
Biometrika (2012), xx, x, pp. 1–23

C⃝ 2007 Biometrika Trust

Printed in Great Britain

Adaptive Controls of FWER and FDR Under Block

Dependence

BY WENGE GUO

New Jersey Institute of Technology, Newark, NJ 07102, USA

wenge.guo@njit.edu

AND SANAT K. SARKAR

Temple University, Philadelphia, PA 19122, USA

sanat@temple.edu

SUMMARY

Often in multiple testing, the hypotheses appear in non-overlapping, equal sized blocks with

the associated p-values exhibiting dependence within but not between blocks. We consider adapt-

ing the Bonferroni method for controlling the familywise error rate (FWER) and the Benjamini-

Hochberg method for controlling the false discovery rate (FDR) to such dependence structure

without losing their ultimate controls over the FWER and FDR, respectively, in a non-asymptotic

setting. We present variants of conventional adaptive Bonferroni and Benjamini-Hochberg meth-

ods with proofs of their respective controls over the FWER and FDR. Numerical evidence is

presented to show that these new adaptive methods can capture the present dependence structure

more effectively than the corresponding conventional adaptive methods. This paper offers a so-

lution to the open problem of constructing adaptive FWER and FDR controlling methods under

dependence in a non-asymptotic setting and providing real improvements over the corresponding

non-adaptive ones.
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1. INTRODUCTION

In many multiple hypothesis testing problems arising in modern scientific investigations, the

hypotheses appear in non-overlapping, equal-sized blocks. Such block formation is often a nat-

ural phenomenon due to the underlying experimental process or can be created based on other

considerations. For instance, the hypotheses corresponding to (i) the different time-points in a

microarray time-course experiment (Guo, Sarkar and Peddada, 2010; Sun and Wei, 2011) for

each gene; or (ii) the phenotypes (or the genetic models) with (or using) which each marker is

tested in a genome-wide association study (Lei et al., 2006); or (iii) the conditions (or subjects)

considered for each voxel in brain imaging (Heller et al. 2007), naturally form a block. While ap-

plying multiple testing in astronomical transient source detection from nightly telescopic image

consisting of large number of pixels (each corresponding to a hypotheses), Clements, Sarkar and

Guo (2011) considered grouping the pixels into blocks of equal size based on telescope ‘point

spread function.’

A special type of dependence, which we call block dependence, is the relevant dependence

structure that one should take into account while constructing multiple testing procedures in

presence of such blocks. This dependence can be simply described by saying that the hypotheses

or the corresponding p-values are mostly dependent within but not between blocks. Also known

as the clumpy dependence (Storey, 2003), this has been considered mainly in simulation studies

to investigate how multiple testing procedures proposed under independence continue to perform

under it (Benjamini, Krieger and Yekutieli, 2006; Finner, Dickhaus, and Roters, 2007; Sarkar,

Guo and Finner, 2012, and Storey, Taylor and Siegmund, 2004), not in offering FWER or FDR

controlling procedures precisely utilizing it. In this article, we focus on constructing procedures

controlling the familywise error rate (FWER) and the false discovery rate (FDR) that incorporate

the block dependence in a non-asymptotic setting in an attempt to improve the corresponding

procedures that ignore this structure. More specifically, we consider the Bonferroni method for

the FWER control and the Benjamini-Hochberg (BH, 1995) method for the FDR control and
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adapt them to the data in two ways - incorporating the block dependence and estimating the

number of true null hypotheses capturing such dependence.

Adapting to unknown number of true nulls has been a popular way to improve the FWER and

FDR controls of the Bonferroni and BH methods, respectively. However, construction of such

adaptive methods with proven control of the ultimate FWER or FDR in a non-asymptotic setting

and providing real improvements under dependence is an open problem (Benjamini, Krieger and

Yekutieli, 2006; Blanchard and Roquaine, 2009). We offer some solutions to this open problem

in this paper under a commonly encountered type of dependence, the block dependence.

2. PRELIMINARIES

Suppose that Hij , i = 1, . . . , g; j = 1, . . . , s, are the n = gs null hypotheses appearing in g

blocks or groups of size s each that are to be simultaneously tested based on their respective

p-values Pij , i = 1, . . . , g; j = 1, . . . , s. Let n0 of these null hypotheses be true, which for nota-

tional convenience will often be identified by P̂ij’s. We assume that P̂ij ∼ U(0, 1) and make the

following assumption regarding dependence of Pij’s:

ASSUMPTION 1. (Block Dependence) The p-value row vectors (Pi1, . . . , Pis), i = 1, . . . , g,

forming the g blocks of size s each, are independent to each other.

Under this assumption, the null p-values are independent between but not within blocks. Regard-

ing dependence within blocks, our assumption will depend on whether we want to control the

FWER or the FDR. More specifically, we develop methods controlling the FWER under arbi-

trary dependence and the FDR under positive dependence of the p-values within each block. The

positive dependence condition, when assumed for each i, will be of the type characterized by the

following:

E
{
ϕ(Pi1, . . . , Pis) | P̂ij ≤ u

}
↑ u ∈ (0, 1), (1)
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for each P̂ij and any (coordinatewise) non-decreasing function ϕ. This type of positive depen-

dence is commonly encountered and used in multiple testing; see, for instance, Sarkar (2008) for

references.

