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FURTHER RESULTS ON CONTROLLING THE FALSE
DISCOVERY PROPORTION

By Wenge Guo∗, Li He†, and Sanat K. Sarkar‡

The probability of false discovery proportion (FDP) exceeding
γ ∈ [0, 1), defined as γ-FDP, has received much attention as a mea-
sure of false discoveries in multiple testing. Although this measure
has received acceptance due to its relevance under dependency, not
much progress has been made yet advancing its theory under such de-
pendency in a non-asymptotic setting, which motivates our research
in this article. We provide a larger class of procedures containing the
stepup analog of, and hence more powerful than, the stepdown pro-
cedure in Lehmann and Romano (2005) controlling the γ-FDP under
the same positive dependence condition assumed in that paper. We
offer better alternatives of the stepdown and stepup procedures in
Romano and Shaikh (2006a, b) using pairwise joint distributions of
the null p-values. We generalize the notion of γ-FDP making it ap-
propriate in many practical situations where one is willing to tolerate
a few false rejections or, due to high dependency some false rejections
are inevitable and provide methods that control this generalized γ-
FDP in three different scenarios - (i) no assumption is made about
dependence and only the marginal p-values are being used, (ii) no as-
sumption is made about the dependence but common pairwise joint
distributions of the null p-values are available, and (iii) a positive de-
pendence condition holds among the null p-values and the common
pairwise joint distributions of the null p-values are available. Our
theoretical findings are being supported through numerical studies.

1. Introduction. The idea of improving the traditional and often too
conservative notion of familywise error rate (FWER) has been one of the
main motivations behind much of the methodological developments taking
place in modern multiple testing. One particular direction in which this idea
has flourished is generalizing the FWER from its original definition of the
probability of at least one false discovery or a non-zero fraction of false dis-
coveries to one that allows more, yet tolerable, number or fraction of false
discoveries and developing procedures that control these generalized error
rates. The rationale behind taking this direction is that in many situations
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where a large number of hypotheses are tested one is often willing to tolerate
more than one false discovery, controlling of course too many of them. More-
over, due to high positive dependency among a group or groups of p-values
corresponding to true null hypotheses, as in microarray experiments where
the genes involved in the same biological process or pathway are highly
dependent on each other and exhibit similar expression patterns, it is ex-
tremely unlikely that exactly one null p-value will be significant given that
at least one of them will be significant. In such cases, a procedure controlling
the probability of at least k false discoveries, the k-FWER, for some fixed
k > 1, or the probability of the false discovery proportion (FDP) exceeding
γ, the γ-FDP, for some fixed 0 < γ < 1, will have a better ability to detect
more false null hypotheses than the corresponding FWER procedure (i.e.,
when k = 1 or γ = 0).

Thus, the consideration of the k-FWER or γ-FDP seems more relevant
than that of the FWER when controlling false discoveries in multiple testing
of a large number of hypotheses under dependency. In fact, it has been noted
that the dependency gets naturally factored into the constructions of pro-
cedures controlling the k-FWER or γ-FDP. For instance, the k-dimensional
joint distributions of the null p-values can be explicitly used while construct-
ing procedures controlling the k-FWER [Sarkar (2007, 2008a)]. Also, since
the variability of the FDP increases with increasing dependence among the
p-values [Efron (2007), Kim and van de Wiel (2008), Korn, Troendle, Mc-
Shane and Simon (2004), Owen (2005), Schwartzman and Lin (2011)], by
controlling the tail end probabilities of the FDP, the γ-FDP, one consid-
ers controlling a quantity that is more relevant under dependency than the
expected FDP, the false discovery rate (FDR) [Benjamini and Hochberg
(1995)], which is even less conservative than the FWER.

A number of papers have been written over the years on k-FWER and
γ-FDP [Dudoit et al. (2004), Genovese and Wasserman (2004), Guo and
Rao (2010), Guo and Romano (2007), Hommel and Hoffmann (1987), Korn
and Freidlin (2008), Korn, Troendle, McShane and Simon (2004), Lehmann
and Romano (2005), Romano and Shaikh (2006a, b), Romano and Wolf
(2005), Roquain and Villers (2011), Sarkar (2007, 2008a) and van der Laan,
Dudoit, and Pollard (2004)]. Among these, Lehmann and Romano (2005),
and Romano and Shaikh (2006a, b) are worth mentioning as they have
made some fundamental contributions to the development of theory and
methodology of γ-FDP. A part of our research is motivated by these papers,
and aims at extending, and often improving, some results in those papers
under certain dependence situations. The motivation of the other part of our
research comes from the realization that if one indeed is willing to tolerate
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a few false rejections, the premise under which one would seek to use a
generalized error rate, the notion of γ-FDP does not completely take that
into account unless it is further generalized accordingly. In other words, one
should consider in this case a generalized form of the FDP that accounts
for k or more false rejections, and control the probability of this generalized
FDP, rather than the original FDP, exceeding γ. So, we introduce such a
generalized notion of γ-FDP and propose procedures that control it under
different dependence scenarios in this paper.

We organize the paper as follows. We provide some preliminaries in Sec-
tion 2, including the definition of our proposed generalized version of the
γ-FDP. In Section 3, we present a number of new results on γ-FDP. We
construct a larger class of procedures controlling the γ-FDP under positive
dependence than the stepdown procedure given in Lehmann and Romano
(2005). This class includes the stepup analog of and hence powerful than the
Lehmann-Romano stepdwon procedure. We offer better alternatives of the
stepdown and stepup procedures in Romano and Shaikh (2006a, b), given
pairwise joint distributions of the null p-values. Section 4 contains results
on procedures controlling generalized γ-FDP we develop under the following
three scenarios - (i) only the marginal p-values are available, (ii) the common
pairwise joint distributions of the null p-values are given, and (iii) a posi-
tive dependence condition holds among the null p-values and the common
pairwise joint distributions of the null p-values are given. We also provide
numerical support to our theoretical findings. Concluding remarks are made
in Section 5. Proofs of some supporting results are given in Appendix.

