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In multiple testing, the unknown proportion of true null hypotheses
among all null hypotheses that are tested often plays an important role.
In adaptive procedures this proportion is estimated and then used to
derive more powerful multiple testing procedures. Hochberg and Ben-
jamini (1990) first presented adaptive Holm and Hochberg procedures for
controlling the familywise error rate (FWER). However, until now, no
mathematical proof has been provided to demonstrate that these proce-
dures control the FWER in finite samples. In this paper, we present new
adaptive Holm and Hochberg procedures and prove they can control the
FWER in finite samples under some common types of positive depen-
dence. Through a small simulation study, we illustrate that these adap-
tive procedures are more powerful than the corresponding non-adaptive
procedures.
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1.1. Introduction

In this article, we consider the problem of simultaneously testing a finite

number of null hypotheses Hi, i = 1, . . . , n, based on their respective p-

values Pi, i = 1, . . . , n. A main concern in multiple testing is the multi-

plicity problem, namely, that the probability of committing at least one

Type I error sharply increases with the number of hypotheses tested at a

pre-specified level. There are two general approaches for dealing with this

problem. The first one is to control the familywise error rate (FWER),

which is the probability of one or more false rejections, and the second one

is to control the false discovery rate (FDR), which is the expected propor-

tion of Type I errors among the rejected hypotheses, proposed by Benjamini

and Hochberg (1995). The first approach works well for traditional small-

scale multiple testing , while the second one is more suitable for modern

large-scale multiple testing problems.

Given the ordered p-values P1:n ≤ · · · ≤ Pn:n with the associated null

hypotheses H1:n, · · · ,Hn:n, and a non-decreasing sequence of critical values

α1 ≤ · · · ≤ αn, there are two main avenues open for developing multiple

testing procedures based on the marginal p-values – stepdown and stepup.

• A stepdown procedure based on these critical values operates as

follows. If P1:n > α1, do not reject any hypothesis. Otherwise,

reject hypotheses H1:n, · · · ,Hr:n, where r ≥ 1 is the largest index

satisfying P1:n ≤ α1, · · · , Pr:n ≤ αr. If, however, Pr:n > αr for

all r ≥ 1, then do not reject any hypothesis. Thus, a stepdown

procedure starts with the most significant hypothesis and continues

rejecting hypotheses as long as their corresponding p-values are less

than or equal to the corresponding critical values.

• A stepup procedure , on the other hand, operates as follows. If

Pn:n ≤ αn, then reject all null hypotheses; otherwise, reject hy-

potheses H1:n, · · · ,Hr:n, where r ≥ 1 is the smallest index satisfy-

ing Pn:n > αn, . . . , Pr+1:n > αr+1. If, however, Pr:n > αr for all

r ≥ 1, then do not reject any hypothesis. Thus, a stepup procedure

begins with the least significant hypothesis and continues accepting

hypotheses as long as their corresponding p-values are greater than

the corresponding critical values until reaching the most significant

hypothesis H1:n.

If α1 = · · · = αn, the stepup or stepdown procedure reduces to what is

usually referred to as a single-step procedure.
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For controlling the FWER, a number of widely used procedures are

available, among which the Bonferroni, Holm (1979) and Hochberg (1988)

procedures are relatively popular. The Bonferroni procedure is a single-

step procedure with the critical values αi = α/n, i = 1, . . . , n. The Holm

procedure is a stepdown procedure with the critical values αi = α/(n −
i + 1), i = 1, . . . , n, and the Hochberg procedure is a stepup procedure

based on the same set of critical values as Holm’s. With the null p-values

having the U(0, 1), or stochastically larger than the U(0, 1), distribution,

the Bonferroni and Holm procedures both control the FWER at α without

any further assumption on the dependence structure of the p-values. The

Hochberg procedure controls the FWER at α when the null p-values are

independent or positively dependent in the the following sense:

E {ϕ(P1, . . . , Pn) | Pi = u} ↑ u ∈ (0, 1), (1.1)

for each Pi and any increasing (coordinatewise) function ϕ. (Hochberg,

1988; Sarkar, 1998; Sarkar & Chang, 1997). The condition (1) is the positive

dependence through stochastic ordering (PDS) condition defined by Block,

Savits and Shaked (1985), although it is often referred to as the positive

regression dependence on subset (of null p-values), the PRDS condition,

considered in Benjamini & Yekutieli (2001) and Sarkar (2002) in the context

of FDR . Also, it has been noted recently that this positive dependence

condition can be replaced by the following weaker condition:

E {ϕ(P1, . . . , Pn) | Pi ≤ u} ↑ u ∈ (0, 1). (1.2)

The condition (1) or (2) is satisfied by a number of multivariate distribu-

tions arising in many multiple testing situations, for example, those of mul-

tivariate normal test statistics with positive correlations, absolute values of

studentized independent normals, and multivariate t and F (Benjamini &

Yekutieli, 2001; Sarkar, 2002).

