√
v
)
− log n− 2 log

(
2√
n

+
2t√
n

+ c
√
t

)
≥ κ,

where κ = −2 log((1− e−2)/2).

When n is sufficiently large, we only need to show that

log(1 + 2v + c
√
v) > c

√
v,

which is equivalent to v < a(c). Therefore, when n is sufficiently large, we have

χ2
n(1− α) ≥ n+ 2 log

(
1

α

)
+ c

√
n log

(
1

α

)
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if 1
n

log
(
1
α

)
< a(c).

Specifically, if α = βm, by using a similar argument as above, we have

χ2
n(1− βm) ≥ n+ 2 log

(
1

βm

)
+ c

√
n log

(
1

βm

)
(33)

for c ∈ (0, c∗(γ, d)).

Lemma 9.6 Let (C1, C2, C3) have the trinomial distribution based on n trials and corre-

sponding success probabilities (p1, p2, p3). Then,

E

(
C1

max(1, C2)

)
≤ 2 · p1

p2
. (34)

PROOF OF LEMMA 9.6: Since 1/max(1, C2) ≤ 2/(C2 + 1), it suffices to show

E

(
C1

C2 + 1

)
≤ p2
p1
. (35)

The conditional distribution of C2 given C1 is c is binomial based on t = n− c trials and

success probability θ = p2/(1− p1). Hence,

E

(
C1

C2 + 1
|C1 = c

)
= c

t∑
j=0

1

j + 1

(
t

j

)
θj(1−θ)t−j =

c

(t+ 1)θ

t∑
j=0

(
t+ 1

j + 1

)
θj+1(1−θ)t−j .

The last sum is bounded above by one because if the sum included the index j = t + 1

the sum would be the sum of binomial probabilities based on t + 1 trials with success

parameter θ. Thus,

E

(
C1

C2 + 1
|C1 = c

)
≤ c/[(n− c+ 1)θ]

and so

E

(
C1

C2 + 1

)
≤ 1

θ
E

(
C1

n− C1 + 1

)
=

1

θ

n∑
j=0

j

n− j + 1

(
n

j

)
pj1(1− p1)n−j
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=
p1

θ(1− p1)

n−1∑
i=0

(
n

i

)
pi1(1− p1)n−i ≤

p1
θ(1− p1)

=
p1
p2
.

PROOF OF THEOREM 5.1: Without loss of generality, assume σ = 1. Also note that the

FWER is maximized when all null hypotheses are true. Indeed, the number of hypotheses

selected is an increasing function of |µi|, where µi is the mean of the ith sample (since the

non-central Chi-squared distribution has monotone likelihood ratio in the non-centrality

parameter). But increasing the number of selections only makes the FWER smaller since

(stochastically) more hypotheses are tested at the second stage than just the true nulls.

Hence, we now assume all hypotheses are null.

For any τn →∞, the event En defined by

En =

{
1− τn√

mn
≤ σ̂2 ≤ 1 +

τn√
mn

}
(36)

has probability tending to one. Let δn = τn/
√
mn. For any u, let

In(u) = {i : Sn,i > u} ,

be the selection set when it is known σ = 1; in particular, we will always take u =

χ2(1−mγ−1). Then, with probability tending to one,

In(u+ δnu) ⊆ În(u) ⊆ In(u− δnu) (37)

and correspondingly the numbers of elements in these index sets satisfy

|In(u+ δnu)| ≤ |În(u)| ≤ |In(u− δnu)| . (38)

Then, using (37) and (38),

FWER = P

 ⋃
i∈În(u)

{|Tn,i| > tn−1,1− α
2max(1,|În(u)|)

}

 (39)
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≤ P

 ⋃
i∈In(u−δnu)

{|Tn,i| > tn−1,1− α
2max(1,|In(u+δnu)|)

}

+ P (Ec
n) .

The point is that, conditional on all the Sn,i, the sets In(·) are determined, and the t-

statistics then remain conditionally independent (but not so if we condition on În(u)).

Hence, by the Bonferroni inequality, the last probability, conditional on the Sn,i, is bounded

above by α|In(u − δnu)|/max(1, |In(u + δnu)|. Hence, to complete the argument, we

must show

E
|In(u− δnu)|

max(1, |In(u+ δnu)|)
→ 1 . (40)

Let C1 be the number of Sn,i in (u − δnu, u + δnu) and C2 be the number ≥ u + δnu.

Then, (40) reduces to showing

E

(
C1 + C2

max(1, C2)

)
→ 1

or equivalently

E

(
C1

max(1, C2)

)
→ 0 .