2. Preliminaries. Suppose that Hi, i = 1, . . . , n, are the n null hy-
potheses to be tested based on their respective p-values Pi, i = 1, . . . , n.
Let P(1) ≤ · · · ≤ P(n) be the ordered versions of all the p-values and
H(1), . . . ,H(n) be their corresponding null hypotheses. There are n0 null
hypotheses that are true. For notational convenience, the p-values corre-
sponding to these true null hypotheses will be denoted by P̂i, i = 1, · · · , n0,
and their ordered versions by P̂(1) ≤ . . . ≤ P̂(n0).

Multiple testing is typically carried out using a stepwise or single-step
procedure. Given a non-decreasing set of critical values 0 < α1 ≤ · · · ≤
αn < 1, a stepdown procedure rejects the set of null hypotheses {H(i), i ≤
i∗SD}, where i∗SD = max{1 ≤ i ≤ n : P(j) ≤ αj ∀j ≤ i} if the maximum
exists, otherwise accepts all the null hypotheses. A stepup procedure, on
the other hand, rejects the set of null hypotheses {H(i), i ≤ i∗SU}, where
i∗SU = max{1 ≤ i ≤ n : P(i) ≤ αi} if the maximum exists, otherwise accepts
all the null hypotheses. A stepdown or stepup procedure with the same
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critical values is referred to as a single-step procedure.
Let V be the number of falsely rejected and R be the total number of

rejected null hypotheses. Then, with V/R, which is zero if R = 0, defining
the false discovery proportion (FDP), and given a fixed γ ∈ (0, 1), the γ-
FDP is defined as the probability of the FDP exceeding γ; i.e., γ-FDP =
Pr (FDP > γ). Its generalized version introduced in this paper, which we
call γ-kFDP, is defined as follows: Let

kFDP =

{
V
R if V ≥ k
0 otherwise

Then γ-kFDP = Pr(kFDP > γ). Since γ-kFDP is 0, and hence trivially
controlled, for any procedure if n0 < k, we assume throughout that k ≤
n0 ≤ n when controlling this error rate.

The distributional assumptions we make in this paper only relate to the
null p-values. The following is the basic assumption regarding the marginal
distributions of the p-values made throughout the whole paper:

Assumption 1. P̂i ∼ U(0, 1).

3. Improved procedures controlling the γ-FDP. In this section,
we present results improving some previous work on controlling the γ-FDP
under both positive dependence and arbitrary dependence conditions on the
p-values (Lehmann and Romano, 2005; Romano and Shaikh, 2006a, b).

Under a positive dependence assumption, Lehmann and Romano (2005)
gave a stepdown procedure controlling the γ-FDP. We improve this work in
two different ways. First, we consider the stepup analog of this stepdown
procedure, which is known to be always more powerful in the sense of dis-
covering more, and prove that it also controls the γ-FDP under the same
assumption. Second, we offer larger class of stepdown and stepup procedures
controlling the γ-FDP under this assumption.

Under arbitrary dependence, Romano and Shaikh (2006a, b) developed
stepdown and stepup procedures controlling the γ-FDP in terms of the
marginal p-values. However, often there is information about correlations
among the null p-values that could potentially be used to improve these
procedures. So, to that end, we also present some results in this section.

3.1. Procedures under positive dependence. Let us make the following
assumption characterizing a positive dependence structure among the null
p-values:
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Assumption 2. The conditional expectation E
{
ϕ(P̂1, . . . , P̂n0) | P̂i ≤ u

}
is

non-decreasing in u ∈ (0, 1) for each P̂i and any non-decreasing (coordinate-
wise) function ϕ.

This is slightly weaker than that characterized by the property:

E
{
ϕ(P̂1, . . . , P̂n) | P̂i = u

}
↑ u ∈ (0, 1),

which is referred to as the the positive dependence through stochastic or-
dering (PDS) condition by Block, Savits and Shaked (1985); see also Sarkar
(2008b).

Theorem 3.1. The stepup or stepdown procedure with the critical con-
stants

(1) αi =
(⌊γi⌋+ 1)α

n+ ⌊γi⌋+ 1− i
, i = 1, . . . , n,

controls the γ-FDP at α under Assumptions 1 and 2.

Proof. Let g(R) = ⌊γR⌋+ 1. Then, first note that

{V ≥ g(R)} =
n0∪
v=1

{
P̂(v) ≤ αR, g(R) ≤ v, V = v

}
=

n0∪
v=1

{
P̂(v) ≤

g(R)α

n−R+ g(R)
, g(R) ≤ v, V = v

}

⊆
n0∪
v=1

{
P̂(v) ≤

vα

n−R+ v
, V = v

}

⊆
n0∪
v=1

{
P̂(v) ≤

vα

n0
, V = v

}
⊆

n0∪
v=1

{
P̂(v) ≤

vα

n0

}
.(2)

The probability of the event in the right-hand side of (2) is known to be
less than or equal to α under Assumptions 1 and 2 from the so-called Simes’
inequality (Simes, 1986; Sarkar, 1998; Sarkar and Chang, 1997). Thus, we
get the desired result noting that γ-FDP = Pr (V ≥ g(R)).

Remark 3.1. Lehmann and Romano (2005) proposed only the step-
down procedure considered in Theorem 3.1 under the same assumptions.
Thus, Theorem 3.1 provides an improvement of the Lehamann-Romano re-
sult, since we now have an alternative procedure under the same assump-
tions, the step-up one, which is theoretically known to be more powerful.
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(a) Simulated γ-FDP.
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(b) Simulated average power.