Since these procedures are often conservative by a factor which is the

unknown proportion of true null hypotheses, the conservativeness in these

procedures could be reduced, and hence the power could potentially be

increased, if an estimate of this proportion can be suitably incorporated

into these procedures. With that idea in mind, Hochberg & Benjamini

(1990) proposed adaptive Bonferroni , Holm and Hochberg procedures for

controlling the FWER. However, it has not been proved yet that these

adaptive FWER procedures actually can provide an ultimate control over

the FWER. Recently, Guo (2009) introduced new adaptive Bonferroni and

Holm procedures by simplifying those in Hochberg & Benjamini (1990). He
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proved that, under a conditional independence model, while his adaptive

Bonferroni procedure controls the FWER for finite samples, the adaptive

Holm procedure approximately controls the FWER for large samples.

For controlling the FDR, the well-known procedure is that of Benjamini

and Hochberg (1995). The same phenomenon in terms of conservativeness

happens also with this procedure and a number of adaptive versions of it

that control the FDR have been introduced in the literature; see Benjamini

& Hochberg (2000), Storey et al. (2004), Benjamini et al. (2006), Ferreira

& Zwinderman (2006), Sarkar (2006, 2009), Benjamini & Heller (2007),

Farcomeni (2007), Blanchard & Roquain (2008), Wu (2008), Gavrilov et

al. (2009), and Sarkar & Guo (2009). It is important to note that in

the case of finite samples, the FDR control of these adaptive procedures

has been proved only when the underlying test statistics are independent.

Using a simulation study, Benjamini et al. (2006) demonstrated that some

adaptive FDR procedures, such as Storey’s, which control the FDR under

independence, may fail to do so under dependence. Thus, developing an

adaptive procedure controlling the FWER or FDR even under dependence

in finite samples appears to be an important undertaking.

In this paper, we concentrate mainly on developing adaptive FWER

procedures. We take a general approach to constructing such a procedure

that controls the FWER under independence or positive dependence. This

involves using a concept of adaptive global testing and the closure principle

of Marcus et al. (1976). The closure principle is a useful tool to derive

FWER controlling multiple testing procedures based on valid tests available

for different possible intersections or global null hypotheses. In adaptive

global testing, information about the number of true null hypotheses is

extracted from the available p-values and incorporated into a procedure

while testing an intersection or global null hypothesis and maintaining a

control over the (global) type I error rate. We derive two such adaptive

global tests, with one involving an estimate of the number of true null

hypotheses considered in Hommel’s (1988) FWER controlling procedure

and the other based on an estimate of this number that can be obtained by

applying the Benjamini and Hochberg’s (1995) FDR controlling procedure.

Both of these tests provide valid controls of the (global) type I error rate

under independence or positive dependence, in the sense of (1) or (2), of the

p-values. Based on these global tests and applying the closure principle, we

derive alternative adaptive Holm and adaptive Hochberg procedures. We

offer theoretical proofs of the FWER controls of these procedures in finite

samples under independence or positive dependence in the sense of (1) or
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(2) of the p-values. We provide numerical evidence through a small-scale

simulation study that the present adaptive Holm and Hochberg procedures

can be more powerful, as expected, than the corresponding non-adaptive

procedures.

The paper is organized as follows. In Section 2, we introduce what we

mean by an adaptive global test and present two such tests. In Section 3, we

present the developments of our proposed new adaptive Holm and Hochberg

procedures and prove that they control the FWER under independence or

positive dependence in the sense of (1) or (2) of the p-values. A real-

life application of our procedures and the results of a simulation study

investigating the performances of our procedures relative to others are also

presented in this section. Some concluding remarks are made in Section 4.