By Lemma 9.6, this last expression is bounded above by 2p1/p2, and so we must show

p1/p2 → 0, where
p1
p2

=
P{Sn,i ∈ (u− δnu, u+ δnu)}

P{Sn,i > u+ δnu}
. (41)

But, the denominator in (41) satisfies

P{Sn,i > u+ δnu} ≥ P{Sn,i > u} − P{Sn,i ∈ (u− δnu, u+ δnu)}

and so it suffices to show

P{Sn,i ∈ (u− δnu, u+ δnu)}
P{Sn,i > u}

→ 0 . (42)

The denominator in (41) is, by construction, β = mγ−1. The numerator involves an

integration over fn(·), the Chi-squared density with n degrees of freedom. The mode of

fn(·) is n− 2. So, the integral can crudely be bounded above by fn(n− 2), the density at
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the mode, multiplied by the length of the interval (2δnu). But,

fn(n− 2) =
1

2
n
2 Γ(n

2
)
(n− 2)

n
2
−1e−

1
2
(n−2) ,

which by Stirling’s formula is easily checked to be of order n−1/2. Hence, the left side of

(41) is bounded above by
2δnu · 1√

n

mγ−1 .

Recalling that δn = τn/
√
nm and u = O(n) shows the last expression is of order τnm

1
2
−γ .

For γ > 1/2 and τn →∞ slowly enough, this last expression tends to 0 as required.

For d > 0, one can improve the argument as follows. Note that the Chi-squared

density is decreasing to the right of its mode. Rather than using fn(n − 2), one can use

fn(x) with x corresponding to (or approximating) the point in the interval u± δnu closest

to n− 2, i.e., u− δnu. Note that

u/n→ 1 + 2(1− γ)d+ c∗(γ, d)
√

(1− γ)d > 1 + ε (43)

for some ε > 0; thus, u − δnu ≥ (1 + ε)n for all large n. Thus, we can bound the

numerator in (42) by the length of the interval, 2δnu multiple by the density at the value

n(1 + ε) of the Chi-squared distribution with n degrees of freedom. But, the Chi-squared

density evaluated at n(1 + ε) is equal to

1

2
n
2 Γ(n

2
)
[n(1 + ε)]

n
2
−1e−

1
2
n(1+ε)

which by Stirlings formula is of order

e−nε/2(1 + ε)n/2√
n

.

Hence, the expression (42) is bounded above by order

2δnu · 1√
n
e−nε/2(1 + ε)n/2

mγ−1 .
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Recalling that δn = τn/
√
nm and u = O(n) shows the last expression is of order

τnm
1
2
−γe−nε/2(1 + ε)n/2 . (44)

Now, even for γ = 1/2, this last expression (44) tends to 0 for τn → ∞ sufficiently

slowly, since e−nε/2(1 + ε)n/2 → 0.

Note (44) is equal to

τn exp[(
1

2
− γ) log(m)− nε

2
+
n

2
log(1 + ε)]

= τn exp{n[(
1

2
− γ)d− ε

2
+

1

2
log(1 + ε)] + o(1)}

Hence, this last expression will tend to 0 (with τn →∞ sufficiently slowly) if

(
1

2
− γ)d− ε

2
+

1

2
log(1 + ε) < 0 . (45)

But by (43), we can take any ε satisfying

ε < 2(1− γ)d+ c∗(γ, d)
√

(1− γ)d . (46)

Therefore, if we let ε∗ be the right side of (46), then the result will follow for any γ

satisfying (45) with ε replaced by ε∗, as claimed.

PROOF OF THEOREM 6.1: For every 0 < ε < π0, let En,1 denote the event {|Ŝn,0| ≥
(π0 − ε)mγ}. Under assumption B2, we have

P (Ec
n,1)→ 0 as m→∞. (47)
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Thus, the FWER is given by

FWER = P

 ⋃
i∈Im,0

{Sn,i > u, |Tn,i| > tn−1(1−
α

2|Ŝn|
)}


≤ P

 ⋃
i∈Im,0

{Sn,i > u, |Tn,i| > tn−1(1−
α

2|Ŝn|
)}
⋂

En,1

+ P
{
Ec
n,1

}
≤

∑
i∈Im,0

P {Sn,i > u}P
{
|Tn,i| > tn−1(1−

α

2(π0 − ε)mγ
)

}
+ P

{
Ec
n,1

}
=

α

(π0 − ε)mγ
E{|Ŝn,0|}+ P

{
Ec
n,1

}
→ π0α

π0 − ε
as m→∞,

→ α as ε→ 0.