We will be using two types of multiple testing procedure in this paper - stepup and single-

step. Let (Pi,Hi), i = 1, . . . , n, be the pairs of p-value and the corresponding null hypothesis,

and P(1) ≤ · · · ≤ P(n) be the ordered p-values. Given a set of critical constants 0 ≤ α1 ≤ · · · ≤

αn ≤ 1, a stepup test rejects Hi for all i such that Pi ≤ P(R), where R = max{1 ≤ i ≤ n :

P(i) ≤ αi}, provided this maximum exists, otherwise, it accepts all the null hypotheses. A single-

step test rejects Hi if Pi ≤ c for some constant c ∈ (0, 1).

Let V be the number of falsely rejected among all the R rejected null hypotheses in a multiple

testing procedure. Then, the FWER and FDR of this procedure are defined respectively by FWER

= pr(V ≥ 1) and FDR = E(V/max{R, 1}).

3. ESTIMATING n0 UNDER BLOCK DEPENDENCE

Let P = ((Pij)) denote the matrix of p-values and H = ((Hij)), where Hij = 0 or 1 accord-

ing to it is true or false. We consider estimating n0 =
∑g

i=1

∑s
j=1 I(Hij = 0) using an estimate

n̂0(P) satisfying the following property while constructing our adaptive methods in the follow-

ing sections:

PROPERTY 1. n̂0(P) is non-decreasing in each Pij , and

g∑
i=1

s∑
j=1

I(Hij = 0)EDU

{
1

n̂0(P(−i),0)

}
≤ 1, (2)

where P(−i) is the (g − 1)× s sub-matrix of P obtained by deleting its ith row, n̂0(P
(−i),0)

is obtained from n̂0(P) by replacing the entries in the ith row of P by zeros, and EDU is the

expectation under the Dirac-uniform configuration of P(−i), that is, when the p-values in P(−i)

that correspond to the false null hypotheses are set to 0 and each of the remaining p-values are

considered to be uniformly distributed on [0,1].
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The following two results provide examples of estimate of n0 satisfying Property 1 under

Assumption 1.

RESULT 1. Consider the estimate

n̂
(1)
0 =

n−R(λ) + s

1− λ
, (3)

for any (2g + 3)
− 2

g+2 ≤ λ < 1, where R(λ) =
∑g

i=1

∑s
j=1 I(Pij ≤ λ) is the number of p-

values in P not exceeding λ. It satisfies Property 1 under Assumption 1.

RESULT 2. Consider the estimate

n̂
(2)
0 =

s[(g − k)s+ 1]

1− Pks:gs
,

for any 1 ≤ k ≤ g, where Pks:gs is the (ks)th ordered among all the n = gs p-values in P. It

satisfies Property 1 under Assumption 1.

REMARK 1. When s = 1, the estimates n̂(1)
0 and n̂

(2)
0 reduce to the ones considered in the con-

texts of adaptive FDR control (Benjamini, Krieger and Yekutieli, 2006; Blanchard and Roquain,

2009; Sarkar, 2008 and Storey, Taylor and Siegmund, 2004) and adaptive FWER control (Finner

and Gontscharuk; 2009, Guo, 2009 and Sarkar, Guo and Finner, 2012). Of course, Result 1 holds

for any λ ∈ (0, 1) when s = 1. For notational convenience, we use n̂
(0)
0 to denote Storey et al.’s

estimate, i.e.,

n̂
(0)
0 =

n−R(λ) + 1

1− λ
.

REMARK 2. Although the estimate n̂
(2)
0 has been theoretically proved to satisfy Property 1

under Assumption 1, our numerical results (not shown here) illustrate that n̂(2)
0 is very conser-

vative as an estimate of n0. Therefore, in this paper, we concentrate on the estimate n̂
(1)
0 and

propose new adaptive multiple testing methods mainly based on n̂
(1)
0 .

To prove Result 1, we use the following lemmas, with proofs given or outlined in Appendix:
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LEMMA 1. Given a p× q matrix A = ((aij)), where aij = 0 or 1 and
∑p

i=1

∑q
j=1 aij = m,

the entries of A can be always rearranged to form a new matrix B = ((bij)) in such a way that,

for each j = 1, . . . , q, the entries in the jth column of B are the entries of A in different rows,∑p
i=1 bij = ⌊mq ⌋ or ⌊mq ⌋+ 1, and

∑p
i=1

∑q
j=1 bij = m.

LEMMA 2. For any set of positive real numbers a1, . . . , am, the following inequality holds:

1∑m
i=1 ai

≤ 1

m2

m∑
i=1

1

ai
.

LEMMA 3. If X ∼ Bin(n, π), then

E

(
1

X + 1

)
=

1− (1− π)n+1

(n+ 1)π
.

LEMMA 4. The function f(x) = (2x+ 3)−
2

x+2 is increasing in x ≥ 1 and f(x) ≤ f(1) for

all 0 ≤ x ≤ 1.

