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Summary. Microarray gene expression studies over ordered categories are routinely conducted to gain insights into biological
functions of genes and the underlying biological processes. Some common experiments are time-course/dose-response experi-
ments where a tissue or cell line is exposed to different doses and/or durations of time to a chemical. A goal of such studies is
to identify gene expression patterns/profiles over the ordered categories. This problem can be formulated as a multiple testing
problem where for each gene the null hypothesis of no difference between the successive mean gene expressions is tested
and further directional decisions are made if it is rejected. Much of the existing multiple testing procedures are devised for
controlling the usual false discovery rate (FDR) rather than the mixed directional FDR (mdFDR), the expected proportion
of Type I and directional errors among all rejections. Benjamini and Yekutieli (2005, Journal of the American Statistical Asso-
ciation 100, 71–93) proved that an augmentation of the usual Benjamini–Hochberg (BH) procedure can control the mdFDR
while testing simple null hypotheses against two-sided alternatives in terms of one-dimensional parameters. In this article,
we consider the problem of controlling the mdFDR involving multidimensional parameters. To deal with this problem, we
develop a procedure extending that of Benjamini and Yekutieli based on the Bonferroni test for each gene. A proof is given
for its mdFDR control when the underlying test statistics are independent across the genes. The results of a simulation study
evaluating its performance under independence as well as under dependence of the underlying test statistics across the genes
relative to other relevant procedures are reported. Finally, the proposed methodology is applied to a time-course microarray
data obtained by Lobenhofer et al. (2002, Molecular Endocrinology 16, 1215–1229). We identified several important cell-cycle
genes, such as DNA replication/repair gene MCM4 and replication factor subunit C2, which were not identified by the previ-
ous analyses of the same data by Lobenhofer et al. (2002) and Peddada et al. (2003, Bioinformatics 19, 834–841). Although
some of our findings overlap with previous findings, we identify several other genes that complement the results of Lobenhofer
et al. (2002).

Key words: Benjamini–Hochberg procedure; Directional FDR; Dose-response; Microarray; Multiple testing; Ordered cat-
egories; Time course.

1. Introduction
In many applications, researchers are interested in identify-
ing trends in mean response over ordered categories in large-
scale experiments. With the advent of microarray technol-
ogy such experiments are common in the literature where in-
vestigators are routinely conducting experiments to investi-
gate changes in mean gene expressions over time or dose of a
chemical or cancer stage, etc. For example, Lobenhofer et al.
(2002) studied the effect of 17 − β estradiol on the gene ex-
pression of MCF-7 breast cancer cells as the cells progressed
through various phases of cell division cycle. In another ex-
periment, Tamoto et al. (2004) investigated the changes in

gene expression with tumor progression in esophageal can-
cer and identified genes implicated in the early stages of
esophageal squamous cell carcinoma. Recently, Bochkina and
Richardson (2007) discussed the analysis of a time-course
gene expression data where cells from the H2Kb muscle cell
line of mouse were treated by insulin (0, 2, or 12 hours of
exposure).

In studies such as those described above, identification of
statistically significant genes that have similar mean expres-
sion profiles over ordered categories is often an important goal
to researchers. By identifying such genes, the researchers may
potentially discover co-regulated genes belonging to similar
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pathways and gain insights into biological functions and pro-
cesses of groups of genes with similar patterns of expressions.

Peddada et al. (2003) introduced an order-restricted
inference-based method for identifying significant genes and
grouping them according to various patterns of inequalities.
Implicitly in their methodology, two decisions are being made
for each gene. First, it is decided whether or not a gene is sig-
nificant using a method exercising a control over gene-specific
Type I error rate. Then, a suitable inequality pattern is as-
signed for each selected significant gene based on the values
of the underlying test statistics. The directional error that
can potentially occur in addition to the usual Type I error
due to assigning wrong inequality pattern to a selected sig-
nificant gene has not been addressed in that paper. In this
article, we take care of both the Type I and directional er-
rors. We do that by taking a multiple testing approach to
the main problem where for each gene the mean expressions
are successively compared across the ordered categories and a
null hypothesis signifying no particular directional pattern is
formed to test against the union of all possible directional pat-
terns. We develop a method of simultaneously testing these
null hypotheses and determining a directional pattern upon
rejection of each of them controlling both the Type I and
directional errors in an overall sense.