Fig 1. Simulated γ-FDP’s and average powers of the original Lehmann-Romano stepdown
procedure (LR SD) and its stepup analogue (LR SU) for simultaneous testing of µi = 0
against µi = 3 in n = 100 normal random variables N(µi, 1) with a common correlation ρ
at level α = 0.05, for different values of ρ and (π0, γ) = (0.5, 0.1), (0.5, 0.2), (0.8, 0.1), and
(0.8, 0.2), where π0 = n0/n. (Runs per simulation = 2,000.)

Moreover, not only our proof of the γ-FDP control is much simpler but also
it covers both ours and the Lehmann-Romano original stepdown procedures.
Our simulation studies indicate that this power improvement can often be
quite significant when the underlying test statistics are moderately or highly
correlated (see Figure 1).

There are more general results than Theorem 3.1 in terms of deriving pro-
cedures controlling the γ-FDP under Assumptions 1 and 2. More specifically,
we have the following two theorems.

Theorem 3.2. With n1 = n− n0, let M = min{n0, ⌊γn1/(1− γ)⌋+ 1},
and m(i) = max{1 ≤ j ≤ n1 : ⌊γj/(1− γ)⌋+ 1 = i}, for each i = 1, . . . ,M ,
where m(0) = 0. Then, given any set of constants 0 = α′

0 ≤ α′
1 ≤ · · · ≤ α′

n,

consider the stepdown procedure with the critical values αi = αα′
i/C

(1)
n,SD, i =

1, . . . , n, where

C
(1)
n,SD = max

1≤n0≤n
max

1≤i≤M

{
n0α

′
i+m(i)

i

}
.

It controls the γ-FDP at α under Assumptions 1 and 2.
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Theorem 3.3. Let m̃(i) = min{m(i), i + n1}, where m(i) = max{1 ≤
j ≤ n : ⌊γj⌋ + 1 ≤ i}, for each i = 1, . . . , n0, and m(0) = 0. Then, given
any set of constants 0 = α′

0 ≤ α′
1 ≤ · · · ≤ α′

n, consider the stepup procedure

with the critical values αi = αα′
i/C

(1)
n,SU , i = 1, . . . , n, where

C
(1)
n,SU = max

1≤n0≤n
max

1≤j≤n0

{
n0α

′
m̃(j)

j

}
.

It controls the γ-FDP at α under Assumptions 1 and 2.

Proof of Theorem 3.2. With S denoting the number of rejected false null
hypotheses, we first note that

I (V > γR) = I (V > γ(V + S)) = I (V ≥ ⌊γS/(1− γ)⌋+ 1)

=
M∑
i=1

I (V ≥ i, ⌊γS/(1− γ)⌋+ 1 = i) .(3)

Also, for a stepdown procedure with the critical constants αi, i = 1, . . . , n,
we have

I (V ≥ i, ⌊γS/(1− γ)⌋+ 1 = i)

= I (R ≥ i+ S, ⌊γS/(1− γ)⌋+ 1 = i)

= I
(
P(1) ≤ α1, . . . , P(i+S) ≤ αi+S , ⌊γS/(1− γ)⌋+ 1 = i

)
≤ I

(
P̂(1) ≤ α1+S , . . . , P̂(i) ≤ αi+S , ⌊γS/(1− γ)⌋+ 1 = i

)
≤ I

(
P̂(1) ≤ α1+m(i), . . . , P̂(i) ≤ αi+m(i), ⌊γS/(1− γ)⌋+ 1 = i

)
≤ I

(
P̂(i) ≤ αi+m(i), ⌊γS/(1− γ)⌋+ 1 = i

)
.(4)

Taking expectations of both sides of (3) after using (4) in it, we have

γ-FDP = Pr {V > γR}

≤
M∑
i=1

Pr
(
P̂(i) ≤ αi+m(i), ⌊γS/(1− γ)⌋+ 1 = i

)

≤
n0∑
j=1

M∑
i=1

1

i
Pr
(
P̂j ≤ αi+m(i), ⌊γS/(1− γ)⌋+ 1 = i

)

=
n0∑
j=1

M∑
i=1

αi+m(i)

i
Pr
(
⌊γS/(1− γ)⌋+ 1 = i

∣∣P̂j ≤ αi+m(i)

)

= max
1≤i≤M

{
αi+m(i)

i

} n0∑
j=1

M∑
i=1

Pr
(
⌊γS/(1− γ)⌋+ 1 = i

∣∣P̂j ≤ αi+m(i)

)
,(5)
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with the second inequality following from this:

I
(
P̂(i) ≤ t

)
≤ 1

i

n0∑
j=1

I
(
P̂j ≤ t

)
for any constant 0 < t < 1,(6)

which will be proved in Appendix.
Now, for each 1 ≤ j ≤ n0, we have

M∑
i=1

Pr
(
⌊γS/(1− γ)⌋+ 1 = i

∣∣P̂j ≤ αi+m(i)

)

=
M∑
i=1

Pr
(
⌊γS/(1− γ)⌋+ 1 ≥ i

∣∣P̂j ≤ αi+m(i)

)
−

M∑
i=1

Pr
(
⌊γS/(1− γ)⌋+ 1 ≥ i+ 1

∣∣P̂j ≤ αi+m(i)

)

≤
M∑
i=1

Pr
(
⌊γS/(1− γ)⌋+ 1 ≥ i

∣∣P̂j ≤ αi+m(i)

)
−

M∑
i=1

Pr
(
⌊γS/(1− γ)⌋+ 1 ≥ i+ 1

∣∣P̂j ≤ αi+1+m(i+1)

)
≤ Pr

(
⌊γS/(1− γ)⌋+ 1 ≥ 1

∣∣P̂j ≤ α1+m(1)

)
= 1.(7)

The first inequality follows from Assumption 2. Applying (7) to (5), we have

γ-FDP ≤ max
1≤i≤M

{
n0αi+m(i)

i

}
≤ α max

1≤i≤M

{
n0α

′
i+m(i)

i

}/
C

(1)
n,SD ≤ α,

which proves the theorem.

