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Summary: Microarray gene expression studies over ordered categories are routinely conducted

to gain insights into biological functions of genes and the underlying biological processes. Some

common experiments are time-course/dose-response experiments where a tissue or cell-line is exposed

for different doses and/or durations of time to a chemical. A goal of such studies is to identify

gene expression patterns/profiles over the ordered categories. This problem can be formulated as

a multiple testing problem where for each gene the null hypothesis of no difference between the

successive mean gene expressions are tested and further directional decisions are made if it is rejected.

Much of the existing multiple testing procedures are devised for controlling the usual false discovery

rate (FDR) rather than the mixed directional FDR, the expected proportion of Type I and directional
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errors among all rejections. Benjamini and Yekutieli (2005) proved that an augmentation of the

usual Benjamini-Hochberg (BH) procedure can control the mixed directional FDR while testing

simple null hypotheses against two-sided alternatives in terms of one dimensional parameters. In this

article, we consider the problem of controlling the mixed directional FDR involving multidimensional

parameters. To deal with this problem, we develop a procedure extending that of Benjamini and

Yekutieli based on the Bonferroni test for each gene. A proof is given for its mixed directional

FDR control when the underlying test statistics are independent across the genes. The results of a

simulation study evaluating its performance under independence as well as under dependence of the

underlying test statistics across the genes relative to other relevant procedures are reported. Finally,

the proposed methodology is applied to a time-course microarray data obtained by Lobenhofer et al.

(2002). We identified several important cell-cycle genes, such as DNA replication/repair gene MCM4

and replication factor subunit C2, which were not identified by the previous analyses of the same

data by Lobenhofer et al. (2002) and Peddada et al. (2003). Although some of our findings overlap

with previous findings, we identify several other genes that compliment the results of Lobenhofer et

al. (2002).

Key words: Benjamini-Hochberg procedure; Directional FDR; Dose-response; Microarray; Mul-

tiple testing; Ordered categories; Time-course.



1. Introduction

In many applications researchers are interested in identifying trends in mean response over

ordered categories in large scale experiments. With the advent of microarray technology

such experiments are common in the literature where investigators are routinely conducting

experiments to investigate changes in mean gene expressions over time or dose of a chemical

or cancer stage, etc. For example, Lobenhofer et al. (2002) studied the effect of 17−β estradiol

on the gene expression of MCF-7 breast cancer cells as the cells progressed through various

phases of cell division cycle. In another experiment, Tamoto et al. (2004) investigated the

changes in gene expression with tumor progression in esophagal cancer and identified genes

implicated in the early stages of esophagal squamous cell carcinoma. Recently, Bochkina

and Richardson (2007) discussed the analysis of a time-course gene expression data where

cells from the H2Kb muscle cell line of mouse were treated by insulin (0, 2 or 12 hours of

exposure).

In studies such as those described above, identification of statistically significant genes that

have similar mean expression profiles over ordered categories is often an important goal to

researchers. By identifying such genes, the researchers may potentially discover co-regulated

genes belonging to similar pathways and gain insights into biological functions and processes

of groups of genes with similar patterns of expressions.

Peddada et al. (2003) introduced an order restricted inference based method for identifying

significant genes and group them according to various patterns of inequalities. Implicitly in

their methodology, two decisions are being taken for each gene. First, it is decided whether

or not a gene is significant using a method exercising a control over gene specific Type I error

rate. Then, a suitable inequality pattern is assigned for each selected significant gene based

on the values of the underlying test statistics. The directional error that can potentially occur

in addition to the usual Type I error due to assigning wrong inequality pattern to a selected
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significant gene has not been addressed in that paper. In this paper, we take care of both

the Type I and directional errors. We do that by taking a multiple testing approach to the

main problem where for each gene the mean expressions are successively compared across

the ordered categories and a null hypothesis signifying no particular directional pattern is

formed to test against the union of all possible directional patterns. We develop a method

of simultaneously testing these null hypotheses and determining a directional pattern upon

rejection of each of them controlling both the Type I and directional errors in an overall

sense.

Although directional error has not been discussed extensively in the literature, it is perhaps

a common error that occurs in applications. While testing a null hypothesis H0 : θ = 0 against

the two-sided alternative H1 : θ "= 0, for some single parameter θ of interest, researchers

commonly conclude either θ > 0 or θ < 0 upon rejection of H0 depending on the sign

of the underlying test statistic, keeping the directional error controlled in addition to the

Type I error. However, when multiple hypotheses are tested and the number of parameters

describing directional patterns is larger, even moderately, than one, as is the case with time

course or dose-response microarray data, controlling the directional errors is a problem.