Although directional error has not been discussed exten-
sively in the literature, it is perhaps a common error that oc-
curs in applications. While testing a null hypothesis H0 : θ =
0 against the two-sided alternative H1 : θ �= 0, for some single
parameter θ of interest, researchers commonly conclude either
θ > 0 or θ < 0 upon rejection of H0 depending on the sign
of the underlying test statistic, keeping the directional error
controlled in addition to the Type I error. However, when mul-
tiple hypotheses are tested and the number of parameters de-
scribing directional patterns is (even moderately) larger than
one, as is the case with time-course or dose-response microar-
ray data, controlling the directional errors is a problem.

A traditional approach to dealing with directional as well
as Type I errors from a multiple testing point of view is
to apply a method that controls the so-called mixed direc-
tional familywise error rate (mdFWER), which is the prob-
ability of one or more Type I or directional errors, a vari-
ant of the classical familywise error rate (FWER; Shaffer,
1980; Finner, 1994, 1999; Liu, 1996; Sarkar, Sen, and Finner,
2004). However, when the number of null hypotheses is large,
as in the context of microarray experiments, the notion of
mdFWER, just like the FWER, is too stringent, allowing
little chance to make true directional as well as nondirec-
tional discoveries. The False Discovery Rate (FDR), due to
Benjamini and Hochberg (1995), is a more powerful concept
of overall Type I error rate than the FWER in the con-
text of multiple testing and is now most commonly used in
large-scale scientific investigations, especially in microarray
gene expression studies. A variant of it while controlling both
Type I and directional errors would be more powerful than
the mdFWER. Two such variants have been introduced in
the literature (Benjamini, Hochberg, and Kling, 1993), the
pure directional FDR that is the expected proportion of di-
rectional errors among rejected hypotheses and the mixed
directional FDR (mdFDR) that is the expected proportion
of Type I and directional errors among rejected hypothe-

ses. In this article, we focus on procedures controlling the
mdFDR.

Benjamini and Yekutieli (2005) gave a method with inde-
pendent tests that controls the mdFDR when testing mul-
tiple simple hypotheses against two-sided alternatives. They
proved that the original Benjamini and Hochberg (1995) pro-
cedure controlling the FDR at α can be augmented to make
directional decision upon rejecting a null hypothesis accord-
ing to the value of the corresponding test statistic without
causing the mdFDR to exceed α, a result conjectured by sev-
eral authors (Benjamini and Hochberg, 2000; Shaffer, 2002;
Williams, Jones, and Tukey, 1999). Throughout the article
we denote Benjamini and Hochberg procedure as BH proce-
dure. Clearly, this method, referred to as the directional BH
procedure, can be applied to analyze dose-response microar-
ray data if there are only two ordered categories, but often
this is not the case, as such data typically involve more than
two ordered categories and the method needs to be suitably
extended to accommodate such multiple categories.

We extend the BH directional FDR procedure in this ar-
ticle to develop our proposed multiple testing method that
allows us to make a decision on the directional pattern involv-
ing multiple parameters once a null hypothesis of no pattern
is rejected and maintains a control over the mdFDR. The
proposed methodology is then evaluated through a simula-
tion study and applied to the time-course microarray data in
Lobenhofer et al. (2002). Our analysis of Lobenhofer’s data re-
sulted in the discovery of several cell-cycle genes that were not
previously identified by Lobenhofer et al. (2002) and Peddada
et al. (2003). Some of our findings complement the previous
findings as detailed in Section 5. An important and unique
feature of our methodology is that it permits us to specify
the time interval of up (or down) regulation of a gene during
the 48-hour period of the cell cycle. One of the usual objec-
tives for conducting cell-cycle time-course experiments is to
determine the phase of peak expression for a cell-cycle gene
and our methodology allows us to make such determinations.

2. Notations, Definitions, and Problem Formulation
In this section, we present the multiple testing formulation
of the problem of identifying expression patterns/trends over
ordered categories simultaneously for all the genes, having
introduced some notations and definitions related to multiple
testing.

Let μij denote the mean response of the jth variable (e.g.,
gene), j = 1, . . . , m, in the ith ordered category, i = 1, . . . , p.
A problem of biological interest is to group genes by the in-
equalities among the mean responses, known as directional
patterns or order restrictions. Some common inequalities of
interest are μ1j � μ2j � · · · � μpj (monotone pattern), μ1j �
μ2j � · · · � μij � μ(i+1)j � · · · � μpj , i = 2, . . . , p − 1 (umbrella
order with peak μij ). Let δij = μi+1j − μij , i = 1, . . . , p − 1,
j = 1, . . . , m. Then, the above inequalities of interest or any
other inequalities can be restated in terms of the signs of the
δij ’s. Let δj = (δ1j , . . . , δq j )′, where q = p − 1. Suppose we
test

