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Abstract

Often in multiple testing, the hypotheses appear in non-overlapping blocks

with the associated p-values exhibiting dependence within but not between

blocks. We consider adapting the Benjamini-Hochberg method for controlling

the false discovery rate (FDR) and the Bonferroni method for controlling the

familywise error rate (FWER) to such dependence structure without losing

their ultimate controls over the FDR and FWER, respectively, in a non-

asymptotic setting. We present variants of conventional adaptive Benjamini-

Hochberg and Bonferroni methods with proofs of their respective controls

over the FDR and FWER. Numerical evidence is presented to show that

these new adaptive methods can capture the present dependence structure

more effectively than the corresponding conventional adaptive methods. This

paper offers a solution to the open problem of constructing adaptive FDR and
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FWER controlling methods under dependence in a non-asymptotic setting

and providing real improvements over the corresponding non-adaptive ones.

KEY WORDS: Adaptive Benjamini-Hochberg method, adaptive Bonferroni method,

false discovery rate, familywise error rate, multiple testing.

1 Introduction

In many multiple hypothesis testing problems arising in modern scientific investi-

gations, the hypotheses appear in non-overlapping blocks. Such block formation is

often a natural phenomenon due to the underlying experimental process or can be

created based on other considerations. For instance, the hypotheses corresponding

to (i) the different time-points in a microarray time-course experiment (Guo, Sarkar

and Peddada, 2010; Sun and Wei, 2011) for each gene; or (ii) the phenotypes (or

the genetic models) with (or using) which each marker is tested in a genome-wide

association study (Lei et al., 2006); or (iii) the conditions (or subjects) considered

for each voxel in brain imaging (Heller et al. 2007), naturally form a block. While

applying multiple testing in astronomical transient source detection from nightly

telescopic image consisting of large number of pixels (each corresponding to a hy-

potheses), Clements, Sarkar and Guo (2012) considered grouping the pixels into

blocks of equal size based on telescope ‘point spread function.’

A special type of dependence, which we call block dependence, is the relevant

dependence structure that one should take into account while constructing multi-

ple testing procedures in presence of such blocks. This dependence can be simply

described by saying that the hypotheses or the corresponding p-values are mostly

dependent within but not between blocks. Also known as the clumpy dependence

(Storey, 2003), this has been considered mainly in simulation studies to investigate

how multiple testing procedures proposed under independence continue to perform

under it (Benjamini, Krieger and Yekutieli, 2006; Finner, Dickhaus, and Roters,

2007; Sarkar, Guo and Finner, 2012, and Storey, Taylor and Siegmund, 2004), not

in offering FDR or FWER controlling procedures precisely utilizing it. In this arti-

cle, we focus on constructing procedures controlling the FDR and the FWER that

incorporate the block dependence in a non-asymptotic setting in an attempt to im-
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prove the corresponding procedures that ignore this structure. More specifically,

we consider the Benjamini-Hochberg (BH, 1995) method for the FDR control and

the Bonferroni method for the FWER control and adapt them to the data in two

ways - incorporating the block dependence and estimating the number of true null

hypotheses capturing such dependence.

Adapting to unknown number of true nulls has been a popular way to improve

the FDR and FWER controls of the BH and Bonferroni methods, respectively.

However, construction of such adaptive methods with proven control of the ultimate

FDR or FWER in a non-asymptotic setting and providing real improvements under

dependence is an open problem (Benjamini, Krieger and Yekutieli, 2006; Blanchard

and Roquaine, 2009). We offer some solutions to this open problem in this paper

under a commonly encountered type of dependence, the block dependence.

2 Preliminaries

Suppose that Hij, i = 1, . . . , b; j = 1, . . . , si, are the n =
∑b

i=1 si null hypotheses

appearing in b blocks of size si for the ith block that are to be simultaneously tested

based on their respective p-values Pij, i = 1, . . . , b; j = 1, . . . , si. Let n0 of these

null hypotheses be true, which for notational convenience will often be identified by

P̂ij’s. We assume that P̂ij ∼ U(0, 1) and make the following assumption regarding

dependence of Pij’s:

Assumption 1. (Block Dependence) The rows of p-values (Pi1, . . . , Pisi), i =

1, . . . , b, forming the b blocks are independent of each other.