A traditional approach to dealing with directional as well as Type I errors from a multiple

testing point of view is to apply a method that controls the so called mixed directional

familywise error rate (mdFWER), which is the probability of one or more Type I or direc-

tional errors, a variant of the classical familywise error rate (FWER) (Finner, 1994, 1999;

Liu, 1996; Sarkar et al., 2004; Shaffer, 1980). However, when the number of null hypotheses

is large, as in the context of microarray experiments, the notion of mdFWER, just like

the FWER, is too stringent, allowing little chance to make true directional as well as non-

directional discoveries. The FDR (False Discovery Rate), due to Benjamini and Hochberg

(1995), is a more powerful concept of overall Type I error rate than the FWER in the context
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of multiple testing and is now most commonly used in large scale scientific investigations,

especially in microarray gene expression studies. A variant of it while controlling both Type

I and directional errors would be more powerful than the mdFWER. Two such variants

have been introduced in the literature (Benjamini et al., 1993), the pure directional FDR

which is the expected proportion of directional errors among rejected hypotheses and the

mixed directional FDR (mdFDR) which is the expected proportion of Type I and directional

errors among rejected hypotheses. In this article, we will focus on procedures controlling the

mdFDR.

Benjamini and Yekutieli (2005) gave a method with independent tests that controls the

mdFDR when testing multiple simple hypotheses against two-sided alternatives. They proved

that the original Benjamini and Hochberg (1995) procedure controlling the FDR at α can

be augmented to make directional decision upon rejecting a null hypothesis according to the

value of the corresponding test statistic without causing the mdFDR to exceed α, a result

conjectured before by several authors (Benjamini and Hochberg, 2000; Shaffer, 2002; William

et al., 1999). Throughout the paper we shall denote Benjamini and Hochberg procedure by

BH procedure. Clearly, this method, referred to as the directional BH procedure, can be

applied to analyze dose-response microarray data if there are only two ordered categories,

but often this is not the case, as such data typically involve more than two ordered categories

and the method needs to be suitably extended to accommodate such multiple categories.

We extend the BH directional FDR procedure in this article to develop our proposed

multiple testing method that allows us to make a decision on the directional pattern involving

multiple parameters once a null hypothesis of no pattern is rejected and maintains a control

over the mdFDR. The proposed methodology is then evaluated through a simulation study

and applied to the time-course microarray data in Lobenhofer et al. (2002). Our analysis

of Lobenhofer’s data resulted in the discovery of several cell-cycle genes that were not

3



previously identified by Lobenhoer et al. (2002) and Peddada et al. (2003). Some of our

findings complement the previous findings as detailed in Section 5. An important and unique

feature of our methodology is that it permits us to specify the time interval of up (or down)

regulation of a gene during the 48 hour period of the cell-cycle. One of the usual objectives

for conducting cell-cyle time course experiments is to determine the phase of peak expression

for a cell-cycle gene and our methodology allows us to make such determinations.

2. Notations, Definitions and Problem Formulation

In this section, we present the multiple testing formulation of the problem of identifying

expression patterns/trends over ordered categories simultaneously for all the genes, having

introduced some notations and definitions related to multiple testing.

Let µij denote the mean response of the jth variable (e.g. gene), j = 1, . . . , m, in the ith

ordered category, i = 1, . . . , p. A problem of biological interest is to group genes by the

inequalities among the mean responses, known as directional patterns or order restrictions.

Some common inequalities of interest are µ1j ! µ2j ! . . . ! µpj (monotone pattern), µ1j !

µ2j ! . . . ! µij " µ(i+1)j " . . . " µpj, i = 2, . . . , p − 1 (umbrella order with peak µij). Let

δij = µi+1j −µij , i = 1, . . . , p−1, j = 1, . . . , m. Then, the above inequalities of interest or any

other inequalities can be restated in terms of the signs of the δij ’s. Let δδδj = (δ1j , . . . , δqj)′,

where q = p − 1. Suppose we test

H0j : δδδj = 0 against H1j : δδδj "= 0, (1)

and decide for a rejected H0j which component δij ’s are non-zero before declaring their

signs to be positive or negative depending on the values of the corresponding test statistics.