Proof of Theorem 3.3. Since V ≥ R− n1, we have

I (V > γR) = I (V ≥ ⌊γR⌋+ 1, V ≥ R− n1)

= I

 n0∪
j=1

{
P̂(j) ≤ αR, V = j, ⌊γR⌋+ 1 ≤ j, R ≤ j + n1

}
≤ I

 n0∪
j=1

{
P̂(j) ≤ αR, R ≤ m̃(j)

} ≤ I

 n0∪
j=1

{
P̂(j) ≤ αm̃(j)

} .(8)

Let R̂2 be the number of rejections in a stepup procedure based on the
p-values P̂i, i = 1, . . . , n0, and the critical values αm̃(i), i = 1, . . . , n0. Then,
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by taking expectations of both sides in (8), we get

γ-FDP ≤ Pr

 n0∪
j=1

{
P̂(j) ≤ αm̃(j)

} =
n0∑
l=1

n0∑
j=1

Pr
(
P̂l ≤ αm̃(j), R̂2 = j

)
j

=
n0∑
l=1

n0∑
j=1

αm̃(j)

j
Pr
(
R̂2 = j

∣∣P̂l ≤ αm̃(j)

)
.

Making the same arguments as in (7), we note that

n0∑
j=1

Pr
(
R̂2 = j

∣∣P̂l ≤ αm̃(j)

)
≤ 1, for each 1 ≤ l ≤ n0.

Thus,

γ-FDP ≤ max
1≤i≤n0

{
n0αm̃(i)

i

}
≤ α max

1≤i≤n0

{
n0α

′
m̃(i)

i

}/
C

(1)
n,SU ≤ α,

which proves the theorem.

Remark 3.2. Theorems 3.2 and 3.3 provide a general approach to con-
structing stepdown and stepup γ-FDP controlling procedures under inde-
pendence or positive dependence of the null p-values. If α′

i’s are chosen

according to (1), then both C
(1)
n,SD and C

(1)
n,SU can be seen to be equal to 1,

implying that the original Lehmann-Romano stepdown procedure and its
stepup analogue control the γ-FDP at α under Assumptions 1 and 2. How-
ever, there are other stepdown and stepup procedures, such as those ob-
tained by re-scaling the critical values of the BH (Benjamini and Hochberg,
1995) stepup and the GBS (Gavrilov, Benjamini and Sarkar, 2009) stepdown
methods, that can also control the γ-FDP under these assumptions.

3.2. Procedures incorporating pairwise correlations. What if Assumption
2 in Theorems 3.1 - 3.3 cannot be made? In this case, the stepup or stepdown
procedure does no longer control the γ-FDP, but can be properly adjusted
maintaining this control under any type of dependence structure. Romano
and Shaikh (2006a, b) first developed such adjustments for a stepdown or
stepup procedure based on the marginal p-values. However, in practice, the
null p-values often have a known common pairwise joint distribution, and
by explicitly utilizing such correlation information better adjustments can
be made, potentially resulting in more powerful γ-FDP stepwise procedures.
So, with that in mind, we present some results here under Assumption 1 and
the following:
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Assumption 3. The null p-values P̂1, . . . , P̂n0 have a known common pair-

wise joint distribution function F (u, v) = Pr
(
P̂i ≤ u, P̂j ≤ v

)
.

Before presenting our main results in this subsection, let us introduce
some relevant notations. With m(i) defined in Theorem 3.2, for notational
convenience, letm(i) = i+m(i), i = 1, . . . ,M . Given a sequence of constants
0 = α′

0(β) ≤ α′
1(β) ≤ · · · ≤ α′

n(β), for a fixed β ∈ (0, 1), let

C
(2)
n,SD(β) = max

1≤n0≤n
min

1≤K≤n0


K∑
i=1

n0
(
α′
m(i)(β)− α′

m(i−1)(β)
)

i

+
M∑

i=K+2

n0(n0 − 1)
[
F
(
α′
m(i)(β), α

′
m(i)(β)

)
− F

(
α′
m(i−1)(β), α

′
m(i−1)(β)

)]
i(i− 1)

+
n0(n0 − 1)F

(
α′
m(K)(β), α

′
m(K)(β)

)
K(K + 1)

−
n0F

(
α′
m(K)(β), α

′
m(K+1)(β)

)
K + 1

 ,
and

C
(2)
n,SU (β) = max

1≤n0≤n
min

1≤K≤n0


K∑
r=1

n0
(
α′
m̃(r)(β)− α′

m̃(r−1)(β)
)

r

+
n0∑

r=K+1

n0
(
α′
m̃(r)(β)− α′

m̃(r−1)(β)
)

r2
+

n0∑
s=r

n0 (n0 − 1)G (m̃(r), m̃(s), β)

rs

+
n0 (n0 − 1)

(
F (α′

m̃(r)(β), α
′
m̃(r)(β))− F (α′

m̃(r)(β), α
′
m̃(r−1)(β))

)
r2

 ,
where

G(r, s, β) = F
(
α′
r(β), α

′
s(β)

)
− F

(
α′
r−1(β), α

′
s(β)

)
−F

(
α′
r(β), α

′
s−1(β)

)
+ F

(
α′
r−1(β), α

′
s−1(β)

)
.