Under this assumption, the null p-values are independent between but not within

blocks. Regarding dependence within blocks, our assumption will depend on whether

we want to control the FDR or FWER. More specifically, we develop methods

adapting to this block dependence structure and controlling the FDR under pos-

itive dependence of the p-values within each block or the FWER under arbitrary

dependence of the p-values within each block. The positive dependence condition,

when assumed for each i, will be of the type characterized by the following:

E
{
φi(Pi1, . . . , Pisi) | P̂ij ≤ u

}
↑ u ∈ (0, 1), (1)
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for each P̂ij and any (coordinatewise) non-decreasing function φi. This type of

positive dependence is commonly encountered and used in multiple testing; see, for

instance, Sarkar (2008) for references. We will sometimes refer to block dependence

more specifically as positive block dependence in case when this dependence defined

by (1) in each block or as arbitrary block dependence in case of any dependence

within each block, to avoid any apparent double meaning.

We will be using two types of multiple testing procedure in this paper - stepup

and single-step. Let (Pi, Hi), i = 1, . . . , n, be the pairs of p-value and the corre-

sponding null hypothesis, and P(1) ≤ · · · ≤ P(n) be the ordered p-values. Given a set

of critical constants 0 ≤ α1 ≤ · · · ≤ αn ≤ 1, a stepup test rejects Hi for all i such

that Pi ≤ P(R), where R = max{1 ≤ i ≤ n : P(i) ≤ αi}, provided this maximum

exists, otherwise, it accepts all the null hypotheses. A single-step test rejects Hi if

Pi ≤ c for some constant c ∈ (0, 1).

Let V be the number of falsely rejected among all the R rejected null hypotheses

in a multiple testing procedure. Then, the FDR or FWER of this procedure, defined

respectively by FDR = E(V/max{R, 1}) or FWER = pr(V ≥ 1), is said to be

controlled at level α, strongly unless stated otherwise, if it is bounded above by

α. That is, for for any configuration of true and false null hypotheses, the FDR or

FWER of this procedure is less than or equal to α.

The BH method controlling the FDR at level α is a stepup test with the critical

constants αi = iα/n; whereas, the Bonferroni method controlling the FWER at

level α is a single-step test with the critical constant α/n.

3 Adaptive FDR control under block dependence

The method we propose in this section is based on the idea of adapting the BH

method to the block dependence structure without losing the ultimate control over

the FDR in a non-asymptotic setting. Our adaptation is done in two steps. First,

we adjust it to the block dependence structure and then develop its oracle version

given the number of true nulls. Second, we consider the data-adaptive version of

this oracle method by estimating n0 using an estimate that also captures the block
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dependence.

Towards adjusting the BH method to the block structure, we note that it is

natural to first identify blocks that are significant by applying the BH method to

simultaneously test the intersection null hypotheses H̃i =
⋂si

j=1Hij, i = 1, . . . , b,

based on some block specific p-values, and then go back to each significant block

to see which hypotheses in that block are significant. Let P̃i, i = 1, . . . , b, be

the block p-values obtained by combining the p-values in each block through a

combination function. Regarding the choice of this combination function, we note

that the combination test for H̃i based on P̃i must allow simultaneous testing of the

individual hypotheses Hij, j = 1, . . . , si, with a strong control of the FWER. This

limits our choice to the Bonferroni adjusted minimum p-value; see also Guo, Sarkar

and Peddada (2010). With these in mind, we consider adjusting the BH method as

follows:

Definition 1 (Two-stage BH under block dependence)

1. Choose P̃i = s̄min1≤j≤si Pij as the ith block p-value, for i = 1, . . . , b, with

s̄ = 1
b

∑b
i=1 si = n/b being the average block size.

2. Order the block p-values as P̃(1) ≤ · · · ≤ P̃(b), and find B = max{1 ≤ i ≤
b : P̃(i) ≤ iα/b}.

3. Reject Hij for all (i, j) such that P̃i ≤ P̃(B) and Pij ≤ Bα/n, provided the

above maximum exists, otherwise, accept all the null hypotheses.