The declared signs of the δij’s then determine a possible inequality or directional pattern.

For instance, in the case of q = 4, suppose for a given gene j, the δδδj = (δ1j , . . . , δ4j) is

found significantly different from a null vector, with δ1j and δ2j declared to be positive and
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negative, respectively, and δ3j and δ4j zeros. Then, the corresponding directional pattern is

µ1j < µ2j < µ3j = µ4j = µ5j . We can test H0j against H1j for all the genes applying a

suitable multiple testing method. Thus, given p ordered categories for each gene, the task

of identifying directional patterns of the mean expressions over these categories for all the

genes is being formulated as a multiple testing problem where H0j is tested against H1j

simultaneously for all the genes and the signs of the δij’s are determined subsequent to the

rejection of the corresponding H0j.

For multiple testing of H0j against H1j , j = 1, . . . , m, we need p-values that will provide a

valid test for each of these individual testing problems and will allow us to make decisions

on the individual δij ’s once a H0j is rejected. For that, we consider for each j the p-value

available for testing each component null hypothesis H i
0j : δij = 0 against the corresponding

component alternative hypothesis H i
1j : δij "= 0, for i = 1, . . . , q, and apply a suitable

combination method pooling these q p-values by treating H0j as an intersection of the

subfamily of these q component null hypotheses, that is, H0j =
⋂q

i=1 H i
0j , and H1j as a

union of the corresponding q alternative hypotheses, that is, H1j =
⋃q

i=1 H i
1j. Before we

discuss appropriate combination methods to be used, let us explain how to obtain these

component p-values and state the underlying assumptions.

For every i = 1, · · · , q and j = 1, · · · , m, suppose we use the absolute value of a test

statistic Tij for testing H i
0j against H i

1j . Let Tij ∼ Fij(t, δij) for some continuous cdf F,

which is symmetric about 0 under H i
0j and gets stochastically larger or smaller as δij either

increases or decreases from 0. In other words, with Fij(t, δij) denoting the cdf of Tij at t

under the parameter δij, we have Fij(t, δij) ! or " Fij(t, 0) according as δij > or < 0, and

Fij(0, 0) = 1
2 . Under this setting, a right-tailed test based on the absolute value of Tij will

be considered for testing H i
0j against H i

1j, with the corresponding two-sided p-value being
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defined as P̃ij = 2 min {Fij(Tij, 0), 1 − Fij(Tij, 0)}. By the assumed distributional property

of Tij, it is easy to verify that under H i
0j , the two-sided p-value P̃ij satisfies

Pr{P̃ij ! p} ! p, for any p ∈ (0, 1). (2)

Given p-values for testing H i
0j against H i

1j, for i = 1, . . . , q, a number of combination

methods (or methods of pooling the p-values) are available in the literature for testing the

intersection null hypothesis H0j =
⋂q

i=1 H i
0j against the alternative H1j =

⋃q
i=1 H i

1j . Among

these, however, the Bonferroni and Simes methods are often used in multiple testing and

allow one to make decisions on the individual δij ’s. For a review of these methods, one may

see Bernhard et al. (2004). Let P̃(1)j ! · · · ! P̃(q)j be the ordered versions of P̃ij, i = 1, · · · , q,

for a fixed j = 1, . . . , m. Then, in the Bonferroni test, the pooled (or adjusted) p-value is

given by Pj = qP̃(1)j ; whereas, in the Simes test, it is given by Pj = min1!i!q

{
qP̃(i)j/i

}
.

While the Bonferroni test does not require any dependence structure in the underlying p-

values, the Simes test requires a certain type of positive dependence condition that is often

satisfied in multiple testing applications (Sarkar and Chang, 1997). Upon rejection of H0j

using the Bonferroni pooled p-value at a level α, the ith component null hypothesis H i
0j can

be rejected if P̃ij ! α/q. For the test based on the Simes pooled p-value, H i
0j corresponding

to every P̃ij ! P̃(Rj)j is rejected, where Rj = max
{
i : P̃(i)j ! i

qα
}
, if the maximum exists;

otherwise, Rj = 0.