Proof of Result 1. First, consider the expectation

EDU

{
1

n̂
(1)
0 (P(−i),0)

}
,

in terms of P(−i). Let H(−i) be the sub-matrix of H corresponding to P(−i). Since this ex-

pectation remains unchanged under the type of rearrangements considered in Lemma 1 for

H(−i), we can assume without any loss of generality that the number of true null p-values

in the jth column of P(−i) is n
(−i)
0j = ⌊n0−mi

s ⌋ or ⌊n0−mi
s ⌋+ 1 for each j = 1, . . . , s, where

mi =
∑s

j=1 I(Hij = 0).

Let Ŵ (−i)
j (λ) =

∑g

i
′
( ̸=i)=1

I(Hi′j = 0, Pi′j > λ), for j = 1, . . . , s. Under Assumption 1 and

the Dirac-uniform configuration of P(−i), Ŵ (−i)
j (λ) ∼ Bin(n

(−i)
0j , 1− λ). So, we have

EDU

{
1

n̂
(1)
0 (P(−i),0)

}
= E

 1− λ∑s
j=1

[
Ŵ

(−i)
j (λ) + 1

]


≤ 1

s2

s∑
j=1

E

{
1− λ

Ŵ
(−i)
j (λ) + 1

}
=

1

s2

s∑
j=1

1− λn
(−i)
0j +1

n
(−i)
0j + 1

, (4)
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with the first inequality following from Lemma 2 and the second equality following from Lemma

3.

Let n0 −mi = (ai + βi)s, for some non-negative integer ai and 0 ≤ βi < 1. Note that

ais ≤ n0 ≤ (ai + βi + 1)s. (5)

Also, (1− βi) proportion of the s values n(−i)
0j , j = 1, . . . , s, are all equal to ai and the remaining

βi proportion are all equal to ai + 1. So, the right-hand side of (4) is equal to

1

s

[
1− βi
ai + 1

(
1− λai+1

)
+

βi
ai + 2

(
1− λai+2

)]
≤ 1

s

[
1− βi
ai + 1

+
βi

ai + 2

] (
1− λai+2

)
=

(ai + 2− βi)(1− λai+2)

s(ai + 1)(ai + 2)
≤ (ai + 1 + βi)(ai + 2− βi)(1− λai+2)

n0(ai + 1)(ai + 2)

=
1

n0

[
1 +

βi(1− βi)

(ai + 1)(ai + 2)

] (
1− λai+2

)
≤ 1

n0

[
1 +

1

4(ai + 1)(ai + 2)

] (
1− λai+2

)
.

The desired inequality (2) then holds for this estimate if[
1 +

1

4(ai + 1)(ai + 2)

] (
1− λai+2

)
≤ 1,

which is true if and only if

λ ≥ [1 + 4(ai + 1)(ai + 2)]
− 1

ai+2 = (2ai + 3)
− 2

ai+2 . (6)

Let f(ai) = (2ai + 3)
− 2

ai+2 . As seen from (5), ai ≤ n0/s ≤ g, thus, the inequality f(g) ≥ f(ai)

holds for all ai ≥ 0, since f(g) ≥ f(ai) if ai ≥ 1 and f(g) ≥ f(1) ≥ f(ai) if 0 ≤ ai ≤ 1, due

to Lemma 4. So, the inequality (6) holds if λ ≥ (2g + 3)−2/(g+2). This proves the result.

Result 2 can be proved with the help of the following lemma, a proof of which again will be

outlined in Appendix:

LEMMA 5. Given a set of numbers a1, . . . , am, consider their ordered values −∞ ≤ a1:m ≤

· · · ≤ am:m. The following inequality holds: ar:m ≥ ar−l:m−l for all r, l ≤ m, where ar−l:m−l is
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the (r − l)th ordered component in any subset of size m− l of a1, . . . , am, and ar−l:m−l = −∞

if r − l ≤ 0.

Proof of Result 2. As in proving Result 1, we can assume without any loss of generality that

the number of true null p-values in the jth column of P(−i) is n(−i)
0j = ⌊n0−mi

s ⌋ or ⌊n0−mi
s ⌋+ 1,

for each j = 1, . . . , s.

Let P (−i)
(k−1)s:(g−1)s be the [(k − 1)s]th ordered p-value among those in P(−i). Then,

EDU

{
1

n̂
(2)
0 (P(−i),0)

}
=

1

s
EDU

1− P
(−i)
(k−1)s:(g−1)s

(g − k)s+ 1

 . (7)

Now, let P
(−ij)
k−1:g−1 denote the (k − 1)th ordered p-value among those in jth column of

P(−i). Apply Lemma 5 with m = (g − 1)s, r = (k − 1)s, and l = (g − 1)(s− 1) to see that

P
(−i)
(k−1)s:(g−1)s ≥ P

(−ij)

k̃−1:g−1
, with k̃ − 1 = (k − 1)s− (g − 1)(s− 1), i.e., k̃ = g − (g − k)s, for

each j = 1, . . . , s. Thus, noting that (g − k)s+ 1 = g − k̃ + 1, we have

EDU

{
1− P

(−i)
(k−1)s:(g−1)s

}
≤ min

1≤j≤s
EDU

{
1− P

(−ij)

k̃−1:g−1

}
= min

1≤j≤s
min

{
1,

g − k̃ + 1

n
(−i)
0j + 1

}

≤ min
1≤j≤s

{
g − k̃ + 1

n
(−i)
0j + 1

}
. (8)

The equality follows from the fact that EDU

{
1− P

(−ij)

k̃−1:g−1

}
= g−k̃+1

n
(−i)
0j +1

if n(−i)
0j > g − k̃ and

= 1, otherwise.