Theorem 3.4. Given any sequence of critical constants 0 = α′
0(β) ≤

α′
1(β) ≤ · · · ≤ α′

n(β), for a fixed β ∈ (0, 1), the stepdown procedure with the

critical values αi, i = 1, . . . , n, satisfying αi = α′
i(β

∗
SD) and C

(2)
n,SD(β

∗
SD) = α,

controls the γ-FDP at α under Assumptions 1 and 3.

Theorem 3.5. Given any sequence of critical constants 0 = α′
0(β) ≤

α′
1(β) ≤ · · · ≤ α′

n(β), for a fixed β ∈ (0, 1), the stepup procedure with the
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critical values αi, i = 1, . . . , n, satisfying αi = α′
i(β

∗
SU ) and C

(2)
n,SU (β

∗
SU ) = α,

controls the γ-FDP at α under Assumptions 1 and 3.

Proof of Theorem 3.4. We will proceed as in proving Theorem 3.2, but not
relying on any dependence condition and making use of the pairwise joint
distributions of the null p-values whenever possible.

For each pre-specified K, where 1 ≤ K ≤ M , we have from (3) and (4)
that

I (V > γR)

≤
K∑
i=1

n0∑
j=1

1

i
I
(
P̂j ≤ αm(i)

)
I (⌊γS/(1− γ)⌋+ 1 = i) +

M∑
i=K+1

n0∑
j=1

n0∑
l(̸=j)=1

1

i(i− 1)
I
(
max(P̂j , P̂l) ≤ αm(i)

)
I (⌊γS/(1− γ)⌋+ 1 = i)

≤
n0∑
j=1

K∑
i=1

I
(
P̂j ≤ αm(i)

)
i

−
I
(
P̂j ≤ αm(i−1)

)
i− 1

 I (⌊γS/(1− γ)⌋+ 1 ≥ i) +

n0∑
j=1

n0∑
l( ̸=j)=1

M∑
i=K+2

I
(
max(P̂j , P̂l) ≤ αm(i)

)
i(i− 1)

−
I
(
max(P̂j , P̂l) ≤ αm(i−1)

)
(i− 1)(i− 2)


×I (⌊γS/(1− γ)⌋+ 1 ≥ i) +

n0∑
j=1

n0∑
l( ̸=j)=1

I
(
max(P̂j , P̂l) ≤ αm(K+1)

)
K(K + 1)

−
I
(
P̂j ≤ αm(K)

)
K(n0 − 1)


×I (⌊γS/(1− γ)⌋+ 1 ≥ K + 1)

≤
n0∑
j=1

K∑
i=1

I
(
αm(i−1) < P̂j ≤ αm(i)

)
i

+

n0∑
j=1

n0∑
l( ̸=j)=1

M∑
i=K+2

I
(
αm(i−1) < max(P̂j , P̂l) ≤ αm(i)

)
i(i− 1)

+

n0∑
j=1

n0∑
l( ̸=j)=1

(n0 −K − 1)I
(
P̂j ≤ αm(K), P̂l ≤ αm(K+1)

)
K(K + 1)(n0 − 1)

+
I
(
αm(K) < P̂j ≤ αm(K+1), P̂l ≤ αm(K+1)

)
K(K + 1)

 ,(9)

(with I(P̂j ≤ αm̄(0))/0 = 0). Here, the first inequality follows from (6) and

imsart-aos ver. 2011/05/20 file: Draft[2]-annals.tex date: September 26, 2011



12

the following inequality which will be proved in Appendix:

I
(
P̂(i) ≤ t

)
≤ 1

i(i− 1)

n0∑
j=1

n0∑
j′(̸=j)=1

I
(
max{P̂j , P̂j′} ≤ t

)
,(10)

for any fixed i such that 2 ≤ i ≤ n0 and a constant 0 < t < 1.
Taking expectations of both sides in (9), we get

γ-FDP ≤
K∑
i=1

n0
(
αm(i) − αm(i−1)

)
i

+

M∑
i=K+2

n0(n0 − 1)
[
F
(
αm(i), αm(i)

)
− F

(
αm(i−1), αm(i−1)

)]
i(i− 1)

+
n0(n0 − 1)F

(
αm(K), αm(K)

)
K(K + 1)

−
n0F

(
αm(K), αm(K+1)

)
K + 1

.(11)

Taking the minimum with respect to K and then the maximum with respect
to n0 in (11), we have

γ-FDP ≤ Cn,SD(β
∗
SD) = α,

which proves the theorem.

Proof of Theorem 3.5. Let R̂2 be the number of rejections in a stepup pro-
cedure based on the p-values P̂i, i = 1, . . . , n0, and the critical values αm̃(i),
i = 1, . . . , n0. Then, as in proving Theorem 3.3, we first have, for each pre-
specified 1 ≤ K ≤ n0,

I (V > γR) ≤
n0∑
j=1

n0∑
r=1

I
(
P̂j ≤ αm̃(r), R̂2 = r

)
r

=
n0∑
j=1

n0∑
r=1

I
(
P̂j ≤ αm̃(r), R̂2 ≥ r

)
r

−
n0∑
j=1

n0∑
r=1

I
(
P̂j ≤ αm̃(r), R̂2 ≥ r + 1

)
r

≤
n0∑
j=1

n0∑
r=1

I
(
αm̃(r−1) < P̂j ≤ αm̃(r), R̂2 ≥ r

)
r

≤
n0∑
j=1

K∑
r=1

I
(
αm̃(r−1) < P̂j ≤ αm̃(r)

)
r

+

n0∑
j=1

n0∑
r=K+1

I
(
R̂2 ≥ r

)
I
(
αm̃(r−1) < P̂j ≤ αm̃(r)

)
r

.(12)
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We now apply the following inequality (to be proved in Appendix) to (12):