Now, suppose the pooled p-value Pj, based on either Bonferroni or Simes test, is available

to us for every j = 1, . . . , m, to carry out a multiple testing procedure to test H0j against H1j

simultaneously for all j = 1, . . . , m. We will use the multiple testing method of Benjamini

and Hochberg (1995) (the BH method) that is designed to control the false discovery rate

(FDR). The FDR, for any given multiple testing procedure, is the expected proportion of

false rejections (Type I errors) among all rejections, an overall measure of Type I error rate

commonly used in microarray studies. More formally, with V the number of falsely rejected
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true null hypotheses among H1, . . . , Hm and R the total number of rejected hypotheses

among H1, . . . , Hm, it is defined as

FDR = E
{

V

R ∨ 1

}
, (3)

where R∨1 = max(R, 1). This method with a control of the FDR at a given level α is a stepup

test that, given ordered p-values P(1) ! · · · ! P(m) with the corresponding null hypotheses

H(1), · · · , H(m), finds k = max
{
1 ! j ! m : P(j) ! jα/m

}
and rejects those H(j) for which

P(j) ! P(k), provided this maximum exists, otherwise, accepts all the null hypotheses.

When a H0j : δδδj = 0 is rejected using the BH method and further decisions are being

made on the signs of the component δij ’s in the corresponding δδδj, a directional error might

occur due to wrong assignments of the signs. For instance, if there is a component δij in

δδδj = (δ1j , . . . , δqj) that is truly positive (or negative) but declared to be negative (or positive)

while deciding on the signs of the δij ’s upon rejection of H0j : δδδj = 0, a directional error

occurs. So, we need to control such directional errors as well. A convenient and practical way

of doing that would be to use an error rate combining both Type I and directional errors in

the FDR framework and make sure that it is controlled. One such error rate is the mixed

directional FDR (mdFDR), the sum of the FDR and the pure directional FDR (dFDR). The

dFDR is defined as

dFDR = E
{

S

R ∨ 1

}
, (4)

where S denotes the total number of false null hypotheses among H1, . . . , Hm that are

correctly rejected but at least one directional error has been made while deciding upon

the signs of the components. In other words, S is the number of rejected hypotheses Hj’s

such that δδδj "= 0 and for some i = 1, . . . , q, δij is declared to be positive when δij ! 0, or δij

is declared to be negative when δij " 0. Thus, more formally, the mdFDR is defined as

mdFDR = FDR + dFDR = E
{

V + S

R ∨ 1

}
, (5)
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the expected proportion of Type I and directional errors among all rejections.

It is important to point out that the goal of this paper is to identify expression patterns

of m genes over p ordered categories. For each gene it is biologically relevant to consider its

expression pattern as a whole across p ordered categories rather than viewing this to be a

problem of testing qm separate hypotheses which ignores the intrinsic biological structure

present in the problem. Thus, rather than viewing it as a problem of performing qm tests, we

treat it as a problem of performing a set of m tests each involving q-dimensional hypothesis.

In addition, we want to emphasize that while making directional decisions for the components

of δδδj , no directional errors are being made when δδδj = 0. In contrast, when making directional

decisions regarding a non-null δδδj , a directional error is made if a component δij for which

δij = 0 is declared to be positive or negative.

In the next section, we will develop methods to control the mdFDR. This will extend the

following directional BH procedure of Benjamini and Yekutieli (2005) from dimension one

(i.e., q = 1) to a general dimension.

Definition 1 (The level-α directional BH Procedure)

(1) Apply the BH method at level α to test H0j : δ1j = 0 against H1j : δ1j "= 0 simultaneously

for j = 1, . . . , m, based on the two-sided p-values P̃1j, j = 1, . . . , m.

(2) Let R denote the total number of null hypotheses rejected.

(3) For every j = 1, · · · , m, with P̃1j ! R
mα, declare δ1j > or < 0 according as T1j > 0 or

< 0.

It controls the mdFDR at α under independence of the underlying test statistics.

3. Multidimensional Directional FDR Controlling Procedures

We introduce in this section our proposed method of controlling the mdFDR while testing

H0j : δδδj = 0 against H1j : δδδj "= 0, simultaneously for all j = 1, . . . , m, and making further
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decisions on the signs of the δij ’s upon rejection of the corresponding H0j . It is based on the

Bonferroni pooled p-values.

Procedure 1

(1) Apply the BH method at level α to test H0j against H1j simultaneously for j = 1, . . . , m,

based on the Bonferroni pooled p-values Pj , j = 1, · · · , m.

(2) Let R denote the total number of null hypotheses rejected.

(3) For every i = 1, · · · , q and j = 1, · · · , m with P̃ij ! R
qmα, if Tij > 0, declare δij > or < 0

according as Tij > 0 or < 0.