H0j : δj = 0 against H1j : δj �= 0, (1)

and suppose H0j is rejected, then we first decide which δij ’s are
nonzero before deciding their signs. The signs of the nonzero
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δij ’s are determined by the sign of the corresponding test
statistic. The declared signs of the δij ’s then determine a pos-
sible inequality or directional pattern. For instance, in the case
of q = 4, suppose for a given gene j, δj = (δ1j , . . . , δ4j ) is found
to be significantly different from a null vector, with δ1j and
δ2j declared to be positive and negative, respectively, and δ3j

and δ4j are zero. Then, the corresponding directional pattern
is μ1j < μ2j < μ3j = μ4j = μ5j . We can test H0j against H1j

for all the genes applying a suitable multiple testing method.
Thus, given p ordered categories for each gene, the task of
identifying directional patterns of the mean expressions over
these categories for all the genes is being formulated as a mul-
tiple testing problem where H0j is tested against H1j simulta-
neously for all the genes and the signs of δij ’s are determined
subsequent to the rejection of the corresponding H0j .

For multiple testing of H0j against H1j , j = 1, . . . , m, we
need p-values that will provide a valid test for each of these
individual testing problems and will allow us to make deci-
sions on the individual δij ’s once a H0j is rejected. For that,
we consider for each j the p-value available for testing each
component null hypothesis H i

0j : δij = 0 against the corre-
sponding component alternative hypothesis H i

1j : δij �= 0,
for i = 1, . . . , q, and apply a suitable combination method
pooling these q p-values by treating H0j as an intersection of
the subfamily of these q component null hypotheses. Thus,
H0j =

⋂q

i=1 Hi
0j , and H1j =

⋃q

i=1 Hi
1j . Before we discuss ap-

propriate combination methods to be used, we explain how
to obtain these component p-values and state the underlying
assumptions.

For every i = 1, . . . , q and j = 1, . . . , m, suppose we use the
absolute value of a test statistic T ij for testing H i

0j against
H i

1j . Let T ij ∼ F ij (t, δij ) for some continuous cdf F, which is
symmetric about 0 under H i

0j and gets stochastically larger
or smaller as δij either increases or decreases from 0. In other
words, F ij (t, δij ) � or � F ij (t, 0) according to δij > or < 0,
with Fij (0, 0) = 1

2 . Under this setting, a right-tailed test based
on the absolute value of T ij will be considered for testing
H i

0j against H i
1j , with the corresponding two-sided p-value

being defined as P̃ij = 2 min {Fij (Tij , 0), 1 − Fij (Tij , 0)}. By
the assumed distributional property of T ij , it is easy to verify
that under H i

0j , the two-sided p-value P̃ij satisfies

Pr{P̃ij � p} � p, for any p ∈ (0, 1). (2)

Given p-values for testing H i
0j against H i

1j , for i = 1, . . . , q,
a number of combination methods (or methods of pool-
ing the p-values) are available in the literature for test-
ing the intersection null hypothesis H0j =

⋂q

i=1 Hi
0j against

the alternative H1j =
⋃q

i=1 Hi
1j . Among these, however, the

Bonferroni and Simes methods are often used in multiple
testing and allow one to make decisions on the individual
δij ’s. For a review of these methods, one may see Bernhard,
Klein, and Hommel (2004). Let P̃(1)j � · · · � P̃(q )j be the or-
dered versions of P̃ij , i = 1, . . . , q, for a fixed j = 1, . . . , m.
Then, in the Bonferroni test, the pooled (or adjusted) p-
value is given by Pj = qP̃(1)j ; whereas, in the Simes test, it is
given by Pj = min1�i�q {qP̃(i)j /i}. While the Bonferroni test
does not require any dependence structure in the underlying
p-values, the Simes test requires a certain type of positive

dependence condition that is often satisfied in multiple test-
ing applications (Sarkar and Chang, 1997). Upon rejection
of H0j using the Bonferroni pooled p-value at a level α,
the ith component of null hypothesis H i

0j can be rejected if
P̃ij � α/q. For the test based on the Simes pooled p-value,
H i