The number of false rejections in this two-stage BH method is given by

V =
b∑

i=1

si∑
j=1

I(Hij = 0, Pij ≤ Bα/n),

where Hij = 0 or 1 according to whether it is true or false. So, with R as the total

number of rejections, the FDR of this method under block dependence is

FDR =
b∑

i=1

si∑
j=1

I(Hij = 0)E

(
I(Pij ≤ Bα/n)

max{R, 1}

)

≤
b∑

i=1

si∑
j=1

I(Hij = 0)E

(
I(Pij ≤ Bα/n)

max{B, 1}

)
, (2)
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since R ≥ B. For each (i, j),

I(Pij ≤ Bα/n)

max{B, 1}
=

b∑
k=1

I(Pij ≤ kα/n,B(−i) = k − 1)

k
, (3)

where B(−i) is the number of significant blocks detected by the adjusted BH method

based on {P̃1, . . . , P̃b}\{P̃i}, the b−1 block p-values other than the P̃i, and the critical

values iα/b, i = 2, . . . , b. Taking expectation in (3) under the block dependence and

applying it to (2), we see that

FDR ≤ α

n

b∑
i=1

si∑
j=1

I(Hij = 0)
b∑

k=1

pr(B(−i) = k − 1)

=
α

n

b∑
i=1

si∑
j=1

I(Hij = 0) = π0α, (4)

where π0 = n0/n. Thus, we have the following result holds:

Result 1. The above defined two-stage BH method strongly controls the FDR

at α under Assumption 1 of arbitrary block dependence.

If n0, and hence π0, were known, the FDR control of this two-stage BH method

could be made tighter, from π0α to α, by shrinking each p-value from Pij to π0Pij.

This would be the oracle form of the adjusted BH method. Since π0 is unknown,

one would consider using π̂0 to estimate π0 from the available p-values and then use

the estimate π̂0 to define the so-called shrunken or adaptive p-values Qij = π̂0Pij to

be used in place of the original p-values in the adjusted BH method. This will be

our proposed adaptive BH method.

For estimating n0 capturing the block dependence structure before defining the

adaptive p-values, we consider using an estimate of the form n̂0(P) that satisfies

the following property. In this property, P = ((Pij)) denotes the set of p-values and

H = ((Hij)).

Property 1. Let n̂0(P) be a non-decreasing function of each Pij such that

b∑
i=1

si∑
j=1

I(Hij = 0)EDU

{
1

n̂0(P(−i),0)

}
≤ 1, (5)
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where P(−i) is the subset of p-values obtained by deleting the ith row, n̂0(P
(−i),0) is

obtained from n̂0(P) by replacing the entries in the ith row of P by zeros, and EDU

is the expectation under the Dirac-uniform configuration of P(−i), that is, when the

p-values in P(−i) that correspond to the false null hypotheses are set to 0 and each

of the remaining p-values are considered to be uniformly distributed on [0,1].

We are now ready to define our proposed adaptive BH method in the following:

Definition 2 (Adaptive BH under block dependence)

1. Consider an estimate n̂0(P) satisfying Property 1 and define the adaptive

p-values Qij = π̂0Pij using π̂0 = n̂0/n.

2. Find B∗ = max{1 ≤ i ≤ b : Q̃(i) ≤ iα/b}, where Q̃(i) = π̂0P̃(i).

3. Reject Hij for all (i, j) such that Q̃i ≤ Q̃(B∗) and Qij ≤ B∗α/n, provided

the maximum in Step 2 exists, otherwise, accept all the null hypotheses.

Theorem 1 Consider the block dependence structure in which the p-values are pos-

itively dependent as in (1) within each block. The FDR of the above adaptive BH

method is controlled at α under such positive block dependence.

A proof of this theorem will be given in Appendix.

What is exactly an estimate satisfying Property 1 that one can use in this

adaptive BH? The following result, which is again going to be proved in Appendix,

provides an answer to this question.

Result 2. Consider the estimate

n̂
(1)
0 =

n−R(λ) + smax

1− λ
, (6)

for any (2b+ 3)−
2

b+2 ≤ λ < 1, where smax = max1≤i≤b si and R(λ) =
∑b

i=1

∑si
j=1 I(Pij ≤

λ) is the number of p-values in P not exceeding λ. It satisfies Property 1 under As-

sumption 1.

Based on Theorem 1 and Result 2, we have the following result.