1.2. Adaptive Global Tests

In this section, we will present our idea of an adaptive global test . Given

any family of null hypothesis H1, . . . , Hm, and the corresponding p-values

Pi, i = 1, . . . ,m, consider testing the global null hypothesis H0 =
∩m

i=1 Hi.

We will focus on global tests where the rejection regions are of the form∪m
i=1{Pi:m ≤ ci}; that is, where each ordered p-value Pi:m is compared

with a cut-off point ci, with 0 ≤ c1 ≤ . . . ≤ cm ≤ 1, and H0 is rejected

if Pi:m ≤ ci holds for at least one i. Such a test has been referred to

as a cut-off test (Bernhard et al., 2004). It allows making decisions on the

individual null hypotheses once the global null hypothesis is rejected, which

is important since we need to develop in the next section multiple testing

procedures based on it through the closure principle.

There are a number of such cut-off global tests available in the litera-

ture, such as the Bonferroni test , where c1 = . . . = cm = α/m, and the

Simes test, where ci = iα/m, for i = 1, . . . ,m, (Simes, 1986). However,

the idea of extracting information about the number, say m0, of the true

null hypotheses in the family of interest and incorporating that into the

construction of a global cut-off test has net yet been seen in the litera-

ture. Why would such an adaptive global test make sense? Consider, for

instance, the statistic Wm(λ) =
∑m

i=1 I(Pi > λ) (with I being the indica-

tor function), which is the number of insignificant p-values observed when

the fixed rejection threshold λ ∈ (0, 1) is chosen for each p-value. A high

value of Wm(λ) would indicate that m0 is likely to be large, and hence

would provide an evidence towards accepting the global null hypothesis.

Similarly, a small value of Wm(λ) would provide an evidence towards re-
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jecting the null hypothesis. It is important to note that, although a test

just based on Wm(λ), for a fixed λ and controlling the type I error rate

at a pre-specified level could be formulated for testing H0, either exactly

using the Binomial distribution when the p-values are independent, since

in this case Wm(λ) ∼ Bin(m, 1− λ) under H0, or approximately using, for

example, a permutation test when the p-values have an unknown or more

complicated dependence structure, this would not be helpful in terms of

providing a cut-off test. Nevertheless, the value of Wm(λ) can be factored

into each Pi in a way that shrinks Pi towards a smaller value, making it

more likely to be significant, if Wm(λ) is small, and expands Pi to a larger

value if Wm(λ) is large. Of course, instead of Wm(λ), we could use any

other statistic, or a consistent estimate of m0, a large value of which would

indicate acceptance of H0. This is how we will develop two global cut-off

tests in the following.

First, we develop our adaptive Simes global test , borrowing the idea of

estimating m0 from Benjamini et al. (2006). Let Pm = (P1, . . . , Pm), and

W1(Pm) be the total number of accepted null hypotheses when the FDR

controlling procedure of Benjamini and Hochberg (1995), the BH procedure,

is applied to Pm. Recall that the BH procedure is a stepup procedure based

on the critical values of the original Simes global test . With

m̂
(1)
0 (Pm) = max {W1(Pm), 1} , (2.3)

we define the following:

Adaptive Simes Test. Reject H0 if Pi:m ≤ ci for at least one i =

1, . . . ,m, where ci = iα/m̂
(1)
0 (Pm).

The fact that the adaptive Simes test controls the type I error rate at

α under independence or positive dependence in the sense of (1) or (2)

can be proved as follows. Let R1 and R2 be the total numbers of the null

hypotheses rejected by the BH procedure and the stepup procedure with

the same critical values as in the adaptive Simes test. Then, the type I

error rate of the adaptive Simes test is give by

pr {R2 > 0} = pr {R2 > 0, R1 = 0}+ pr {R2 > 0, R1 > 0} , (2.4)

with the probabilities being evaluated under H0. Since m̂
(1)
0 (Pm) =

max{m−R1, 1}, and R2 = 0 with probability one if R1 = 0,

pr {R2 > 0} = pr {R2 > 0, R1 > 0} ≤ pr {R1 > 0} ,

which is less than or equal to α under independence or positive dependence

in the sense of (1) or (2) of the p-values due to the well-known Simes’

inequality (Simes, 1986; Sarkar, 1998; Sarkar & Chang, 1997).
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We will now obtain an adaptive Bonferroni global test. We will do

that through reinterpreting the Hommel procedure (Hommel, 1988) as an

adaptive version of the Bonferroni procedure. The Hommel procedure is

defined as follows. Let

W2(Pm) = {j ∈ {1, . . . ,m} : Pm−j+k:m > kα/j, k = 1, . . . , j}

and

m̂
(2)
0 (Pm) = max {W2(Pm), 1} . (2.5)