Here, the second inequality follows from independence of Sn,i and Tn,i when Hi is true,

and the second last expression follows from (18) and (47).

PROOF OF THEOREM 6.2: Let δn = τn√
mn

for some τn → ∞ slowly such that under

assumption B3, the event En,1 defined by En,1 = {σ̂2 ≥ (1 − δn)σ2} has probability

tending to one. For any 0 < ε < π0, let En,2 denote the event {|Ŝn,0(1 − δn)| ≥ (π0 −
ε)mγ}. Under assumption B4, the event En,2 has also probability tending to one. Thus,

lim
m→∞

P (Ec
n,1) = 0 and lim

m→∞
P (Ec

n,2) = 0 . (48)
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We still use Ŝn to denote the indices of selected hypotheses, i.e., indices i such that Sn,i >

σ̂2u. Thus, the FWER is given by

FWER = P

 ⋃
i∈Im,0

{Sn,i > σ̂2u, |Tn,i| > tn−1(1−
α

2|Ŝn|
)}


≤ P

 ⋃
i∈Im,0

{Sn,i > σ̂2u, |Tn,i| > tn−1(1−
α

2|Ŝn|
)}
⋂

En,1
⋂

En,2


+ P

{
Ec
n,1

⋃
Ec
n,2

}
≤

∑
i∈Im,0

P
{
Sn,i > (1− δn)σ2u

}
P

{
|Tn,i| > tn−1(1−

α

2(π0 − ε)mγ
)

}
+ P

{
Ec
n,1

}
+ P

{
Ec
n,2

}
=

α

(π0 − ε)mγ
E{|Ŝn,0(1− δn)|}+ P

{
Ec
n,1

}
+ P

{
Ec
n,2

}
→ π0α

π0 − ε
as m→∞,

→ α as ε→ 0.

Here, the second inequality follows from independence of Sn,i and Tn,i under Hi and the

Bonferroni inequality, and the second last expression follows from (48), assumption B1,

and the proof of Theorem 5.1, in which it has been shown that

P {Sn,i > (1− δn)σ2u}
P {Sn,i > σ2u}

→ 1 as m→∞ ,

which in turn implies

E{|Ŝn,0(1− δn)|}
mγ

→ π0 as m→∞ .

PROOF OF THEOREM 7.1: The rejection probability is

Pµ1{|Tn,i| > tn−1(1−
α

2m
)} = P{|tn−1 +

√
nµ1

σ̂n,1
| > tn−1(1−

α

2m
)} , (49)

44



where tn−1 denotes a generic random variable having the t-distribution with n−1 degrees

of freedom. But,
|tn−1 +

√
nµ1
σ̂n,1
|

√
n

P→ |µ1| .

Moreover, by Lemma 9.5,

tn−1(1− α
2m

)
√
n

→
[
e2d − 1

]1/2
.

Hence, the limit of the rejection probability in (49) equals one or zero according to

whether or not µ2
1 exceeds e2d − 1.

PROOF OF THEOREM 7.2: We first show that Hi is selected with probability 1 (or 0) if

µ2
i exceeds (or is less than) exp(2(1−γ)d

r
)− 1. This is the probability

Pµi{|T
(1)
n,i > tn1−1(1−mγ−1/2)} =

P{|tn1−1 +

√
n1µi

σ̂
(1)
n,i

| > tn1−1(1−mγ−1/2)} ,

where tn1−1 denotes a random variable having the t-distribution with n1 − 1 degrees of

freedom, and σ̂(1)
n,i is the sample standard deviation for the ith component based on the

first n1 observations. But,
|tn1−1 +

√
n1µi

σ̂
(1)
n,i

|
√
n1

P→ µ1

and, by Lemma 9.5,

tn1−1(1−mγ−1/2)
√
n1

→ exp(
2(1− γ)d

r
)− 1 ,

and the first claim follows.

The detection analysis is the same as for Lemma 3.3, except that the number of se-

lections |Ŝn| is obtained differently. All that is needed is that |Ŝn|/mγ P→ 1. But the

identical argument used to show this in Lemma 3.2 applies as well. Thus, using the same

argument in Lemma 3.3, but with n replaced by n2 ≈ (1 − r)n gives that Hi is detected
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or not according to as whether µ2
i is greater or less than exp( 2γd

1−r ) − 1. Combining this

result with the first claim completes the proof.
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