Result 3. The adaptive BH method of the above type based on the estimates

n̂
(1)
0 with (2b+ 3)−

2
b+2 ≤ λ < 1 strongly controls the FDR at α under the positive

block dependence considered in Theorem 1.
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Remark 1 When smax = 1, the estimate n̂
(1)
0 reduces to

n̂
(0)
0 =

n−R(λ) + 1

1− λ
,

the Storey at al.’s (2004) estimate, considered in the context of adaptive FDR control

(by Benjamini, Krieger and Yekutieli, 2006; Blanchard and Roquain, 2009; Sarkar,

2008 and Storey, Taylor and Siegmund, 2004) without any block structure. Of

course, Result 1 holds for any λ ∈ (0, 1) when smax = 1. Also, in this case, we

are basically assuming that the p-values are independent. Thus, as a special case,

Result 3 provides the following known result available in the aforementioned papers:

Note 1. The adaptive BH method in Definition 2 based on the estimate n̂
(0)
0

controls the FDR at α under independence of the p-values.

Remark 2 Blanchard and Roquain (2009) presented an adaptive BH method that

continues to control the FDR under the same dependence assumption of the p-values

as made for the original BH method. Their idea is to estimate n0 independently

through an FWER controlling method before incorporating that into the original BH

method. While this adaptive BH method would be applicable to our present context,

it does not capture the group structure of the data. Moreover, their simulation

studies only show an improvement of their adaptive BH method over the original BH

method in very limited situations. Hu, Zhao and Zhou (2010) considered adjusting

the BH method in presence of group structure by weighting the p-values according

to the relative importance of each group before proposing its adaptive version by

estimating these weights. However, this version of the adaptive BH method is known

to control the FDR only in an asymptotic setting and under weak dependence.

4 Adaptive FWER control under block depen-

dence

Our proposed method here is based on the idea of adapting the Bonferroni method

to the block dependence structure with ultimate control of the FWER in a non-

asymptotic setting. Given an estimate n̂0 of n0 obtained from the available p-values,

the Bonferroni method can be adapted to the data through n̂0 by rejecting Hij if
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Pij ≤ α/n̂0; see, for instance, Finner and Gontscharuk (2009) and Guo (2009). Our

method is such an adaptive version of the Bonferroni method, but based on an

estimate of n0 satisfying Property 1 that captures the block dependence.

Definition 3 (Adaptive Bonferroni under block dependence)

1. Define an estimate n̂0(P) satisfying Property 1.

2. Reject Hij if Pij ≤ α/n̂0(P).

Theorem 2 Consider the block dependence structure in which the p-values within

each block are arbitrarily dependent. The FWER of the above adaptive Bonferroni

method is controlled at α under such arbitrary block dependence.

This will be proved in Appendix. Based on Theorem 2 and Result 2, we have

the following result.

Result 4. The adaptive Bonferroni method of the above type based on the

estimates n̂
(1)
0 with (2b+ 3)−

2
b+2 ≤ λ < 1 strongly controls the FWER at α under

the arbitrary block dependence considered in Theorem 2.

Remark 3 Similar to what we have said in Remark 1 on adaptive FDR control,

the Storey at al.’s (2004) estimate n̂
(0)
0 corresponding to the case smax = 1 was also

considered in the context of adaptive FWER control (by Finner and Gontscharuk,

2009, Guo, 2009, and Sarkar, Guo and Finner, 2012), of course without any block

structure. Thus, as a special case of Result 4, we get the following result derived in

these papers:

Note 2. The adaptive Bonferroni method in Definition 3 based on the estimate

n̂
(0)
0 controls the FWER at α under independence of the p-values.

5 Simulation studies

We performed simulation studies to investigate the following questions:

Q1. How does the newly suggested adaptive BH method based on the estimate n̂
(1)
0

perform in terms of the FDR control and power with respect to the block size s,

the parameter λ, and the strength of dependence among the p-values compared
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to the original BH method and the two existing adaptive BH methods in Storey

et al. (2004) and Benjamini et al. (2006)?

Q2. How does the newly suggested adaptive Bonferroni method based on the es-

timate n̂
(1)
0 perform in terms of the FWER control and power with respect to

the block size s, the parameter λ, and the strength of dependence among the

p-values compared to the original Bonferroni method and the existing adaptive

Bonferroni method based on the estimate n̂
(0)
0 ?

To simulate the values of FDR (or FWER) and average power, the expected

proportion of false nulls that are rejected, for each of the methods referred to in Q1

and Q2, we first generated n block dependent normal random variables N(µi, 1), i =

1, . . . , n, with n0 of the µi’s being equal to 0 and the rest being equal to d =
√

10,

and a correlation matrix Γ = In
s
⊗ [(1− ρ)Is + ρ1s1

′
s] with the block size s and non-

negative correlation coefficient ρ within each block. We then applied each method

to the generated data to test Hi : µi = 0 against Ki : µi 6= 0 simultaneously for

i = 1, . . . , n, at level α = 0.05. We repeated the above two steps 2, 000 times.