If W2(Pm) is nonempty, reject Hi whenever Pi ≤ α/m̂
(2)
0 (Pm). If, how-

ever, W2(Pm) is empty, reject all Hi, i = 1, . . . ,m. Notice that m̂
(2)
0 (Pm)

represents the maximum size of the subfamily of null hypotheses whose

members are all declared to be true when applying the Simes test. In other

words, m̂
(2)
0 (Pm) provides an estimate ofm0, in terms of which the Hommel

procedure can be interpreted as the following:

Adaptive Bonferroni Test. Reject H0 if Pi:m ≤ ci for at least one

i = 1, . . . ,m, where ci = α/m̂
(2)
0 (Pm).

We can summarize the above discussions in the following proposition.

Proposition 1.1. Given any family of null hypotheses Hi, i = 1, . . . ,m,

consider testing the global null hypothesis H0 =
∩m

i=1 Hi using a cut-off

test of the form
∪m

i=1{Pi:m ≤ ci}. When the p-values are independent or

positively dependent in the sense of (1) or (2), the adaptive Simes and

Bonferroni tests are valid level α tests.

Remark 1.1. In the above adaptive tests, we use max{1, i} as the estimate

of m0 once the hypotheses Hm−i+k:m, k = 1, . . . , i, are accepted, where this

i, for the adaptive Simes test, is the index such that Pm−i+k:m > (m− i+

k)α/m for all k = 1, . . . , i, whereas, for the adaptive Bonferroni test, it is the

largest index from 1 to m such that Pm−i+k:m > kα/i for all k = 1, . . . , i.

Since (m − i + k)α/m ≥ kα/i for k = 1, . . . , i, the estimate of m0 is more

liberal in the adaptive Simes test than in the adaptive Hommel test, i.e.,

m̂
(1)
0 ≤ m̂

(2)
0 , implying that the adaptive Simes test is more powerful.

Remark 1.2. In the alternative adaptive Bonferroni procedure considered

in Guo (2009), ci = α/m̂0, i = 1, . . . ,m, where m̂0 = [Wm(λ) + 1]/(1− λ).

It also provides a valid level α global test for testing H0, but under a model

that assumes independence of the p-values conditional on any (random)

configurations of true and false null hypotheses.
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1.3. Adaptive Multiple Testing Procedures

We now consider our main problem, which is, to simultaneously test the null

hypotheses Hi, i = 1, . . . , n, and develop newer adaptive versions of Holm’s

stepdown and Hochberg’s stepup procedures that utilize information about

the number of true null hypotheses suitably extracted from the data and

ultimately maintain a control over the FWER at α. We first present these

procedures. Then, we provide a real life application, and the results of a

simulation study investigating the performances of our proposed adaptive

procedures in relation to those of the corresponding conventional, non-

adaptive procedures.

1.3.1. The Procedures

We will develop our procedures using the following closure principle of

Marcus et al. (1976) that is often used to construct FWER controlling

procedures.

Closure Principle. Suppose that for each I ⊆ {1, . . . , n} there is a

valid level α global test for testing the intersection null hypothesis
∩

i∈I Hi.

An individual null hypothesis Hi is rejected if for each I ⊆ {1, . . . , n} with

I ∋ i,
∩

j∈I Hj is rejected by the corresponding global test.

A multiple testing procedure satisfying the closure principle is termed a

closed testing procedure. It controls the FWER at α. Many of the multiple

testing procedures in the literature controlling the FWER are either closed

testing procedures or can be presented as some versions of such a proce-

dure. The level α adaptive global tests presented in the above section will

be the key towards developing our proposed adaptive FWER controlling

procedures based on the closure principle. Before we do that, we first need

to introduce a few more additional notations.