I
(
R̂2 ≥ r

)
≤

n0∑
l=1

 n0∑
s=r+1

I
(
αm̃(s−1) < P̂l ≤ αm̃(s)

)
s

+
I
(
P̂l ≤ αm̃(r)

)
r

 .
(13)

Thus, we get

I (V > γR)

≤
n0∑
j=1

K∑
r=1

I
(
αm̃(r−1) < P̂j ≤ αm̃(r)

)
r

+
n0∑
j=1

n0∑
r=K+1

I
(
αm̃(r−1) < P̂j ≤ αm̃(r)

)
r2

+
n0∑
j=1

n0∑
l( ̸=j)=1

n0∑
r=K+1

n0∑
s=r+1

I
(
αm̃(r−1) < P̂j ≤ αm̃(r), αm̃(s−1) < P̂l ≤ αm̃(s)

)
rs

+
n0∑
j=1

n0∑
l( ̸=j)=1

n0∑
r=K+1

I
(
αm̃(r−1) < P̂j ≤ αm̃(r), P̂l ≤ αm̃(r)

)
r2

.

(14)

Taking expectation of both sides of (14), we have

γ-FDP ≤
K∑
r=1

n0
(
αm̃(r) − αm̃(r−1)

)
r

+
n0∑

r=K+1

n0
(
αm̃(r) − αm̃(r−1)

)
r2

+
n0∑

r=K+1

n0∑
s=r+1

n0 (n0 − 1)G (m̃(r), m̃(s), β∗SU )

rs

+
n0∑

r=K+1

n0 (n0 − 1)
(
F (αm̃(r), αm̃(r))− F (αm̃(r), αm̃(r−1))

)
r2

.(15)

Taking the minimum with respect to K and then the maximum with respect
to n0 in (15), we have

γ-FDP ≤ C
(2)
n,SU (β

∗
SU ) = α,

which proves the theorem.

Remark 3.3. Romano and Shaikh proved the following two results in
(2006a) and (2006b), respectively: Given null p-values having any type of

imsart-aos ver. 2011/05/20 file: Draft[2]-annals.tex date: September 26, 2011



14

dependence structure, the γ-FDP of the stepdown procedure with critical
values αi, i = 1, . . . , n, satisfies

γ-FDP ≤ max
1≤n0≤n

{
n0

M∑
i=1

αm(i) − αm(i−1)

i

}
;(16)

whereas, the γ-FDP of the stepup procedure with the same set of critical
values satisfies

γ-FDP ≤ max
1≤n0≤n

{
n0

n0∑
i=1

αm̃(i) − αm̃(i−1)

i

}
.(17)

These upper bounds are generally always larger than the corresponding
upper bounds of the γ-FDP we derive here, as seen by letting K = M in
(11) and K = n0 in (15), respectively. Thus, theoretically, the stepdown
and stepup γ-FDP controlling procedures introduced in Theorems 3.4 and
3.5, respectively, are generally always more powerful than the correspond-
ing ones given by Romano and Shaikh in (2006a) and (2006b), respectively.
Numerically also, we see from Figure 2, the stepdown and stepup γ-FDP pro-
cedures in Theorems 3.4 and 3.5, respectively, have larger critical constants
than the corresponding Romano-Shaikh stepdown and stepup procedures,
respectively, and are therefore more powerful than these existing procedures,
although the new stepdown procedure has only the same critical constants
as the existing one when the test statistics are highly correlated.

4. Procedures controlling the γ-kFDP. In this section, we present
some γ-kFDP controlling procedures. As pointed out in the introduction,
consideration of γ-kFDP, instead of γ-FDP, allows one to increase the power
of a procedure controlling the FDP exceeding γ at the cost of tolerating a few
more than one false rejection and/or by utilizing the dependence structure
of the null p-values through their joint distributions of order more than
one. Often this dependence structure is completely unknown and one has to
rely only on the marginal p-values to construct these γ-kFDP procedures.
Sometimes, a measure of dependence among the p-values may be available in
the form of pairwise correlations, which then can be utilized to develop these
procedures. In some situations, however, the dependence structure may be
known up to the extent of whether it is of a positive type or not and allows
one to utilize the correlations through the pairwise joint distributions. Our
procedures cover all these three scenarios.

4.1. Procedures based on the marginal p-values.
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Fig 2. Ratios of the critical values of the stepdown and stepup γ-FDP procedures in Theo-
rems 3.4 and 3.5, respectively, to those of the corresponding Romano-Shaikh stepdown and
stepup procedures provided by the upper bounds in (16) and (17), respectively, all of which
are obtained by starting from the Lehmann-Romano type critical constants, for simultane-
ous testing of µi ≤ 0 against µi > 0 in n = 50 normal random variables N(µi, 1) with a
common correlation ρ at level α = 0.05, for different values of ρ, and γ = 0.05, 0.1, 0.2, 0.5.
(SD Ratio - Ratio for stepdown; SU Ratio - Ratio for stepup)
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Theorem 4.1. Let m(i) be defined as in Theorem 3.2 for i = 1, . . . ,M .
Then, given any set of constants α′

k ≤ · · · ≤ α′
n, consider the stepdown

procedure with the critical values αi = αα′
i∨k/C

(3)
n,SD, i = 1, . . . , n, where

C
(3)
n,SD = max

k≤n0≤n

n0
α′

k+m(k)

k
+

M∑
i=k+1

α′
i+m(i) − α′

i−1+m(i−1)

i

 .
It controls the γ-kFDP at α under Assumption 1.