In the simulations on adaptive BH methods, we set n = 240, n0 = 120, s = 2, 3, 4,

or 6 and λ = 0.2, 0.5, or 0.8. Thus, n = 240 block dependent normal random

variables N(µi, 1), i = 1, . . . , n, are generated and grouped into b = 120, 80, 60, or

40 blocks. When s = 2, 4, or 6, half of the µi’s in each block are 0 while the rest

are d =
√

10. When s = 3, one µi is 0 while the rest are d =
√

10 in each of

the first 40 blocks, and two µi’s are 0 while the rest are d =
√

10 in each of the

remaining 40 blocks. Similarly, in the simulations on adaptive Bonferroni methods,

we set n = 100, n0 = 50, s = 2, 4, 10, or 20, and λ = 0.2, 0.5, or 0.8. Thus, n = 100

block dependent normal random variables N(µi, 1), i = 1, . . . , n, are generated and

grouped into b = 50, 25, 10, or 5 blocks, with half of the µi’s in each block being 0

while the rest d =
√

10.

The following are the observations from the above simulations:

From Figure 1 and 2: The simulated FDRs and average powers for the three

adaptive BH methods remain unchanged with increasing ρ for different values of s

and λ. For small s and different λ, all these three adaptive BH methods seem to

be more powerful than the conventional BH method. However, when s is large, the
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Figure 1: Simulated FDRs of the four multiple testing methods – the original BH

and the three adaptive BH methods (adBH1, based on n̂
(0)
0 ; adBH2, based on n̂

(1)
0 ;

adBH3, the adaptive BH method introduced in Benjamini et al, 2006) with n =

240, n0 = 120, s = 2, 3, 4 or 6, and λ = 0.2, 0.5 or 0.8 at level α = 0.05. [BH – solid;

adBH1 – dot-dashes; adBH2 – long dashes; adBH3 – dotted.]

new adaptive method seems to lose its edge over the conventional BH method.

From Figure 3 and 4: When s and λ are both small, both adaptive Bonferroni

methods slightly lose the control over the FWER for most values of ρ; however,

when λ is chosen to be large, the FWER of the new adaptive method is controlled

at α with increasing ρ, whereas the existing adaptive method still loses control of

the FWER. When s is moderate or large, the new adaptive method maintains a

control over the FWER whatever be the ρ, whereas the existing adaptive method

can lose control over the FWER for some values of ρ. In addition, comparing the

power performances of the two adaptive methods along with their FWER control,
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Figure 2: Average powers of the four multiple testing methods – the original BH

and the three adaptive BH methods (adBH1, based on n̂
(0)
0 ; adBH2, based on n̂

(1)
0 ;

adBH3, the adaptive BH method introduced in Benjamini et al, 2006) with n =

240, n0 = 120, s = 2, 3, 4 or 6, and λ = 0.2, 0.5 or 0.8 at level α = 0.05. [BH – solid;

adBH1 – dot-dashes; adBH2 – long dashes; adBH3 – dotted.]
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Figure 3: Simulated FWERs of the three multiple testing methods – the original

Bonferroni method (Bonf.) and the two adaptive Bonferroni methods (adBon1,

based on n̂
(0)
0 ; adBon2, based on n̂

(1)
0 ) with n = 100, n0 = 50, s = 2, 4, 10 or 20, and

λ = 0.2, 0.5 or 0.8 at level α = 0.05. [Bonf – solid; adBon1 – dotted; adBon2 – long

dashes]
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Figure 4: Average powers of the three multiple testing methods – the original Bon-

ferroni method (Bonf.) and the two adaptive Bonferroni methods (adBon1, based

on n̂
(0)
0 ; adBon2, based on n̂

(1)
0 ) with n = 100, n0 = 50, s = 2, 4, 10 or 20, and

λ = 0.2, 0.5 or 0.8 at level α = 0.05. [Bonf – solid; adBon1 – dotted; adBon2 – long

dashes]
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it is clear that the new method is a better choice as an adaptive version of the

Bonferroni method under block dependence than the existing one when s is not

very large. However, when s is very large, the new method loses its edge over the

existing one.