0j corresponding to every P̃ij � P̃(R j )j is rejected, where
Rj = max{i : P̃(i)j � i

q
α}, if the maximum exists; otherwise,

Rj = 0.
Now, suppose the pooled p-value P j , based on either Bon-

ferroni or Simes test, is available to us for every j = 1, . . . , m,
to carry out a multiple testing procedure to test H0j against
H1j simultaneously for all j = 1, . . . , m. We use the multiple
testing method of Benjamini and Hochberg (1995) (the BH
method) that is designed to control the false discovery rate
(FDR). The FDR, for any given multiple testing procedure,
is the expected proportion of false rejections (Type I errors)
among all rejections, an overall measure of Type I error rate
commonly used in microarray studies. More formally, with
V the number of falsely rejected true null hypotheses among
H1, . . . , Hm and R the total number of rejected hypotheses
among H1, . . . , Hm , it is defined as

FDR = E
{

V

R ∨ 1

}
, (3)

where R ∨ 1 = max(R, 1). This method with a control of
the FDR at a given level α is a step-up test as follows:
Given ordered p-values P (1) � · · · � P (m) with the correspond-
ing null hypotheses H (1), . . . , H (m), find k = max{1 � j � m :
P(j ) � jα/m} and reject those H (j ) for which P (j ) � P (k),
provided this maximum exists, otherwise, accept all the null
hypotheses.

When a H0j : δj = 0 is rejected using the BH method and
further decisions are being made on the signs of the compo-
nent δij ’s in the corresponding δj , a directional error might
occur due to wrong assignments of the signs. For instance, if
there is a component δij in δj = (δ1j , . . . , δq j ) that is truly
positive (or negative) but declared to be negative (or posi-
tive) while deciding on the signs of the δij ’s upon rejection of
H0j : δj = 0, a directional error occurs. So, we need to control
such directional errors as well. A convenient and practical way
of doing that would be to use an error rate combining both
Type I and directional errors in the FDR framework and make
sure that it is controlled. One such error rate is the mdFDR,
the sum of the FDR and the pure directional FDR (dFDR).
The dFDR is defined as

dFDR = E
{

S

R ∨ 1

}
, (4)

where S denotes the total number of false null hypotheses
among H1, . . . , Hm that are correctly rejected but at least
one directional error has been made while deciding upon the
signs of the components. In other words, S is the number of
rejected hypotheses H j ’s such that δj �= 0 and for some i =
1, . . . , q, δij is declared to be positive when δij � 0, or δij is
declared to be negative when δij � 0. Thus, more formally,
the mdFDR is defined as

mdFDR = FDR + dFDR = E
{

V + S

R ∨ 1

}
, (5)
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the expected proportion of Type I and directional errors
among all rejections.

It is important to point out that the goal of this article
is to identify expression patterns of m genes over p ordered
categories. For each gene it is biologically relevant to consider
its expression pattern as a whole across p ordered categories
rather than viewing this to be a problem of testing qm sep-
arate hypotheses which ignores the intrinsic pattern over or-
dered categories. Thus, rather than viewing it as a problem of
performing qm tests, we treat it as a problem of performing
a set of m tests each involving q-dimensional hypotheses. In
addition, we want to emphasize that while making directional
decisions for the components of δj , no directional errors are
being made when δj = 0. In contrast, when making direc-
tional decisions regarding a nonnull δj , a directional error is
made if a component δij for which δij �= 0 is declared to be
positive or negative.

In the next section, we develop methods to control the
mdFDR. This extends the following directional BH procedure
of Benjamini and Yekutieli (2005) from dimension one (i.e.,
q = 1) to a general dimension.

Definition 1 (The level-α directional BH procedure)

(1) Apply the BH method at level α to test H0j : δ1j = 0
against H1j : δ1j �= 0 simultaneously for j = 1, . . . , m,
based on the two-sided p-values P̃1j , j = 1, . . . , m.

(2) Let R denote the total number of null hypotheses rejected.
(3) For every j = 1, . . . , m, with P̃1j � R

m
α, declare δ1j >

or < 0 according to T 1j > 0 or < 0.

It controls the mdFDR at α under independence of the
underlying test statistics.

3. Multidimensional Directional FDR Controlling
Procedures

We introduce in this section our proposed method of con-
trolling the mdFDR while testing H0j : δj = 0 against H1j :
δj �= 0, simultaneously for all j = 1, . . . , m, and making fur-
ther decisions on the signs of the δij ’s upon rejection of
the corresponding H0j . It is based on the Bonferroni pooled
p-values.

Procedure 1

(1) Apply the BH method at level α to test H0j against H1j

simultaneously for j = 1, . . . , m, based on the Bonferroni
pooled p-values P j , j = 1, . . . , m.

(2) Let R denote the total number of null hypotheses rejected.
(3) For every i = 1, . . . , q and j = 1, . . . , m with P̃ij � R

qm
α,

if Tij > 0, declare δij > or < 0 according to T ij > 0
or < 0.