Proof. With g(R) and S respectively defined in proving Theorems 3.1 and
3.2, following the line of arguments used in proving Theorem 3.2, we have

I (V ≥ max[g(R), k]) = I (V > γ(V + S), V ≥ k)

= I (V ≥ max{⌊γS/(1− γ)⌋+ 1, k}) =
M∑
i=k

I (V ≥ i, ⌊γS/(1− γ)⌋+ 1 = i)

≤
M∑
i=k

I
(
P̂(i) ≤ αi+m(i), ⌊γS/(1− γ)⌋+ 1 = i

)

≤
n0∑
j=1

M∑
i=k

I
(
P̂j ≤ αi+m(i)

)
i

I (⌊γS/(1− γ)⌋+ 1 = i)

=
n0∑
j=1

I
(
P̂j ≤ αk+m(k)

)
k

I (⌊γS/(1− γ)⌋+ 1 ≥ k)+

n0∑
j=1

M∑
i=k+1

I
(
P̂j ≤ αi+m(i)

)
i

−
I
(
P̂j ≤ αi−1+m(i−1)

)
i− 1


× I (⌊γS/(1− γ)⌋+ 1 ≥ i)

≤
n0∑
j=1

I
(
P̂j ≤ αk+m(k)

)
k

+
M∑

i=k+1

I
(
αi−1+m(i−1) < P̂j ≤ αi+m(i)

)
i

 ,
(18)

if n0 ≥ k; otherwise, I (V ≥ max[g(R), k]) = 0. So, assuming n0 ≥ k, and
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taking expectations of both sides in (18), we get

γ-kFDP = Pr {V ≥ max[g(R), k]}

≤ n0

αk+m(k)

k
+

M∑
i=k+1

αi+m(i) − αi−1+m(i−1)

i


= α

n0
α′

k+m(k)

k
+

M∑
i=k+1

α′
i+m(i) − α′

i−1+m(i−1)

i

/C(3)
n,SD ≤ α,

which proves the theorem.

Theorem 4.2. Let m̃(i) be defined as in Theorem 3.3 for i = 1, . . . , n0.
Then, given any set of constants α′

k ≤ · · · ≤ α′
n, the stepup procedure with

the critical values αi = αα′
i∨k/C

(3)
n,SU , i = 1, . . . , n, where

C
(3)
n,SU = max

k≤n0≤n

n0
α′

m̃(k)

k
+

n0∑
i=k+1

α′
m̃(i) − α′

m̃(i−1)

i

 ,
controls the γ-kFDP at α under Assumption 1.

Proof. Here, we will use the arguments similar to those used in proving
Theorem 3.3.

I (V ≥ max[g(R), k]) = I (V ≥ ⌊γR⌋+ 1, V ≥ k, V ≥ R− n1)

= I

 n0∪
j=k

{
P̂(j) ≤ αR, V = j, ⌊γR⌋+ 1 ≤ j, R ≤ j + n1

}
≤ I

 n0∪
j=k

{
P̂(j) ≤ αR, R ≤ m̃(j)

} ≤ I

 n0∪
j=k

{
P̂(j) ≤ αm̃(j)

}
≤

n0∑
j=1

I
(
P̂j ≤ αm̃(k)

)
k

+
n0∑

i=k+1

n0∑
j=1

I
(
αm̃(i−1) < P̂j ≤ αm̃(i)

)
i

,(19)

if n0 ≥ k; otherwise, I (V ≥ max[g(R), k]) = 0. The third inequality follows
from (13). So, assuming that n0 ≥ k, and taking expectations of both sides
in (19), we have

γ-kFDP = Pr {V ≥ max[g(R), k]} ≤ n0

αm̃(k)

k
+

n0∑
i=k+1

αm̃(i) − αm̃(i−1)

i


= α

n0
α′

m̃(k)

k
+

n0∑
i=k+1

α′
m̃(i) − α′

m̃(i−1)

i

/C(3)
n,SU ≤ α,
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which proves the theorem.

Remark 4.1. When k = 1, the results in Theorems 4.1 and 4.2 reduce
to those given by Romano and Shaikh in (2006a) and (2006b), respectively,
although our expressions of the upper bounds given in these theorems are
different from theirs. Thus, our results can be regarded as a generalization
of Romano and Shaikh’s results. Moreover, we should emphasize that we
provide alternative, much simpler proofs for these results.

4.2. Procedures incorporating pairwise correlations.

Theorem 4.3. Let H(u) = F (u, u). Define m(i) as in Theorem 3.2 for
i = 1, . . . ,M . Then, given any set of constants α′

k ≤ · · · ≤ α′
n, the step-

down procedure with the critical values αi, i = 1, . . . , n, satisfying H(αi) =

αH(α′
i∨k)/C

(4)
n,SD, i = 1, . . . , n, where

C
(4)
n,SD = max

k≤n0≤n

{
n0(n0 − 1)

(
H(α′

k+m(k))

k(k − 1)

+
M∑

i=k+1

H(α′
i+m(i))−H(α′

i−1+m(i−1))

i(i− 1)

 ,
controls the γ-kFDP at α under Assumptions 1 and 3.

Proof. We proceed as in proving Theorem 4.1. Applying the inequality
(10) and arguing as in (18), we get the following:

I (V ≥ max[g(R), k])

≤
n0∑
j=1

n0∑
j′ (̸=j)=1

M∑
i=k

I
(
max(P̂j , P̂j′) ≤ αi+m(i)

)
i(i− 1)

I (⌊γS/(1− γ)⌋+ 1 = i)

≤
n0∑
j=1

n0∑
j′ (̸=j)=1

I
(
max(P̂j , P̂j′) ≤ αk+m(k)

)
k(k − 1)

+
M∑

i=k+1

I
(
αi−1+m(i−1) < max(P̂j , P̂j′) ≤ αi+m(i)

)
i(i− 1)

 ,(20)

if n0 ≥ k; otherwise, I (V ≥ max[g(R), k]) = 0. So, assuming that n0 ≥ k,
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and taking expectations of both sides in (20), we get

γ-kFDP = Pr {V ≥ max[g(R), k]}

≤

n0(n0 − 1)

H(αk+m(k))

k(k − 1)
+

M∑
i=k+1

H(αi+m(i))−H(αi−1+m(i−1))

i(i− 1)


= α

{
n0(n0 − 1)

(
H(α′

k+m(k))

k(k − 1)

+
M∑

i=k+1

H(α′
i+m(i))−H(α′

i−1+m(i−1))

i(i− 1)

/C(4)
n,SD

≤ α.