Consider all possible sub-families of the null hypotheses, {Hi, i ∈ Im},
Im ⊆ {1, . . . , n}, m = 1, . . . , n, where Im is of cardinality m. Define

n̂
(1)
0 (Pm) and n̂

(2)
0 (Pm), the two estimates of the number of true null

hypotheses in {Hi, i ∈ Im} based on the corresponding set of p-values

Pm = {Pi, i ∈ Im}, as in (3) and (5), respectively. Since these estimates

are symmetric and componentwise increasing in Pm, and every ordered

component of any m-dimensional subset of the p-values is smaller than the

corresponding component of P̃m = (Pn−m+1:n, . . . , Pn:n), we have the fol-

lowing: n̂
(j)
0 (P̃m) ≥ n̂

(j)
0 (Pm), for any Pm and j = 1, 2. For convenience,

we will denote n̂
(j)
0 (P̃m) simply as n̂

(j)
0 (m), j = 1, 2.
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It is important to note exactly how n̂
(j)
0 (m) is defined for j = 1, 2.

Consider using the p-values Pn−m+1:n, . . . , Pn:n to test corresponding null

hypotheses. Then, from (3), n̂
(1)
0 (m) = max{W1(P̃m), 1}, where W1(P̃m)

is the number of accepted null hypotheses in the stepup test involving these

p-values and the critical values jα/m, j = 1, . . . ,m. Similarly, from (5),

n̂
(2)
0 (m) = max{W2(P̃m), 1}, where

W2(P̃m) = {j ∈ {1, . . . ,m} : Pn−j+k:n > kα/j, k = 1, . . . , j}.

It is easy to see that while n̂
(2)
0 (m) is increasing inm, n̂

(1)
0 (m) may not be so.

If n̂
(1)
0 (m) is not increasing in m, we will make a minor modification of it as

follows: Let n̂
(1)′

0 (1) = n̂
(1)
0 (1) and n̂

(1)′

0 (m) = max
(
n̂
(1)′

0 (m− 1), n̂
(1)
0 (m)

)
,

for 2 ≤ m ≤ n. Obviously, such modified n̂
(1)′

0 (m) is always increasing in m,

and for each m = 1, . . . , n, n̂
(1)′

0 (m) ≥ n̂
(1)
0 (m), with the equality holding

when n̂
(1)
0 (m) is increasing in m.

Now, we present our adaptive Holm procedure in the following theorem.

Theorem 1.1. Consider the the stepdown procedure with the critical values

α/n̂
(2)
0 (n−j+1), j = 1, . . . , n. It controls the FWER at α when the p-values

are independent or positively dependent in the sense of (1) or (2).

Proof. Suppose that Pj:n is the smallest among the p-values that corre-

spond to the n0 true null hypotheses. If Pj:n ≤ α/n̂
(2)
0 (n − j + 1), then

for any m-dimensional subset of the null hypotheses containing the true

null hypothesis corresponding to Pj:n, the adaptive Bonferroni test with

the critical constants cj = α/n̂
(2)
0 (Pm) rejects its intersection Hm

0 , where

Pm is the corresponding p-value vector of the m individual null hypotheses.

Since underHm
0 , m ≤ n0 ≤ n−j+1, then we have Pj:n ≤ α/n̂

(2)
0 (n−j+1) ≤

α/n̂
(2)
0 (m) ≤ α/n̂

(2)
0 (Pm). Thus, if Pj:n ≤ α/n̂

(2)
0 (n − j + 1), Hj:n is re-

jected by the closed testing procedure based on the above Bonferroni test.

Therefore, pr{Pj:n ≤ α/n̂
(2)
0 (n− j+1)} is less than or equal to the FWER

of the closed testing procedure. By the closure principle and Proposition

1, pr{Pj:n ≤ α/n̂
(2)
0 (n− j+1)} ≤ α. Therefore, the FWER of the adaptive

Holm procedure is less than or equal to α.

Remark 1.3. In the alternative adaptive Holm’s procedure of Guo (2009),

ci = α/min{n − i + 1, n̂0}, i = 1, . . . , n, where n̂0 = [Wn(λ) + 1]/(1 − λ).

It asymptotically (as n → ∞) controls the FWER at α under a conditional

independence model (Wu, 2008). The adaptive Holm procedure in Theorem
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1, on the other hand, not only controls the FWER in finite samples but

also under a more general type of dependence situation.

Next, we present our adaptive Hochberg procedure through the adaptive

Simes test defined in the preceding section.