Theorem 1: With independent q-dimensional test statis-
tics Tj = (T 1j , . . . , T q j ), j = 1, . . . , m, the mdFDR of Procedure
1 is less than or equal to α.

Remark 1. Proof of Theorem 1 is provided in the Web
Appendix. Benjamini and Yekutieli (2005) gave an indirect
proof of this theorem in the special case when q = 1 using

an approach that relates to the FDR-adjusted confidence in-
tervals for selected parameters they developed in the same
paper. However, it is not apparent how one could adapt their
proof to the present case involving multiple parameters. So,
we provide a direct proof in a more general setting.

Remark 2. In Theorem 1, we assume that q-dimensional
test statistics Tj ’s are independent. However, within each Tj ,
we do not impose any restriction on T ij ’s.

It would be tempting to develop an alternative method
based on the Simes pooled p-values as follows:

Procedure 2.

(1) Apply the BH method at level α to test H0j against H1j si-
multaneously for j = 1, . . . , m, based on the Simes pooled
p-values P j , j = 1, . . . , m.

(2) Let R denote the total number of null hypotheses rejected.
(3) For every j = 1, . . . , m, let P̃(1)j � · · · � P̃(q )j be the

ordered values of P̃ij , i = 1, . . . , q. Let Rj = max{i :
P̃(i)j � i

q
· R

m
α}, if the maximum exists; otherwise Rj =

0. For every i and j with P̃ij � R j

q
· R

m
α, declare δij > 0

or < 0 according to T ij > 0 or < 0.

Remark 3. As the Simes test is known to be more powerful
than the Bonferroni test (Simes, 1986), Procedure 2 would be
more powerful than Procedure 1. Unfortunately, however, it
would not control the mdFDR, as the associate editor pointed
out. Consider, for instance, m = 1. The augmented test in this
procedure in this case reduces to the step-up test with Simes
critical values for the q hypotheses. Assume that q = 10 and
that for half of the hypotheses δi1 = 0 and for the remain-
ing δi1 is very large. Then the familywise error rate (FWER)
of the step-up test with Simes critical values (for the test of
the q hypotheses) is not controlled; see also Hommel (1988).
However, in this scenario, mdFDR � FWER. Therefore, Pro-
cedure 2 loses the control of the mdFDR in this situation. So,
we do not formally propose it in this article as a multidimen-
sional directional FDR controlling procedure, though we will
consider it along with Procedure 1 in our simulation studies
in the next section.

4. A Simulation Study
A simulation study was performed to evaluate the perfor-
mance of our proposed method, Procedure 1. Specifically, in-
vestigated the following:

(i) How does it perform in terms of FDR, dFDR, mdFDR,
and power under independence as well as different types
of dependence?

(ii) How does it perform in terms of the above operating
characteristics under independence across genes when
we benchmark it against Procedure 2 and the procedure
that makes no adjustment to the gene-specific p-values,
that is, simply uses P̃(1)j as the pooled p-value?

(iii) How does the performance of Procedure 1 under the
independence across the genes change as the dimension
q increases?
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We generated q + 1 independently distributed m-
dimensional random normal vectors Z1, . . . ,Zq+1, where the
components Z ij , j = 1, . . . , m, in each Zi are dependent
with Z ij ∼ N (μij , 1) and have a common correlation ρ.
Let δij = (μi+1,j − μij )/

√
2, i = 1, . . . , q; j = 1, . . . , m. Of the

m parameter vectors δj = (δ1j , . . . , δq j ), j = 1, . . . , m, m0

were set to a null vector and the δij ’s in 50%, 25%, and
25% of the remaining m − m0 δj ’s were selected randomly
from the intervals (−0.75, 0.75), (−4.25, −2.75), and (2.75,
4.25), respectively. For each i = 1, . . . , q, and j = 1, . . . , m,
the statistic Tij = (Zi+1,j − Zij )/