Theorem 1: With independent q-dimensional test statistics Tj = (T1j , · · · , Tqj), j =

1, · · · , m, the mdFDR of Procedure 1 is less than or equal to α.

Remark 1. We offer a proof of Theorem 1 in the Appendix. Benjamini and Yekutieli (2005)

gave an indirect proof of this theorem in the special case when q = 1 using an approach that

relates to the FDR-adjusted confidence intervals for selected parameters they developed in

the same paper. However it is not apparent how one could adapt their proof to the present

case involving multiple parameters. So, we provide a direct proof in a more general setting.

Remark 2. In Theorem 1, we assume that q-dimensional test statistics Tj’s are indepen-

dent. However, within each Tj , we do not impose any restriction on Tij’s.

It would be tempting to develop an alternative method based on the Simes pooled p-values

as follows:

Procedure 2

(1) Apply the BH method at level α to test H0j against H1j simultaneously for j = 1, . . . , m,

based on the Simes pooled p-values Pj, j = 1, · · · , m.

(2) Let R denote the total number of null hypotheses rejected.

(3) For every j = 1, · · · , m, let P̃(1)j ! · · · ! P̃(q)j be the ordered values of P̃ij , i = 1, · · · , q.
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Let Rj = max{i : P̃(i)j ! i
q ·

R
mα}, if the maximum exists; otherwise Rj = 0. For every i

and j with P̃ij ! Rj

q · R
mα, declare δij > 0 or < 0 according as Tij > 0 or < 0.

Remark 3. As Simes test is known to be more powerful than the Bonferroni test (Simes,

1986), Procedure 2 would be more powerful than Procedure 1. Unfortunately, however, it

would not control the mdFDR, as the Associate Editor pointed out. Consider, for instance,

m = 1. The augmented test in this procedure in this case reduces to the step-up test with

Simes critical values for the q hypotheses. Assume that q = 10 and that for half of the

hypotheses δi1 = 0 and for the remaining δi1 is very large. Then the familywise error rate

(FWER) of the step-up test with Simes critical values (for the test of the q hypotheses) is not

controlled; see also Hommel (1988). However, in this scenario, mdFDR " FWER. Therefore,

Procedure 2 loses the control of the mdFDR in this situation. So, we do not formally propose

it in this article as a multidimensional directional FDR controlling procedure, though we will

consider it along with Procedure 1 in our simulation studies in the next section.

4. A Simulation Study

A simulation study was performed to evaluate the performance of our proposed method,

Procedure 1. Specifically, we wanted to investigate the following three questions:

(i) How does it perform in terms of its control of the FDR, dFDR and mdFDR and also

power under independence as well as under types of dependence across the genes?

(ii) How dose it perform in terms of the same operating characteristics under the indepen-

dence across the genes when we benchmark it against Procedure 2 (based on the Simes

pooled p-values) and the procedure that makes no adjustment to the gene specific p-values,

that is, simply uses P̃(1)j as the pooled p-value?

(iii) How does the performance of Procedure 1 under the independence across the genes

change as the the dimension q increases?
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We generated q + 1 independently distributed m-dimensional random normal vectors

Z1, . . . ,Zq+1, where the components Zij , j = 1, · · · , m, in each Zi are dependent with Zij ∼

N(µij, 1) and have a common correlation ρ. Let δij = (µi+1,j − µij)/
√

2, i = 1, . . . , q; j =

1, . . . , m.. Out of the m parameter vectors δδδj = (δ1j , . . . , δqj), j = 1, . . . , m, m0 were set

to a null vector each, and all the δij ’s in 50%, 25% and 25% of the remaining m − m0

δδδj ’s were selected randomly from the intervals (−0.75, 0.75), (−4.25,−2.75) and (2.75, 4.25)

respectively. For each i = 1, · · · , q, and j = 1, · · · , m, the statistic Tij = (Zi+1,j − Zij)/
√