As in proving Result 1, let n0 −mi = (ai + βi)s, for some non-negative integer ai and 0 ≤

βi < 1. Then, since n
(−i)
0j = ai or = ai + 1 for each j = 1, . . . , s, n(−i)

0j = ai + 1 as βi > 0 for

at least one j = 1, . . . , s, and n0 ≤ (ai + βi + 1)s ≤ (ai + 1)s+ sI(βi > 0), we note that

1

s
min
1≤j≤s

{
g − k̃ + 1

n
(−i)
0j + 1

}
=

g − k̃ + 1

(ai + 1)s+ sI(βi > 0)
≤ g − k̃ + 1

n0
. (9)

From (7)-(9), we finally get

EDU

{
1

n̂
(2)
0 (P(−i),0)

}
≤ 1,
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the desired result.

4. ADAPTIVE FWER CONTROL UNDER BLOCK DEPENDENCE

Our proposed method is based on the idea of adapting the Bonferroni method to the block

dependence structure with ultimate control of the FWER in a non-asymptotic setting. Given an

estimate n̂0 of n0 obtained from the available p-values, the Bonferroni method can be adapted to

the data through n̂0 by rejecting Hij if Pij ≤ α/n̂0; see, for instance, Finner and Gontscharuk

(2009). Our method is such an adaptive version of the Bonferroni method, but based on the

estimate of n0 introduced above that captures the block dependence.

DEFINITION 1. (Adaptive Bonferroni under block dependence)

1. Define an estimate n̂0(P) satisfying Property 1.

2. Reject Hij if Pij ≤ α/n̂0(P).

THEOREM 1. Consider the block dependence structure in which the p-values within each

block are arbitrarily dependent. The FWER of the above adaptive Bonferroni method is strongly

controlled at α under such block dependence.

Proof. The FWER of this method is given by

FWER = pr


g∪

i=1

s∪
j=1

(
Pij ≤

αI(Hij = 0)

n̂0(P)

) ≤
g∑

i=1

s∑
j=1

pr

{
Pij ≤

αI(Hij = 0)

n̂0(P)

}

≤
g∑

i=1

s∑
j=1

pr

{
Pij ≤

αI(Hij = 0)

n̂0(P(−i),0)

}
≤ α

g∑
i=1

s∑
j=1

EDU

{
I(Hij = 0)

n̂0(P(−i),0)

}
≤ α. (10)

In (10), the first inequality follows from the Bonferroni inequality, the second and third follow

from the non-decreasing property of n̂0 and that P̂ij ∼ U(0, 1) and the assumption of block

dependence, and the fourth follows from condition (2) satisfied by n̂0. Thus, the desired result is

proved.
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COROLLARY 1. The adaptive Bonferroni methods of the above type based on the estimates

n̂
(1)
0 and n̂

(2)
0 strongly control the FWER at α under the block dependence considered in Theorem

1.

5. ADAPTIVE FDR CONTROL UNDER BLOCK DEPENDENCE

Our proposed method in this section is based on the idea of adapting the BH method to the

block dependence structure without losing the ultimate control over the FDR in a non-asymptotic

setting. This adaptation is done in two steps. First, we adjust the BH method to the block depen-

dence structure and then develop its oracle version given the number of true nulls. Second, we

consider the data-adaptive version of this oracle method by estimating n0 using our estimate that

also captures the block dependence.

Towards adjusting the BH method to the block structure, we note that it is natural to first iden-

tify blocks that are significant by applying the BH method to simultaneously test the intersection

null hypotheses H̃i =
∩s

j=1Hij , i = 1, . . . , g, based on some block specific p-values, and then

go back to each significant block to see which hypotheses in that block are significant. Let P̃i,

i = 1, . . . , g, be the block p-values obtained by combining the p-values in each block through a

combination function. Regarding the choice of this combination function, we note that the com-

bination test for H̃i based on P̃i must allow simultaneous testing of the individual hypotheses

Hij , j = 1, . . . , s, with a strong control of the FWER. This limits our choice to the Bonferroni

adjusted minimum p-value; see also Guo, Sarkar and Peddada (2010). With these in mind, we

consider adjusting the BH method as follows:

• Choose P̃i = smin1≤j≤s Pij as the ith block p-value, for i = 1, . . . , g.

• Order the block p-values as P̃(1) ≤ · · · ≤ P̃(g), and find B = max{1 ≤ i ≤ g : P̃(i) ≤

iα/g}.

• Reject Hij for all (i, j) such that P̃i ≤ P̃(B) and sPij ≤ Bα/g, provided the above maxi-

mum exists, otherwise, accept all the null hypotheses.
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The number of false rejections in this adjusted BH method is given by

V =

g∑
i=1

s∑
j=1

I(Hij = 0, Pij ≤ Bα/n).