6 Concluding remarks

Construction of adaptive multiple testing methods with proven control of the ul-

timate FDR or FWER under dependence in non-asymptotic setting is an open

problem. In this paper, we have offered a solution to this open problem under a

commonly assumed form of dependence, the block dependence. We have developed

new adaptive BH method with proven FDR control under positive block dependence

and new adaptive Bonferroni method with proven FWER control under arbitrary

block dependence. They often provide real improvements over the corresponding

conventional BH and Bonferroni methods.

The type of block dependence structure we consider here is often seen in real

applications. It perfectly fits in genetic research where the locations are independent

on different chromosomes but dependent inside the same chromosome. It also arises

in the context of simultaneous testing of multiple families of hypotheses, which is

often considered in large scale data analysis in modern scientific investigations, such

as DNA microarray and fMRI studies. Each family of null hypotheses here can be

interpreted as a block.

Benjamini and Bogomolov (2014) recently discussed a related problem of testing

multiple families of hypotheses and developed a related procedure: Use the BH

procedure across families, and then use the Bonferroni procedure within the selected

families, with the B/b adjustment, where B is the number of the selected families

and b is the number of the tested families. However, in the aforementioned paper,

the objective is to control a general average error rate over the selected families

including average FDR and FWER instead of the overall FDR and FWER, which

is different from ours. Also, there is no explicit discussions of adaptive procedures

in that paper as in the methods suggested in this paper. It would be interesting to

investigate the connection between the theory and methods developed in this paper
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and those in aforementioned paper.
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Appendix

Proof of Theorem 1. Proceeding as in showing [in (4)] that the FDR of the

adjusted BH method is bounded above by π0α, we first have

FDR ≤
b∑

i=1

si∑
j=1

I(Hij = 0)
b∑

k=1

pr(Qij ≤ kα/n,B∗(−i) = k − 1)

k
, (7)

where B∗(−i) is the number of significant blocks detected by the BH method based

on the b − 1 block specific adaptive p-values {Q̃1, . . . , Q̃b} \ {Q̃i} and the critical

values iα/b, i = 2, . . . , b. For each (i, j),

1

k
I(Hij = 0)

b∑
k=1

pr
(
Qij ≤ kα/n,B∗(−i) = k − 1

)
=

1

k
I(Hij = 0)

b∑
k=1

pr
(
Pij ≤ kα/n̂0(P), B∗(−i) = k − 1

)
≤ 1

k
I(Hij = 0)

b∑
k=1

pr
(
Pij ≤ kα/n̂0(P

(−i),0), B∗(−i) = k − 1
)

≤ αE

{
I(Hij = 0)

n̂0(P(−i),0)

b∑
k=1

pr
(
B∗(−i) = k − 1

∣∣ Pij ≤ kα/n̂0(P
(−i),0),P(−i)

)}
.

(8)
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Now,

b∑
k=1

pr
(
B∗(−i) = k − 1

∣∣ Pij ≤ kα/n̂0(P
(−i),0),P(−i)

)
=

b∑
k=1

pr
(
B∗(−i) ≥ k − 1

∣∣ Pij ≤ kα/n̂0(P
(−i),0),P(−i)

)
−

b−1∑
k=1

pr
(
B∗(−i) ≥ k

∣∣ Pij ≤ kα/n̂0(P
(−i),0),P(−i)

)
≤

b∑
k=1

pr
(
B∗(−i) ≥ k − 1

∣∣ Pij ≤ kα/n̂0(P
(−i),0),P(−i)

)
−

b−1∑
k=1

pr
(
B∗(−i) ≥ k

∣∣ Pij ≤ (k + 1)α/n̂0(P
(−i),0),P(−i)

)
= pr

(
B∗(−i) ≥ 0

∣∣ Pij ≤ α/n̂0(P
(−i),0),P(−i)

)
= 1. (9)

The validity of the inequality in (9) can be argued as follows: Since (Pi1, . . . , Pisi)

is independent of P(−i) and I(B∗(−i) ≥ k) is decreasing in Pij’s, the conditional

probability

pr
(
B∗(−i) ≥ k

∣∣ Pij ≤ lα/n̂0(P
(−i),0),P(−i)

)
,

considered as a function of l, with k and P(−i) being fixed, is of the form

g(l) = E {φ (Pi1, . . . , Pisi) | Pij ≤ lu} ,

for a decreasing function φ and a constant u > 0. From the positive dependence

condition assumed in the theorem, we note that g(l) is decreasing in l, and hence

g(k + 1) ≤ g(k).