2

for testing H i
0j : δij = 0 vs. H i

1j : δij "= 0 and the corresponding two-sided p-value

P̃ij = 2 {1 − Φ (|Tij |)} were then computed, where Φ(·) is the standard normal cdf. The

pooled p-values were calculated according to the Bonferroni and Simes tests, respectively,

and Procedures 1, 2 were applied to their respective lists of pooled p-values for testing the m

null hypotheses described in (1). We also considered the so called no-adjustment procedure,

which are the same as Procedures 1 and 2, except for every hypothesis Hj we do not make any

adjustment for its corresponding p-value Pj = P̃(1)j . For each of these procedures, the number

of true null hypotheses that are rejected (Type I errors), the number of δδδj ’s corresponding to

the false null hypotheses the signs of whose components do not completely match with those

assigned by the procedure (directional errors) and the sum of these two numbers (Type I

and directional errors) were noted. Finally, the following three proportions among the total

number of rejected null hypotheses were calculated – the proportion of Type I errors (the

observed value of V/R∨1), the proportion of directional errors (the observed value of S/R∨1)

and the proportion of Type I and directional errors (the observed value of (V + S)/R ∨ 1).

These steps were repeated 10,000 times and the simulated values of the FDR, dFDR and

mdFDR were obtained by averaging out the 10,000 values of the above three proportions.

[Figure 1 about here.]

[Figure 2 about here.]

11



Figure 1 presents the simulated FDR, dFDR and mdFDR, Figure 2 presents standard

deviation of the simulated mdFDR, and Web Figure 1 presents the simulated average power

(the proportion of false null hypotheses that are correctly rejected with correct assigned

signs) of Procedure 1 plotted against the number of false null hypotheses for m = 1000,

q = 5, α = 0.05 and ρ = 0 (independence), 0.2, 0.5 and 0.8.

Some interesting observations can be made from Figure 1. With increasing number of

truly significant genes, the FDR steadily decreases to zero as long as the dependence across

the genes is low or moderately high, while the dFDR slowly increases from zero to a value

slightly less than 0.01, no matter what the dependence across the genes is, as long as it is

non-negative. Consequently, when the genes are not too highly dependent, with increasing

number of truly significant genes although the mdFDR decreases, implying that Procedure

1 as an mdFDR controlling procedure becomes more conservative, it does not however reach

zero (see Figure 1(a)-(c)). When the genes are highly dependent, as we see from Figure 1(d),

Procedure 1 becomes less conservative as the number of truly significant genes begins to

increase from zero, but eventually it becomes more conservative as this number becomes

larger.

Also, as seen from Figure 2, the standard deviation of the estimated mdFDR is very small.

From Web Figure 1 we see that as the dependence across genes increases, the change in power

is small. Overall, the effect of dependence across genes on the performance of the proposed

procedure is relatively small. As suggested by the associate editor, under the above simulation

settings, we also evaluated the performance of Procedure 1 for the δδδj = (100, 0, . . . , 0), in

which one component is extremely large and the rest are zero. For such non-null δδδj, there

is a high chance that it is detected to be non-null and its one or more zero components are

declared to be positive or negative. That is, in such scenario, it is more possible to make

directional errors. Web Figure 2 presents the simulated FDR, dFDR and mdFDR and Web
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Figure 3 presents the standard deviation of the simulated mdFDR. As expected, in the case

of a non-null pattern, the dFDR is increasing as the number of false nulls increases, and

is much larger than that for the previous scenario. However, the mdFDR is still controlled

under a pre-specified level (see Web Figure 2). As seen from Web Figure 3, the standard

deviation of the estimated mdFDR is still very small for such scenarios.

Web Figure 4 presents an answer to question (ii). As we see from this figure, Procedures 1

and 2 behave quite similarly, at least when the dependence across the genes is not of concern,

in terms of controlling the FDR, dFDR and mdFDR and the power, though Procedure 2 is

slightly more liberal as expected. Also as expected, if no adjustment is made to gene-specific

p-values, we lose the control of the FDR and mdFDR, with the maximum reaching 0.2. It

seems surprising that, even without any adjustment to gene specific p-values, the dFDR

always remains low, though it becomes larger compared to that for Procedures 1 and 2 as

the number of false nulls increases.

Web Figures 5-6 provide an answer to question (iii). It is interesting to note that the

performance of Procedure 1 in terms of controlling the FDR, dFDR and mdFDR is unaffected

by the dimension q when the dependence across the genes is not present. The power, of course,

increases with increasing dimension.

5. An Application to Time-Course Gene Expression Data

Lobenhofer et al. (2002) investigated the effect of estrogen on the expression of cell-cycle

genes as MCF-7 breast cancer cells go through the cell division cycle. A normal cell division

cycle consists of four major phases, namely, the G1 (or Gap 1), S (Synthesis), G2 (or Gap

2) and M (Mitosis) phase. Genes involved in the cell cycle (known as cell-cycle genes) are

expected to attain peak gene expression during the phase in which they have a specific

biological function in the cell cycle.