So, with R as the total number of rejections, the FDR of this method under block dependence is

FDR =

g∑
i=1

s∑
j=1

I(Hij = 0)E

(
I(Pij ≤ Bα/n)

max{R, 1}

)

≤
g∑

i=1

s∑
j=1

I(Hij = 0)E

(
I(Pij ≤ Bα/n)

max{B, 1}

)
, (11)

since R ≥ B. For each (i, j),

I(Pij ≤ Bα/n)

max{B, 1}
=

g∑
b=1

I(Pij ≤ bα/n,B(−i) = b− 1)

b
, (12)

where B(−i) is the number of significant blocks detected by the adjusted BH method based on

{P̃1, . . . , P̃g} \ {P̃i}, the g − 1 block p-values other than the P̃i, and the critical values iα/g,

i = 2, . . . , g. Taking expectation in (12) under the block dependence and applying it to (11), we

see that

FDR ≤ α

n

g∑
i=1

s∑
j=1

I(Hij = 0)

g∑
b=1

pr(B(−i) = b− 1) = α/n

g∑
i=1

s∑
j=1

I(Hij = 0)

= n0α/n.

If n0 were known, the FDR control of the adjusted BH method could be made tighter, from

n0α/n to α, by incorporating n0 into it as follows: Let g0 = n0/s, replace g by g0 to redefine

B as B0 = max{1 ≤ i ≤ g : P̃(i) ≤ iα/g0}, reject Hij for all (i, j) such that P̃i ≤ P̃(B0) and

sPij ≤ B0α/g0, provided this maximum exists, otherwise, accept all the null hypotheses. This is

the oracle form of the adjusted BH method, which motivates us to present our proposed adaptive

BH method in the following:
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DEFINITION 2. (Adaptive BH under block dependence)

1. Consider an estimate n̂0(P) satisfying Property 1, and define ĝ0 = n̂0/s.

2. Find B∗ = max{1 ≤ i ≤ g : P̃(i) ≤ iα/ĝ0}.

3. Reject Hij for all (i, j) such that P̃i ≤ P̃(B∗) and sPij ≤ B∗α/ĝ0, provided the maximum

in Step 2 exists, otherwise, accept all the null hypotheses.

THEOREM 2. Consider the block dependence structure in which the p-values are positively

dependent as in (1) within each block. The FDR of the above adaptive BH is strongly controlled

at α under such block dependence.

Proof. Proceeding as in finding the FDR of the adjusted BH method, we first have

FDR ≤
g∑

i=1

s∑
j=1

I(Hij = 0)

g∑
b=1

pr(Pij ≤ bα/n̂0(P), B∗(−i) = b− 1)

b
, (13)

where B∗(−i) is the number of significant blocks detected by the BH method based on the g − 1

block p-values {P̃1, . . . , P̃g} \ {P̃i} and the critical values iα/ĝ0, i = 2, . . . , g. For each (i, j),

1

b
I(Hij = 0)

g∑
b=1

pr
(
Pij ≤ bα/n̂0(P), B∗(−i) = b− 1

)
≤ 1

b
I(Hij = 0)

g∑
b=1

pr
(
Pij ≤ bα/n̂0(P

(−i),0), B∗(−i) = b− 1
)

≤ αE

{
I(Hij = 0)

n̂0(P(−i),0)

g∑
b=1

pr
(
B∗(−i) = b− 1 | Pij ≤ bα/n̂0(P

(−i),0),P(−i)
)}

. (14)

Now,

g∑
b=1

pr
(
B∗(−i) = b− 1 | Pij ≤ bα/n̂0(P

(−i),0),P(−i)
)

=

g∑
b=1

pr
(
B∗(−i) ≥ b− 1 | Pij ≤ bα/n̂0(P

(−i),0),P(−i)
)
−

g−1∑
b=1

pr
(
B∗(−i) ≥ b | Pij ≤ bα/n̂0(P

(−i),0),P(−i)
)
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≤
g∑

b=1

pr
(
B∗(−i) ≥ b− 1 | Pij ≤ bα/n̂0(P

(−i),0),P(−i)
)
−

g−1∑
b=1

pr
(
B∗(−i) ≥ b | Pij ≤ (b+ 1)α/n̂0(P

(−i),0),P(−i)
)

= pr
(
B∗(−i) ≥ 0 | Pij ≤ α/n̂0(P

(−i),0),P(−i)
)
= 1. (15)

The inequality in (15) holds since (Pi1, . . . , Pis) is independent of P(−i) and I(B∗(−i) ≥ b) is

decreasing in Pij’s, the conditional probability

pr
(
B∗(−i) ≥ b | Pij ≤ bα/n̂0(P

(−i),0),P(−i)
)

is of the form E {ϕ (Pi1, . . . , Pis) | Pij ≤ bu}, for some decreasing function ϕ and constant

u > 0, and hence is decreasing in b due to the positive dependence condition assumed in the

theorem.

From (13)-(15), we finally get

FDR ≤ α

g∑
i=1

s∑
j=1

E

{
I(Hij = 0)

n̂0(P(−i),0)

}
≤ α, (16)

which proves the desired result.

COROLLARY 2. The adaptive BH method of the above type based on the estimates n̂(1)
0 and

n̂
(2)
0 strongly control the FDR at α under the block dependence considered in Theorem 2.