√
2 for testing H i

0j : δij =
0 vs. H i

1j : δij �= 0 and the corresponding two-sided p-value
P̃ij = 2 {1 − Φ (|Tij |)} were then computed, where Φ(·) is the
standard normal cdf. The pooled p-values were calculated ac-
cording to the Bonferroni and Simes tests, respectively. Pro-
cedures 1 and 2 were applied to their respective lists of pooled
p-values for testing the m null hypotheses described in (1). We
also considered the so-called no-adjustment procedure, which
is same as Procedure 1 or 2, except for every hypothesis H j

we do not make any adjustment for its corresponding p-value
Pj = P̃(1)j . For each of these procedures, the number of true
null hypotheses that are rejected (Type I errors), the number
of δj ’s corresponding to the false null hypotheses the signs
of whose components do not completely match with those

assigned by the procedure (directional errors), and the sum
of these two numbers (Type I and directional errors) were
noted. Finally, the following three proportions among the to-
tal number of rejected null hypotheses were calculated—the
proportion of Type I errors (the observed value of V /R ∨
1), the proportion of directional errors (the observed value
of S/R ∨ 1), and the proportion of Type I and directional
errors (the observed value of (V + S)/R ∨ 1). These steps
were repeated 10,000 times and the simulated values of the
FDR, dFDR, and mdFDR were obtained by averaging out
the 10,000 values of the above three proportions.

Figure 1 presents the simulated FDR, dFDR, and mdFDR;
Figure 2 presents standard deviation of the simulated
mdFDR; and Web Figure 1 presents the simulated average
power (the proportion of false null hypotheses that are cor-
rectly rejected with correct assigned signs) of Procedure 1
plotted against the number of false null hypotheses for m =
1000, q = 5, α = 0.05, and ρ = 0 (independence), 0.2, 0.5,
and 0.8.

Some interesting observations can be made from Figure 1.
With increasing number of truly significant genes, the FDR
steadily decreases to zero as long as the dependence across the
genes is low or moderately high, while the dFDR slowly in-
creases from zero to a value slightly less than 0.01, no matter
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Figure 1. Performance of Procedure 1 under dependence across genes in terms of its control of the FDR, dFDR, and
mdFDR for m = 1000, q = 5, α = 0.05, and ρ = 0, 0.2, 05 and 0.8. This figure appears in color in the electronic version of
this article.
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Figure 2. Standard deviation of the mdFDR of Procedure
1 under dependence across genes for m = 1000, q = 5, α =
0.05, and ρ = 0, 0.2, 05, and 0.8. This figure appears in color
in the electronic version of this article.

what the dependence across the genes is, as long as it is non-
negative. Consequently, when the genes are not too highly
dependent, with increasing number of truly significant genes
although the mdFDR decreases, implying that Procedure 1 as
an mdFDR controlling procedure becomes more conservative,
it does not however reach zero (see Figures 1(a)–1(c)). When
the genes are highly dependent, as we see from Figure 1(d),
Procedure 1 becomes less conservative as the number of truly
significant genes begins to increase from zero, but eventually
it becomes more conservative as this number becomes larger.

Also, as seen from Figure 2, the standard deviation of the
estimated mdFDR is very small. From Web Figure 1 we see
that as the dependence across genes increases, the change in
power is small. Overall, the effect of dependence across genes
on the performance of the proposed procedure is relatively
small. As suggested by the associate editor, under the above
simulation settings, we also evaluated the performance of Pro-
cedure 1 for δj = (100, 0, . . . , 0), in which one component is
extremely large and the rest are zero. For such nonnull δj ,
there is a high chance that it is detected to be nonnull and
its one or more zero components are declared to be positive
or negative. That is, in such scenarios, it is more possible to
make directional errors. Web Figure 2 presents the simulated
FDR, dFDR, and mdFDR and Web Figure 3 presents the
standard deviation of the simulated mdFDR. As expected, in
the case of a nonnull pattern, the dFDR is increasing as the
number of false nulls increases, and is much larger than that
for the previous scenario. However, the mdFDR is still con-
trolled under a prespecified level (see Web Figure 2). As seen
from Web Figure 3, the standard deviation of the estimated
mdFDR is still very small for such scenarios.

Web Figure 4 presents an answer to question (ii). As we see
from this figure, Procedures 1 and 2 behave quite similarly,
at least when the dependence across the genes is not of con-
cern, in terms of controlling the FDR, dFDR, and mdFDR
and the power, though Procedure 2 is slightly more liberal
as expected. Also as expected, if no adjustment is made to
gene-specific p-values, we lose the control of the FDR and
mdFDR, with the maximum reaching 0.2. It seems surprising
that, even without any adjustment to gene-specific p-values,
the dFDR always remains low, though it becomes larger com-
pared to that for Procedures 1 and 2 as the number of false
nulls increases.

Web Figures 5 and 6 provide an answer to question (iii).
It is interesting to note that the performance of Procedure
1 in terms of controlling the FDR, dFDR, and mdFDR is
unaffected by the dimension q when the dependence across
the genes is not present. The power, of course, increases with
increasing dimension.