Theorem 1.2. Consider the stepup procedure with the critical values

α/n̂
(1)′

0 (n − j + 1), j = 1, . . . , n. It controls the FWER at α when the p-

values are independent or positively dependent in the sense of (1) or (2).

Proof. Let i0 = max{i : Pi:n ≤ n̂
(1)′

0 (n − i + 1)}. First, for any subset

of m individual hypotheses such that the corresponding smallest p-value is

Pi0:n, the adaptive Simes test with the critical constants cj = jα/n̂
(1)
0 (Pm),

j = 1, . . . ,m rejects its intersection hypothesis, since m ≤ n − i0 + 1 and

thus Pi0:n ≤ α/n̂
(1)′

0 (n− i0 + 1) ≤ α/n̂
(1)′

0 (m) ≤ α/n̂
(1)
0 (m) ≤ α/n̂

(1)
0 (Pm),

where Pm is the corresponding p-value vector of the m hypotheses. Sec-

ond, consider a different subset of m individual hypotheses with exactly

k hypotheses whose p-value is less than Pi0:n. It is easy to see that

n̂
(1)′

0 (j+1) ≤ n̂
(1)′

0 (j)+1 for any 1 ≤ j ≤ n−1, thus n̂
(1)′

0 (n− i0+1+k) ≤
n̂
(1)′

0 (n− i0 + 1) + k. Also, m ≤ n− i0 + 1 + k. Therefore,

Pi0:n ≤ α

n̂
(1)′

0 (n− i0 + 1)
≤ (k + 1)α

n̂
(1)′

0 (n− i0 + 1) + k

≤ (k + 1)α

n̂
(1)′

0 (n− i0 + 1 + k)
≤ (k + 1)α

n̂
(1)′

0 (m)
(3.6)

≤ (k + 1)α

n̂
(1)
0 (m)

≤ (k + 1)α

n̂
(1)
0 (Pm)

.

In (6), the second inequality follows from the fact that (k +

1)α/n̂
(1)′

0 (n− i0 + 1) + k is increasing in k. Thus, in such situation, the

adaptive Simes test also rejects its intersection hypothesis. Summarizing

these two cases, the closed testing procedure based on the adaptive Simes

tests will reject Hi0:n.

For other null hypothesis Hi:n with i < i0, we only need to prove that

for each subset of m individual hypotheses without containing Hi0:n for

which Pi:n is the (k + 1)-smallest p-value less than Pi0:n, its intersection

hypothesis is rejected by the adaptive Simes test. Actually, by using the

same arguments as (6), we can prove that Pi:n ≤ (k+1)α/n̂
(1)
0 (Pm). Thus,

Hi:n is also rejected by the closed testing procedure. By using the closure

principle and proposition 1, the adaptive Hochberg procedure controls the
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FWER at level α when the p-values are independent or positively dependent

in the sense of (1) or (2).

Remark 1.4. It is easy to see that for each 1 ≤ i ≤ n, n̂
(1)
0 (n − i + 1) ≤

n− i+1, thus n̂
(1)′

0 (n− i+1) ≤ n− i+1. Therefore, the adaptive Hochberg

procedure is more powerful than the corresponding non-adaptive one.

1.3.2. An Application

We revisit a dose-finding diabetes trial study analyzed in Dmitrienko et

al. (2007). The trial compares three doses of an experimental drug versus

placebo. The efficacy profile of the drug was studied using three endpoints:

Haemoglobin A1c (primary), Fasting serum glucose (secondary), and HDL

cholesterol (secondary). These endpoints were examined at each of the

three doses, and the raw p-values are 0.005, 0.011, 0.018, 0.009, 0.026,

0.013, 0.010, 0.006, and 0.051. We pre-specify α = 0.05. By using the

conventional, non-adaptive Holm and Hochberg procedures, we see that two

null hypotheses are rejected at level 0.05 for both these tests. In contrast,

our proposed adaptive Holm and Hochberg procedures both reject seven

null hypotheses at the same level.

1.3.3. A Simulation Study

We performed a small scale simulation study investigating the perfor-

mances of our proposed adaptive Holm and Hochberg procedures in compar-

ison with those of the corresponding conventional, non-adaptive Holm and

Hochberg procedures. We made these comparisons in terms of the FWER

control at the desired level and power, with the power being defined as the

expected proportion of the false null hypotheses that are correctly rejected.