REMARK 3. Blanchard and Roquain (2009) first presented an adaptive BH method that con-

tinues to control the FDR under the same dependence assumption of the p-values as made for the

original BH method. Their idea is to estimate n0 independently through an FWER controlling

method before incorporating that into the original BH method. While this adaptive BH method

would be applicable to our present context, it does not capture the group structure of the data.

Moreover, their simulation studies only show an improvement of their adaptive BH method over

the original BH method in very limited situations. Hu, Zhao and Zhou (2010) considered ad-

justing the BH method in presence of group structure by weighting the p-values according to
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the relative importance of each group before proposing its adaptive version by estimating these

weights. We should emphasize that this version of the adaptive BH method is known to control

the FDR only in an asymptotic setting and under weak dependence.

6. SIMULATION STUDIES

We performed simulation studies to investigate the following questions:

Q1. How does the newly suggested adaptive Bonferroni method under block dependence based

on the estimate n̂
(1)
0 perform in terms of the FWER control and power with respect to the

block size s, the parameter λ, and the strength of dependence among the p-values compared

to the original Bonferroni method and the existing adaptive Bonferroni method based on the

estimate n̂
(0)
0 ?

Q2. How does the newly suggested adaptive BH method under block dependence based on the

estimate n̂
(1)
0 perform in terms of the FDR control and power with respect to the block size s,

the parameter λ, and the strength of dependence among the p-values compared to the original

BH method and the existing adaptive BH method based on the estimate n̂
(0)
0 ?

Two types of dependence, block and total, were considered for the p-values and simulated

using multivariate normal test statistics. For block dependence, a covariance matrix providing g

independent groups of size s each and having a common non-negative correlation ρ within each

group was used; whereas, for total dependence, a compound symmetric covariance matrix with

a common non-negative correlation ρ was used.

Figures 1 and 2 answer Q1, while Figures 3 and 4 answer Q2. More specifically, Figures

1 and 3 answer Q1 and Q2, respectively, in terms of the group size and the strength of block

or total dependence among the p-values, and Figure 2 (or 4) presents the performance of the

new adaptive Bonferroni (or BH) method in terms of the FWER (or FDR) control under block

(or total) dependence relative to the existing adaptive Bonferroni (or BH) method for different

values of λ and strengths of block (or total) dependence among the p-values. The reason we
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Fig. 1. Simulated FWER and (average) power, the expected proportion of false nulls that are rejected, for each
of the three multiple testing methods – the original Bonferroni method (Bonf.) and the two adaptive Bonferroni
methods (adBon1, based on n̂

(0)
0 ; adBon2, based on n̂

(1)
0 ) with λ = 0.5. These were obtained by (i) generating

n = 100 dependent normal random variables N(µi, 1), i = 1, . . . , n, grouped into g = 50, 25 or 10 groups
each of size s = 2, 4 or 10, respectively, with a block dependent (the first two rows) or compound symmetric
(the last two rows) covariance matrix, and half of the µi’s in each group being equal to 0 while the rest being
equal to d =

√
10; (ii) applying each method to the generated data to test Hi : µi = 0 against Ki : µi ̸= 0

simultaneously for i = 1, . . . , 100, at level α = 0.05., and (iii) repeating steps (i) and (ii) 2, 000 times. [Bonf
– solid; adBon1 – dot-dashes; adBon2 – long dashes]

do not present in Figure 2 (or 4) the results for the total (or block) dependence case is that our

simulation studies did not show remarkable difference of the FWERs (or FDRs) between the two

adaptive Bonferroni (or BH) methods in that case.

The following are the observations:

From Figure 1: Under block dependence, when the group size is small, both adaptive Bonfer-

roni methods control the FWER when the ρ within each block is close to either zero or one but

become liberal, although slightly, when this ρ gets away from zero and one. However, when the

group size is relatively large, the new adaptive Bonferroni method maintains a control over the

FWER whatever be the ρ, whereas the existing adaptive Bonferroni method can still lose control

over the FWER for some values of ρ. When the p-values are totally dependent with a unform

pairwise dependence, the FWER of the new adaptive method becomes smaller with increasing
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Fig. 2. Simulated FWERs of the original Bonferroni (Bonf) and the two adaptive Bonferroni methods (adBon1,
based on n̂

(0)
0 ; adBon2, based on n̂

(1)
0 ) with λ = 0.3, 0.5, 0.7 or 0.9. These were obtained by (i) generating

n = 120 block dependent p-values from standardized normal test statistics with n0 = 40 (row 1) or 80 (row 2),
grouped into g = 40 groups, with one µi in each group being equal to 0 while the rest being equal to d =

√
10

when n0 = 40, and two µi’s in each group being equal to 0 while the rest being equal to d =
√
10 when n0 =

80; (ii) applying each method to the generated data to test Hi : µi = 0 against Ki : µi ̸= 0 simultaneously for
i = 1, . . . , 120, at level α = 0.05, and (iii) repeating steps (i) and (ii) 2, 000 times.. [Bonf – solid; adBon1 –

dot-dashes; adBon2 – long dashes.]

group size, whereas the FWER of the existing adaptive Bonferroni method almost remains un-

changed. When the group size is small or moderate, these two adaptive methods both lose control

of the FWER except when ρ is close to zero or one; however, when s is large, the new adaptive

method regains control of the FWER, but the existing method still loses control of the FWER.