According to Lobenhofer et al. (2002), most estradiol treated MCF-7 cells are expected
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to go through S, G2 and M phases in 12 to 36 hours after treatment and complete the

cycle in 48 hours. Genes involved in cell growth and related activities are expected to have

maximum expression (or minimum expression if they are anti-growth) during 1 or 4 hours

and then monotonically decrease (or increase) in expression as cells go through the remaining

phases. On the other hand, genes involved in DNA synthesis, repair and mitosis would have

maximum (or minimum) expression during 12 to 36 hours. Thus, such genes may have an

Umbrella (or Inverted umbrella) shaped pattern with a peak or trough during 12 to 36 hours

time period. However, according to Lobenhofer et al. (2002), the cells may be asynchronous

as they complete the cell division cycle at 48 hours after exposure. For this reason, the

expression of some of the cell-cycle genes may not return to their baseline values at 48 hours

but may attain a plateau.

Before exposing the MCF-7 breast cancer cells to estrogen, Lobenhofer et al. (2002)

first synchronized all the cells to G1 phase by depriving the cells of serum for 24 hours.

Synchronization of cells to the same phase at the beginning of the experiment is important

for obtaining reliable gene expression data. They then harvested estradiol treated cells after

1, 4, 12, 24, 36 or 48 hours of treatment. Gene expressions using cDNA microarray chips

were obtained at each time point. Each cDNA microarray chip consisted of 1900 gene probes.

With 8 replicates at each time point, there were a total of 48 microarray chips across the 6

time points.

Motivated by the above observations, in this section we apply the proposed methodology to

identify some cell-cycle genes by considering four ordered categories of time points, namely,

1 hour (T1), 4 hours (T2), mid group (i.e., the union of 12, 24, 36 hours) (T3) and 48

hours (T4) after treatment. Thus the sample sizes in the four groups are 8, 8, 24 and 8

respectively. Since the major cell division related activity takes place during the 12 to 36
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hours time interval, we combined those time periods together to contrast that period from

initial cell growth period (1, 4 hours) and the end of mitosis (48 hours).

Suppose θT1,j , θT2,j , θT3,j and θT4,j denote the mean gene expression of gene j, j = 1, 2, . . . , 1900,

during time periods T1, T2, T3 and T4, respectively. Using notations from the previous

section, we let δ1j = θT1,j − θT2,j, δ2j = θT2,j − θT3,j and δ3j = θT3,j − θT4,j .

Let Tij denote the test statistic associated with the parameter δij, i = 1, 2, 3 and j =

1, 2, . . . , 1900. In this application Tij is the usual two-sample t-test statistic and since the

underlying data are not necessarily normally distributed, nonparametric bootstrap method-

ology based on 10,000 bootstrap samples is used for computing the p-values P̃ij associated

with hypotheses on δij. We then calculate the Bonferroni pooled p-value Pj for each gene j

after computing P̃ij , i = 1, 2, 3.

By applying our proposed method, Procedure 1 to the list of the pooled p-values Pj ’s, we

identified 86 differentially expressed genes at level α = 0.05 of which 19 had an umbrella

shape response, 3 inverted umbrella, 32 increased in expression from T1 to T3 and then

plateaued (i.e. for some gene j, θT1,j ! θT2,j ! θT3,j = θT4,j , with at least one strict

inequality). An opposite response was seen with 22 genes which had decreased expression

from T1 to T3 and then plateaued (i.e. for some gene j, θT1,j " θT2,j " θT3,j = θT4,j , with

at least one strict inequality). We also discovered 10 genes that had a flat expression until

T3 and then a decrease in response from T3 to T4.

Comparing our results with those of Lobenhofer et al. (2002) and Peddada et al. (2003),

we found that of the 86 genes we identified, 39 were also identified in at least one of the two

previous papers. This included 8 of 13 DNA replication/repair genes identified by Lobenhofer

et al. (2002). Among the 5 that were not identified by our procedure, we note that except

for MCM7, which may be significant at α = 0.10, all others had large p-values that were not

significant even at α = 0.20. Interestingly, in addition to MCM3 that was identified by both
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Lobenhofer et al. (2002) and Peddada et al. (2003), we identified a well known cell-cycle

gene MCM4 (http://www.cyclebase.org).