5. An Application to Time-Course Gene
Expression Data

Lobenhofer et al. (2002) investigated the effect of estrogen
on the expression of cell-cycle genes as MCF-7 breast cancer
cells go through the cell division cycle. A normal cell division
cycle consists of four major phases, namely, the G1 (or Gap
1), S (Synthesis), G2 (or Gap 2), and M (Mitosis) phase.
Genes involved in the cell cycle (known as cell-cycle genes)
are expected to attain peak gene expression during the phase
in which they have a specific biological function in the cell
cycle.

According to Lobenhofer et al. (2002), most estradiol
treated MCF-7 cells are expected to go through S, G2, and
M phases in 12–36 hours after treatment and complete the
cycle in 48 hours. Genes involved in cell growth and related
activities are expected to have maximum expression (or min-
imum expression if they are anti-growth) during 1 or 4 hours
and then monotonically decrease (or increase) in expression
as cells go through the remaining phases. On the other hand,
genes involved in DNA synthesis, repair, and mitosis would
have maximum (or minimum) expression during 12 to 36
hours. Thus, such genes may have an Umbrella (or Inverted
umbrella) shaped pattern with a peak or trough during 12
to 36 hours time period. However, according to Lobenhofer
et al. (2002), the cells may be asynchronous as they complete
the cell division cycle at 48 hours after the exposure. For this
reason, the expression of some of the cell-cycle genes may not
return to their baseline values at 48 hours but may attain a
plateau.

Before exposing the MCF-7 breast cancer cells to estrogen,
Lobenhofer et al. (2002) first synchronized all the cells to G1
phase by depriving the cells of serum for 24 hours. Synchro-
nization of cells to the same phase at the beginning of the
experiment is important for obtaining reliable gene expres-
sion data. They then harvested estradiol-treated cells after 1,
4, 12, 24, 36, or 48 hours of treatment. Gene expressions us-
ing cDNA microarray chips were obtained at each time point.
Each cDNA microarray chip consisted of 1900 gene probes.
With eight replicates at each time point, there were a total of
48 microarray chips across the six time points.
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Motivated by the above observations, in this section we
apply the proposed methodology to identify some cell-cycle
genes by considering four ordered categories of time points,
namely, 1 hour (T1), 4 hours (T2), mid group (i.e., the union
of 12, 24, 36 hours) (T3), and 48 hours (T4) after treatment.
Thus, the sample sizes in the four groups are 8, 8, 24, and
8, respectively. Since the major cell division related activity
takes place during the 12 to 36 hours time interval, we com-
bined those time periods together to contrast that period from
initial cell growth period (1, 4 hours) and the end of mitosis
(48 hours).

Suppose μT1, j , μT2, j , μT3, j , , and μT4, j denote the mean gene
expression of gene j, j = 1, 2, . . . , 1900, during time periods
T 1, T 2, T 3, and T4, respectively. Using notations from the
previous section, we let δ1j = μT1, j − μT2, j , δ2j = μT2, j −
μT3, j , , and δ3j = μT3, j − μT4, j .

Let T ij denote the test statistic associated with the param-
eter δij , i = 1, 2, 3 and j = 1, 2, . . . , 1900. In this application
T ij is the usual two-sample t-test statistic and since the un-
derlying data are not necessarily normally distributed, non-
parametric bootstrap methodology based on 10,000 bootstrap
samples is used for computing the p-values P̃ij associated with
hypotheses on δij . We then calculate the Bonferroni pooled p-
value P j for each gene j after computing P̃ij , i = 1, 2, 3.

By applying our proposed method, Procedure 1 to the list
of the pooled p-values P j ’s, we identified 86 differentially ex-
pressed genes at level α = 0.05 of which 19 had an umbrella-
shaped response, 3 inverted umbrella, 32 increased in expres-
sion from T1 to T3 and then plateaued (i.e., for some gene j,
μT1, j � μT2, j � μT3, j = μT4, j , with at least one strict inequal-
ity). An opposite response was seen with 22 genes that had
decreased expression from T1 to T3 and then plateaued (i.e.,
for some gene j, μT1, j � μT2, j � μT3, j = μT4, j , with at least
one strict inequality). We also discovered 10 genes that had a
flat expression until T3 and then a decrease in response from
T3 to T4.