From (7)-(9), we finally get

FDR ≤ α
b∑

i=1

si∑
j=1

E

{
I(Hij = 0)

n̂0(P(−i),0)

}
≤ α, (10)

which proves the desired result. �

Proof of Result 2. Before we proceed to prove this result, we state two lemmas

in the following that will facilitate our proof. These lemmas will be proved later

after we finish proving the result.
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Lemma 1 Given a p×q matrix A = ((aij)), where aij = 0 or 1 and
∑p

i=1

∑q
j=1 aij =

m, the entries of A can be always rearranged to form a new p×q matrix B = ((bij))

in such a way that, for each j = 1, . . . , q, the entries in the jth column of B are the

entries of A in different rows,
∑p

i=1 bij = bm
q
c or bm

q
c+ 1, and

∑p
i=1

∑q
j=1 bij = m.

Lemma 2 The function f(x) = (2x+3)−
2

x+2 is increasing in x ≥ 1 and f(x) ≤ f(1)

for all 0 ≤ x ≤ 1.

We are now ready to prove the result. First, note that the result is unaffected

if we augment P to a complete b × smax matrix by adding smax − si more cells in

the ith row containing only 0’s and assuming that the Hij’s corresponding to these

additional zero p-values are all equal to 1, for each i = 1, . . . , b. In other words,

we will assume without any loss of generality, while proving this result, that P is

a b × smax matrix with smax − si entries in the ith row being identically zero. Let

smax = s for notational convenience.

Consider the expectation

EDU

{
1

n̂
(1)
0 (P(−i),0)

}
,

in terms of P(−i). Let H(−i) be the sub-matrix of H corresponding to P(−i). Since

this expectation remains unchanged under the type of rearrangements considered in

Lemma 1 for H(−i), we can assume without any loss of generality that the number

of true null p-values in the jth column of P(−i) is n
(−i)
0j = bn0−mi

s
c or bn0−mi

s
c+ 1 for

each j = 1, . . . , s, where mi =
∑s

j=1 I(Hij = 0).

Let Ŵ
(−i)
j (λ) =

∑b
i′ ( 6=i)=1 I(Hi′j = 0, Pi′j > λ), for j = 1, . . . , s. Under Assump-

tion 1 and the Dirac-uniform configuration of P(−i), Ŵ
(−i)
j (λ) ∼ Bin(n

(−i)
0j , 1 − λ).

So, we have

EDU

{
1

n̂
(1)
0 (P(−i),0)

}
= E

 1− λ∑s
j=1

[
Ŵ

(−i)
j (λ) + 1

]


≤ 1

s2

s∑
j=1

E

{
1− λ

Ŵ
(−i)
j (λ) + 1

}
=

1

s2

s∑
j=1

1− λn
(−i)
0j +1

n
(−i)
0j + 1

, (11)
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with the first inequality following from the well-known inequality between the arith-

metic and harmonic means or using the Jensen inequality and the second equality fol-

lowing from the result: E {(1 +X)−1} = [1− (1−θ)n+1]/(n+1)θ, for X ∼ Bin(n, θ)

(see, for instance, Liu and Sarkar, 2010).

Let n0−mi = (ai + βi)s, for some non-negative integer ai and 0 ≤ βi < 1. Note

that

ais ≤ n0 ≤ (ai + βi + 1)s. (12)

Also, (1 − βi) proportion of the s values n
(−i)
0j , j = 1, . . . , s, are all equal to ai and

the remaining βi proportion are all equal to ai + 1. So, the right-hand side of (11)

is equal to

1

s

[
1− βi
ai + 1

(
1− λai+1

)
+

βi
ai + 2

(
1− λai+2

)]
≤ 1

s

[
1− βi
ai + 1

+
βi

ai + 2

] (
1− λai+2

)
=

(ai + 2− βi)(1− λai+2)

s(ai + 1)(ai + 2)
≤ (ai + 1 + βi)(ai + 2− βi)(1− λai+2)

n0(ai + 1)(ai + 2)

=
1

n0

[
1 +

βi(1− βi)
(ai + 1)(ai + 2)

] (
1− λai+2

)
≤ 1

n0

[
1 +

1

4(ai + 1)(ai + 2)

] (
1− λai+2

)
.