So, considering the power performances of the two adaptive Bonferroni methods along with their

FWER control, it is clear that the new method is a better choice as an adaptive version of the Bon-

ferroni method under block dependence than the existing one, particularly when the group size

is relatively large. It controls the FWER with reasonable power irrespective of the strength of

dependence, not only under block dependence but also when there is a total dependence among

all the p-values.

From Figure 2: When the value of λ is small, the FWERs of both adaptive Bonferroni methods

slightly exceed α except when ρ is close to one. However, when λ is chosen to be relatively large,

the FWER of the new adaptive method is controlled at α with increasing ρ, whereas the existing

adaptive Bonferroni method still loses control of the FWER. With larger proportion of true nulls,
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Fig. 3. Simulated FDR and (average) power, the expected proportion of false nulls that are rejected, for each of
the three multiple testing methods – the original Benjamini-Hochberg (BH) and the two adaptive BH methods
(adBH1, based on n̂

(0)
0 ; adBH2, based on n̂

(1)
0 ) with λ = 0.5. These were obtained by (i) generating n = 240

dependent normal random variables N(µi, 1), i = 1, . . . , n, grouped into g = 120, 80 or 60 groups with a
block dependent (the first two rows) or compound symmetric (the last two rows) covariance matrix, half of
the µi’s in each group being equal to 0 while the rest being equal to d =

√
10 when s = 2 or 4, one µi being

equal to 0 while the rest being equal to d =
√
10 in each of the first 40 groups, and two µi’s being equal to

0 while the rest being equal to d =
√
10 in each of the remaining 40 groups, when s = 3; (ii) applying each

method to the generated data to test Hi : µi = 0 against Ki : µi ̸= 0 simultaneously for i = 1, . . . , 100, at
level α = 0.05, and (iii) repeating steps (i) and (ii) 2, 000 times. [BH – solid; adBH1 – dot-dashes; adBH2 –

long dashes.]

the FWERs of both adaptive methods become larger, but the new adaptive method keeps its

FWER controlled at α with a large λ.

From Figure 3: Under block dependence, the simulated FDRs and average powers for the two

adaptive BH methods remain unchanged with increasing ρ. For different s and ρ, both these

adaptive BH methods seem to be more powerful FDR controlling methods than the conventional

BH method. However, while the two adaptive BH methods are equally powerful when s is small,

the new adaptive method seems to become less powerful with increasing s. When the p-values

are totally dependent with a uniform pairwise dependence, the FDR of the new adaptive BH

method becomes smaller and gets controlled over a wider range of values of ρ with increasing

s; however, the existing adaptive BH method seems to always lose control over the FDR for
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Fig. 4. Simulated FDRs of the original Benjamini-Hochberg (BH) and the two adaptive BH methods (adBH1,
based on n̂

(0)
0 ; adBH2, based on n̂

(1)
0 ) with λ = 0.3, 0.5, 0.7 or 0.9. These were obtained by (i) generating

n = 250 dependent p-values from dependent standardized normal test statistics with a compound symmetric
covariance matrix grouped into g = 50 groups, with n0 = 125 (row 1) or 200 (row 2), two µi’s being equal to
0 and the rest being equal to d =

√
10 in each of the first 25 groups, while three µi’s being equal to 0 and the

rest being equal to d =
√
10 in each of the remaining 25 groups, when n0 = 125; four µi’s in each group being

equal to 0 and the rest being equal to d =
√
10 when n0 = 200; (ii) applying each method to the generated

data to test Hi : µi = 0 against Ki : µi ̸= 0 simultaneously for i = 1, . . . , 250, at level α = 0.05, and (iii)
repeating steps (i) and (ii) 2, 000 times.[Bonf – solid; adBon1 – dot-dashes; adBon2 – long dashes.]

any positive values of ρ. Considering the power performances of the two adaptive BH methods

along with their FDR control, it seems that the new method is a better choice as an adaptive

version of the BH method under block dependence than the existing one. It controls the FDR

with reasonable power irrespective of the strength of dependence under block dependence and

for a wider range of values for the pairwise dependence under total dependence.

From Figure 4: With small proportions of true nulls, the FDR of the new adaptive BH method

seems to be controlled at α either when the value of λ is very large or when ρ is small or moderate

and λ is not so large. However, the existing adaptive BH method always loses control of the FDR

for any chosen value of λ when ρ is not close to zero. With larger proportion of true nulls,

although the FDRs of these two adaptive methods become larger, when λ is chosen to be very

large, the FDR of the new adaptive BH method is controlled at α for small and moderate ρ and

is only slightly larger than α for large ρ, and when λ is chosen to be not so large, the FDR of the
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new adaptive method is pretty close to that of the existing adaptive BH method and is less than

α only for small ρ.

7. CONCLUDING REMARKS

Construction of adaptive multiple testing methods with proven control of the ultimate FWER

or FDR under dependence in a non-asymptotic setting is an open problem. In this paper, we

offered a solution to this open problem under a commonly encountered type of dependence, the

block dependence. We have developed new adaptive Bonferroni and BH methods with proven

FWER and FDR control, respectively, under the assumption of block dependence, with numeri-

cal evidence that they often provide real improvements over the conventional Bonferroni and BH

methods.