We generated n = 50 dependent normal random variables N(µi, 1), i =

1, . . . , n, with a common correlation ρ = 0.2, and with n0 of the 50 µi’s being

equal to 0 and the remaining equal to 3, and applied the four different proce-

dures to testHi : µi = 0 againstKi : µi ̸= 0 simultaneously for i = 1, . . . , 50

at level α = 0.05. We repeated these steps 2, 000 times before calculating

the proportion (estimated FWER) of times at least one true null hypothesis

is falsely rejected and the average proportion (estimated power) of false null

hypotheses that are rejected. Figures 1 and 2 present the estimated FW-

ERs and powers, respectively, of the four procedures, each plotted against

different values of n0. As seen from Figure 1, our suggested adaptive Holm

and Hochberg procedures provide better control of the FWER than those of
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Fig. 1.1. Comparison of familywise error rates of four procedures: Holm (solid),

Hochberg (small dashes), adaptive Holm (dot-dash), and adaptive Hochberg (dashes),
with parameters n = 50, α = 0.05.

the conventional, non-adaptive Holm and Hochberg procedures, although

with increasing number of true null hypotheses all procedures become less

and less conservative. Figure 2 presents the comparisons in terms of power.

As seen from this figure, our suggested adaptive Holm and Hochberg proce-

dures have better power performances than the corresponding non-adaptive

Holm and Hochberg procedures. Again, with increasing number of true null

hypotheses, the difference in power gets smaller and closer to zero.

1.4. Concluding Remarks

A knowledge of the proportion of true null hypotheses among all the null

hypotheses tested can be useful for developing improved versions of con-

ventional FDR or FWER controlling procedures. A number of adaptive

versions of an FDR or FWER controlling procedure exist in the literature,

each attempts to improve the FDR or FWER procedure by extracting in-

formation about the number of true null hypotheses from the available
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Fig. 1.2. Comparison of average power of four procedures: Holm (solid), Hochberg

(small dashes), adaptive Holm (dot-dash), and adaptive Hochberg (dashes), with pa-
rameters n = 50, α = 0.05.

data and incorporating that into the procedure. However, in finite sam-

ple settings, the ultimate control of the FDR or FWER for these adaptive

procedures has only been proved under the assumption of independence

or conditional independence of the p-values. In this article, we make an

attempt for the first time, as far as we know, to develop adaptive FWER

procedures that provide ultimate control over the FWER not only under

independence but also under positive dependence of the p-values.

It is important to point out that there are some essential differences

between adaptive and non-adaptive procedures. For example, for a non-

adaptive single-step FWER controlling procedure, weak control implies

strong control, but that conclusion does not hold for an adaptive single-step

procedure. We explain that phenomenon through the following example.

Example 1.1. Consider an adaptive Bonferroni procedure for which

n̂
(1)
0 (n) is used as the estimate of the number of true null hypotheses. For

convenience, we will denote n̂
(1)
0 (n) simply as n̂

(1)
0 . By proposition 1, the
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single-step procedure can weakly control the FWER. However, we can show

that it cannot strongly control the FWER. Let n = 6 and n0 = 2. Sup-

pose four false null p-values are zero and two true null p-values q1 and q2
are independent identically distributed U(0, 1). Let q(1) ≤ q(2) denote the

ordered values of q1 and q2. Let R be the total number of rejections. Then,

FWER = pr{q(1) ≤ α/n̂
(1)
0 , 4 ≤ R ≤ 6}.

Note that

pr{q(1) ≤ α/n̂
(1)
0 , R = 4} = pr{q(1) ≤ α/2, q(1) > 5α/6, q(2) > α} = 0,

pr{q(1) ≤ α/n̂
(1)
0 , R = 5} = pr{q(1) ≤ α, q(1) ≤ 5α/6, q(2) > α}

= pr{q(1) ≤ 5α/6, q(2) > α},

and

pr{q(1) ≤ α/n̂
(1)
0 , R = 6} = pr{q(1) ≤ α, q(2) ≤ α}

≥ pr{q(1) ≤ 5α/6, q(2) ≤ α}.

Thus

FWER =

6∑
r=4

pr{q(1) ≤ α/n̂
(1)
0 , R = r} ≥ pr{q(1) ≤ 5α/6} > α.
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