An important step in DNA synthesis during the S phase is the binding of complex proteins

to DNA for recruiting other proteins necessary for DNA synthesis. One such complex protein

is the replication factor C. Lobenhofer et al. (2002) identified one subunit of this protein,

known as replication factor C3. Later the order-restricted inference based methodology of

Peddada et al. (2003) identified two additional subunits of this protein, namely, replication

factors C4 and C5. Interestingly, the newly introduced methodology identified subunits C2,

C3 and C5 as significant genes, thus reinforcing the earlier findings and adding one more

subunit to the previous list of replication factor C. Furthermore, based on the proposed

methodology it is possible to conclude that the subunits C2, C3 and C5 have peak expression

during the 12, 24 or 36 hours time period where the DNA synthesis and replication takes

place.

Furthermore, similar to the order-restricted inference procedure of Peddada et al. (2003),

the proposed methodology identified the cyclin-dependent kinase inhibitor 1 A (p21 and Cip

1) as repressed during 12 to 36 hours. This gene was not identified by Lobenhofer et al.

(2002).

A complete list of all genes identified by this procedure is provided in the Web Supplemen-

tary Materials accompanying this article.

6. Concluding Remarks

In microarray gene expression studies, researchers are often not only interested in identifying

differentially expressed genes under different biological conditions, but are also interested in

detecting trends in mean response over ordered categories. For instance, in the simple case of

two categories (normal versus tumor tissue), researchers are not only interested in identifying

significant genes across these two categories, but they are also interested in further identifying
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the down and up-regulated genes. As the number of ordered categories increases, the trends

or directional patterns become complex and the number of directional patterns increases.

Except for the usual Type I errors, this also potentially results in a relatively high frequency

of directional errors. Hence, it is important to develop statistical methods of identifying

trends in mean response over ordered categories while maintaining a control over both the

Type I and directional errors.

The approach proposed in this article provides such a methodology. Differently from

existing statistical methods (Peddada et al., 2003; Lin et al., 2007), we have formulated

the problem of identifying trends in mean response over ordered categories as a multiple

testing problem involving successive comparisons and further directional decisions on the

multidimensional parameter of each gene. To deal with this problem, we have first suggested

a general multidimensional BH-type directional procedure using the Bonferroni test for

controlling the mixed directional FDR (mdFDR), an overall measure of both Type I and

directional errors within the framework of the FDR, and theoretically proved that the

proposed procedure controls the mdFDR at a pre-specified level when the underlying test

statistics are independent across the genes. We evaluated the performance of the introduced

procedure in the case of dependence through a simulation study. Finally, the whole proposed

methodology has been applied to analyze a time-course microarray data and some interesting

results have been obtained.

Although our focus was on identifying individual gene expression profile or trend over the

ordered categories in some common microarray experiments such as time-course or dose-

response experiments, the proposed methodology can be also applied in National Toxicology

Program (NTP) studies, where researchers are interested in determining whether for a given

tumor type, there is a significant dose effect and then identifying its dose-response profile.

The methodology proposed in this article provides an interesting starting point towards ad-
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dressing the complex yet important problem of controlling both Type I and directional errors

in multiple testing involving multidimensional parameters. The mdFDR controlling property

of the proposed directional BH procedure has been established under the assumption that

the underlying test statistics are independent across the genes. When gene expressions are

obtained by drawing samples from same subjects over time, such an assumption need not

be valid. In such cases, not only do we have dependence among gene expressions at a given

time point but there may be temporal dependence among gene expressions at different time

points. It will be interesting to theoretically investigate the performance of the proposed

directional BH procedure under such complex dependence structures. In addition, it will

also be interesting to develop more powerful adaptive BH directional FDR procedure by

exploiting knowledge of the proportion of true null hypotheses.

7. Supplementary Materials

Web Appendices and Figures referenced in Sections 3 and 4 are available under the Paper

Information link at the Biometrics website http://www.biometrics.tib.org. A complete

list of all genes identified in Section 5 are also available at the Biometrics website.
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Figure 1. Performance of Procedure 1 under dependence across genes in terms of its control
of the FDR, dFDR and mdFDR for m = 1000, q = 5,α = 0.05, and ρ = 0, 0.2, 05 and 0.8.
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Figure 2. Standard deviation of the mdFDR of Procedure 1 under dependence across
genes for m = 1000, q = 5,α = 0.05, and ρ = 0, 0.2, 05 and 0.8.
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