There is, however, a scope of doing further investigations. For instance, in our simulation

studies, we evaluated the performances of our suggested adaptive Bonferroni and BH methods

under certain types of positive dependence. It might be interesting to provide some insight into

the performances of these adaptive methods under other dependence settings. Figure 5 provides

a few numerical results on the FWER control for the adaptive Bonferroni method in the setting

of block dependence where the test statistics in each group is negatively dependent. We see from

this figure that in this setting of negative block dependence, the simulated FWER of our newly

suggested adaptive Bonferroni method is controlled at α for different values of λ, such as 0.5, 0.7

and 0.9. Figure 5 also reveals that there is no need to impose any restriction on the choice of λ

for the adaptive Bonferroni method under such setting and even the existing adaptive Bonfer-

roni method based on Storey et al’s estimate can control the FWER at α under negative block

dependence. It would be interesting to see if this numerical finding can be justified theoretically.

In this paper, we assume that all block sizes are the same in the setting of block dependence.

However, in some real applications, the block sizes might be different. To exploit the general

block dependence capturing such dependency, it seems that our proposed estimate n̂
(1)
0 of n0

needs to be generalized. Based on such generalized estimate n̂
(1)
0 , we should be able to develop
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Fig. 5. Simulated FWERs of original Bonferroni and two adaptive Bonferroni methods based on the estimates
n̂
(0)
0 and n̂

(1)
0 (Bonf – solid; adBon1 – dot-dashes; adBon2 – long dashes) applied to block dependent p-values

generated from 100 standardized normal test statistics with negative equicorrelation ρ within each block and
n0 = 50, d =

√
10, s = 2, λ = 0.5, 0.7, or 0.9.

adaptive Bonferroni and BH methods for controlling the FWER and FDR, respectively, in the set-

ting of general block dependence. It would be interesting to see if the techniques and approaches

we have developed in this paper can be applied to this general setting.

It is interesting to note that if each block of null hypotheses is interpreted as a family of

null hypotheses, then the problem of multiple testing under block dependence is equivalent to

a problem of simultaneously testing multiple families of hypotheses for controlling the FWER

or FDR over all hypotheses together. Such problem is often seen in large scale data analysis in

modern scientific investigations, such as DNA microarray and fMRI studies. When the paper is

close to be finished, Professor Benjamini brought to our attention that their recent Arxiv preprint,

Benjamini and Bogomolov (2011), just discussed the problem of testing multiple families of hy-

potheses. However, their objective is to control an average error rate over the selected families

including average FWER and FDR rather than the overall FWER and FDR. It would be interest-

ing to investigate the connection between our theory and methods and those in the above paper.

We are going to do that in a different communication.
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APPENDIX

Proof of Lemma 1. Let s = (s1, . . . , sq) be the column sum vector of A, that is, sj =∑p
i=1 aij , j = 1, . . . , q, and

∑q
j=1 sj = m. Without any loss of generality, we can assume that

s1 ≥ . . . ≥ sq. Consider a given column sum vector s∗ = (s∗1, . . . , s
∗
q) satisfying s∗1 ≥ . . . ≥ s∗q ,

where s∗j = ⌊mq ⌋ or ⌊mq ⌋+ 1 for j = 1, . . . , q, and
∑q

j=1 s
∗
j = m.

We prove that s∗ is majorized by s; that is, for each k = 1, . . . , q,

q∑
j=k

s∗j ≥
q∑

j=k

sj . (17)

Suppose the inequality (17) does not hold for some k = 1, . . . , q, and k1 = max{k :
∑q

j=k s
∗
j <∑q

j=k sj}. Since sk1 > s∗k1 , for each j = 1, . . . , k1 − 1, sj ≥ sk1 ≥ s∗k1 + 1 ≥ ⌊mq ⌋+ 1 ≥ s∗j ,

implying that

q∑
j=1

sj =

k1−1∑
j=1

sj +

q∑
j=k1

sj >

k1−1∑
j=1

s∗j +

q∑
j=k1

s∗j = m,

which is a contradiction. So, s∗ is majorized by s.

By Theorem 2.1 of Ryser (1957), one can rearrange the 1’s in the rows of A to construct a

p× q matrix which has the column sum vector s∗. Thus, the desired result follows.

Outlines of proofs of Lemmas 2-5. Lemma 2 follows from the well-known inequality between

the arithmetic and harmonic means, or using the Jensen inequality. For Lemma 3, one can see

Liu and Sarkar (2010). Lemma 5 can be proved by successively using the fact ar:m ≥ ar−1:m−1

for all r ≤ m.

To prove Lemma 4, let g(x) = ln f(x) = − 2
x+2 ln(2x+ 3). Note that g′(x) = 2 ln(2x+

3)− 4x+8
2x+3 and g′′(x) = 4

2x+3 + 4
(2x+3)2

> 0 for x ≥ 0. Thus, g(x) is a convex function for

x ≥ 0. Observe that g′(0) < 0, g′(1) > 0, and g(0) < g(1). So, g′(x) > 0 for x ≥ 1 and g(x) ≤

max{g(0), g(1)} = g(1) for 0 ≤ x ≤ 1. Thus, the desired result follows.
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