Comparing our results with those of Lobenhofer et al.
(2002) and Peddada et al. (2003), we found that of the 86
genes we identified, 39 were also identified in at least one of
the two previous papers. This included 8 of 13 DNA repli-
cation/repair genes identified by Lobenhofer et al. (2002).
Among the five that were not identified by our procedure,
we note that except for MCM7, which may be significant at
α = 0.10, all others had large p-values that were not signif-
icant even at α = 0.20. Interestingly, in addition to MCM3
that was identified by both Lobenhofer et al. (2002) and Ped-
dada et al. (2003), we identified a well-known cell-cycle gene
MCM4 (http://www.cyclebase.org).

An important step in DNA synthesis during the S phase is
the binding of complex proteins to DNA for recruiting other
proteins necessary for DNA synthesis. One such complex pro-
tein is the replication factor C. Lobenhofer et al. (2002) iden-
tified one subunit of this protein, known as replication factor
C3. Later the order-restricted inference-based methodology of
Peddada et al. (2003) identified two additional subunits of this
protein, namely, replication factors C4 and C5. Interestingly,
the proposed methodology identified subunits C2, C3, and C5
as significant genes, thus reinforcing the earlier findings and
adding one more subunit to the previous list of replication

factor C. Furthermore, based on the proposed methodology it
is possible to conclude that the subunits C2, C3, and C5 have
peak expression during the 12, 24, or 36 hours time period
where the DNA synthesis and replication takes place.

Furthermore, similar to the order-restricted inference pro-
cedure of Peddada et al. (2003), the proposed methodology
identified the cyclin-dependent kinase inhibitor 1 A (p21 and
Cip 1) as repressed during 12 to 36 hours. This gene was not
identified by Lobenhofer et al. (2002).

A complete list of all genes identified by this procedure is
provided in the Supplementary Materials.

6. Concluding Remarks
In microarray gene expression studies, researchers are of-
ten not only interested in identifying differentially expressed
genes under different biological conditions, but are also in-
terested in detecting trends in mean response over ordered
categories. For instance, in the simple case of two categories
(normal vs. tumor tissue), researchers are not only interested
in identifying significant genes across these two categories,
but they are also interested in further identifying the down-
and up-regulated genes. As the number of ordered categories
increases, the trends or directional patterns become complex
and the number of directional patterns increases. Except for
the usual Type I errors, this also potentially results in a rel-
atively high frequency of directional errors. Hence, it is im-
portant to develop statistical methods of identifying trends
in mean response over ordered categories while maintaining a
control over both the Type I and directional errors.

The approach proposed in this article provides such a
methodology. Differently from existing statistical methods
(Peddada et al., 2003; Lin et al., 2007), we have formulated the
problem of identifying trends in mean response over ordered
categories as a multiple testing problem involving successive
comparisons and further directional decisions on the multidi-
mensional parameter of each gene. To deal with this problem,
we have first suggested a general multidimensional BH-type
directional procedure using the Bonferroni test for controlling
the mdFDR, an overall measure of both Type I and directional
errors within the framework of the FDR, and theoretically
proved that the proposed procedure controls the mdFDR at
a prespecified level when the underlying test statistics are in-
dependent across the genes. We evaluated the performance of
the introduced procedure in the case of dependence through
a simulation study. Finally, the whole proposed methodology
has been applied to analyze a time-course microarray data
and some interesting results have been obtained.

Although our focus was on identifying individual gene ex-
pression profile or trend over the ordered categories in some
common microarray experiments such as time-course or dose-
response experiments, the proposed methodology can also be
applied in National Toxicology Program (NTP) studies, where
researchers are interested in determining whether for a given
tumor type there is a significant dose effect and then identi-
fying its dose-response profile.

The methodology proposed in this article provides an in-
teresting starting point towards addressing the complex yet
important problem of controlling both Type I and direc-
tional errors in multiple testing involving multidimensional
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parameters. The mdFDR controlling property of the pro-
posed directional BH procedure has been established under
the assumption that the underlying test statistics are inde-
pendent across the genes. When gene expressions are obtained
by drawing samples from same subjects over time, such an as-
sumption need not be valid. In such cases, not only do we have
dependence among gene expressions at a given time point but
there may be temporal dependence among gene expressions
at different time points. It will be interesting to theoretically
investigate the performance of the proposed directional BH
procedure under such complex dependence structures. In ad-
dition, it will also be interesting to develop more powerful
adaptive BH directional FDR procedure by exploiting knowl-
edge of the proportion of true null hypotheses.

7. Supplementary Materials
Web Appendices and Figures referenced in Sections 3 and 4
are available under the Paper Information link at the Biomet-
rics website http://www.biometrics.tib.org. A complete
list of all genes identified in Section 5 are also available at
the Biometrics website.
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