Here, the second inequality follows from (12). The desired inequality (5) then holds

for this estimate if [
1 +

1

4(ai + 1)(ai + 2)

] (
1− λai+2

)
≤ 1,

which is true if and only if

λ ≥ [1 + 4(ai + 1)(ai + 2)]
− 1

ai+2 = (2ai + 3)
− 2

ai+2 . (13)

Let f(ai) = (2ai + 3)
− 2

ai+2 . As seen from (12), ai ≤ n0/s ≤ b, thus, the inequality

f(b) ≥ f(ai) holds for all ai ≥ 0, since f(b) ≥ f(ai) if ai ≥ 1 and f(b) ≥ f(1) ≥ f(ai)

if 0 ≤ ai ≤ 1, due to Lemma 2. So, the inequality (13) holds if λ ≥ (2b+ 3)−2/(b+2).

This completes our proof of Result 2. �

Proof of Lemma 1. Let s = (s1, . . . , sq) be the column sum vector of A, that is,

sj =
∑p

i=1 aij, j = 1, . . . , q, and
∑q

j=1 sj = m. Without any loss of generality, we can

assume that s1 ≥ . . . ≥ sq. Consider a given column sum vector s∗ = (s∗1, . . . , s
∗
q)
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satisfying s∗1 ≥ . . . ≥ s∗q, where s∗j = bm
q
c or bm

q
c+ 1 for j = 1, . . . , q, and

∑q
j=1 s

∗
j =

m.

We prove that s∗ is majorized by s; that is, for each k = 1, . . . , q,
q∑

j=k

s∗j ≥
q∑

j=k

sj. (14)

Suppose the inequality (14) does not hold for some k = 1, . . . , q. Let k1 = max{k :∑q
j=k s

∗
j <

∑q
j=k sj}. Since sk1 > s∗k1 , thus for each j = 1, . . . , k1 − 1, sj ≥ sk1 ≥

s∗k1 + 1 ≥ bm
q
c+ 1 ≥ s∗j , implying that

q∑
j=1

sj =

k1−1∑
j=1

sj +

q∑
j=k1

sj >

k1−1∑
j=1

s∗j +

q∑
j=k1

s∗j = m,

which is a contradiction. So, s∗ is majorized by s.

By Theorem 2.1 of Ryser (1957), one can rearrange the 1’s in the rows of A to

construct a new p×q matrix which has the column sum vector s∗. Thus, the desired

result follows. �

Proof of Lemma 2. Let g(x) = ln f(x) = − 2
x+2

ln(2x + 3) for x ≥ 0 and ϕ(u) =

lnu− 1
u
− 1 for u ≥ 3. Thus,

g′(x) =
1

(x+ 2)2

[
2 ln(2x+ 3)− 4x+ 8

2x+ 3

]
=

2ϕ(2x+ 3)

(x+ 2)2
.

Note that ϕ(u) is a strictly increasing continuous function in [3,∞) with ϕ(3) < 0

and ϕ(5) > 0, thus there exists a unique u∗ ∈ (3, 5) satisfying ϕ(u∗) = 0. Let

x∗ = u∗−3
2

, then x∗ ∈ (0, 1) and g′(x∗) = 0. Thus, g′(x) < 0 for x ∈ [0, x∗) and

g′(x) > 0 for x ∈ (x∗,∞). Based on x∗ < 1, we have that g′(x) > 0 for x ≥ 1 and

g(x) ≤ max{g(0), g(1)} = max{− ln 3,−2 ln 5/3} = g(1) for 0 ≤ x ≤ 1. Thus, the

desired result follows. �

Proof of Theorem 2. The FWER of the method in this theorem is given by

FWER = pr

{
b⋃

i=1

si⋃
j=1

(
Pij ≤

αI(Hij = 0)

n̂0(P)

)}
≤

b∑
i=1

si∑
j=1

pr

{
Pij ≤

αI(Hij = 0)

n̂0(P)

}

≤
b∑

i=1

si∑
j=1

pr

{
Pij ≤

αI(Hij = 0)

n̂0(P(−i),0)

}
≤ α

b∑
i=1

si∑
j=1

EDU

{
I(Hij = 0)

n̂0(P(−i),0)

}
≤ α. (15)
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In (15), the first inequality follows from the Bonferroni inequality, the second and

third follow from the non-decreasing property of n̂0 and that P̂ij ∼ U(0, 1) and the

assumption of arbitrary block dependence, and the fourth follows from the condition

(5) satisfied by n̂0. Thus, the desired result is proved. �
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