Thus, the theorem is proved.

Theorem 4.4. Let m̃(i) be defined as in Theorem 3.3 for i = 1, . . . , n0.
Then, given any set of constants α′

k ≤ · · · ≤ α′
n, the stepup procedure with

the critical values αi, i = 1, . . . , n, satisfying H(αi) = αH(α′
i∨k)/C

(4)
n,SU , for

i = 1, . . . , n, where

C
(4)
n,SU = max

k≤n0≤n

n0(n0 − 1)

H(α′
m̃(k))

k(k − 1)
+

n0∑
i=k+1

H(α′
m̃(i))−H(α′

m̃(i−1))

i(i− 1)

 ,
controls the γ-kFDP at α under Assumptions 1 and 3.

Proof. Proceeding as in proving Theorem 4.2 and using the following
inequality (to be proved in Appendix):

I

 n0∪
j=i

P̂(j) ≤ αj

 ≤
n0∑
j=1

n0∑
j′(̸=j)=1

I
(
max(P̂j , P̂j′) ≤ αi

)
i(i− 1)

+
n0∑

r=i+1

I
(
αr−1 < max(P̂j , P̂j′) ≤ αr

)
r(r − 1)

 ,(21)

for any fixed i such that 2 ≤ i ≤ n0 and a set of constants 0 < αi ≤ · · · ≤ αn0 ,
we have
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I (V ≥ max[g(R), k])

= I

 n0∪
j=k

{
P̂(j) ≤ αR, V = j, ⌊γR⌋+ 1 ≤ j, R ≤ j + n1

}
≤

 n0∪
j=k

{
P̂(j) ≤ αm̃(j)

}
≤

n0∑
j=1

n0∑
j′ (̸=j)=1

I
(
max(P̂j , P̂j′) < αm̃(k)

)
k(k − 1)

+
n0∑

r=k+1

I
(
αm̃(r−1) < max(P̂j , P̂j′) < αm̃(r)

)
r(r − 1)

 .
This proves

γ-kFDP = Pr {V ≥ max[g(R), k]}

≤ n0(n0 − 1)

H(αm̃(k))

k(k − 1)
+

n0∑
i=k+1

H(αm̃(i))−H(αm̃(i−1))

i(i− 1)


= α

n0(n0 − 1)

H(α′
m̃(k))

k(k − 1)
+

n0∑
i=k+1

H(α′
m̃(i))−H(α′

m̃(i−1))

i(i− 1)

/C(4)
n,SU

≤ α,

the desired result.

Remark 4.2. As seen form Figure 3, the critical values of the γ-kFDP
stepdown and stepup procedures (in Theorems 4.3 and 4.4, respectively)
that utilize the pairwise correlation information are much larger than the
corresponding critical values (in Theorems 4.1 and 4.2, respectively) that do
not use this information when the underlying test statistics are negatively
correlated or slightly or moderately positively correlated. However, when the
test statistics are highly positively correlated, utilizing the pairwise correla-
tion information is not helpful for improving the performance of the γ-kFDP
methods.

4.3. Procedures under positive dependence and incorporating pairwise cor-
relations. We make the following assumption regarding the positive depen-
dence structure among the null p-values:
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Fig 3. Minimum and maximum ratios of the critical values of the stepdown and stepup
γ-kFDP procedures in Theorems 4.3 and 4.4, respectively, to those of the correspond-
ing stepdown and stepup γ-kFDP procedures in Theorems 4.1 and 4.2, respectively, all
of which are based on the Lehmann-Romano type critical constants, for simultaneous
testing of µi ≤ 0 against µi > 0 in n normal random variables N(µi, 1) with a com-
mon correlation ρ at level α = 0.05, for different values of ρ, k = 2 and 4, and
(n, γ) = (100, 0.1), (100, 0.2), (200, 0.1), and (200, 0.2). (SD Min - Minimum ratio for step-
down; SD Max - Maximum ratio for stepdown; SU Min - Minimum ratio for stepup; SU
Max - Maximum ratio for stepup)
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Assumption 4. The null p-values P̂1, . . . , P̂n0 are positively dependent in the

sense that the conditional expectation E
{
ψ
(
P̂1, . . . , P̂n0

)
| Pi ≤ u, Pj ≤ v

}
is non-decreasing in (u, v) for each (i, j) and any non-decreasing (coordi-
natewise) function ψ.

Distributions satisfying the multivariate totally positive of order two
(MTP2) condition of Karlin and Rinott (1980) and are exchangeable un-
der null hypotheses are among the distributions of the p-values, or the test
statistics from which they are generated, that satisfy Assumptions 3 and 4.
For example, the p-values obtained from the multivariate normal distribu-
tions with a common variance and a nonnegative common correlation, or,
in general, certain mixtures of independent distributions, commonly con-
sidered in multiple testing, satisfy this MTP2 condition. The definition of
MTP2 and several important related results related to it have been recalled
from Karlin and Rinott (1980) in Sarkar (2008b).

Theorem 4.5. Let H(u) = F (u, u). Then, the stepup or stepdown pro-
cedure with the critical constants αi, i = 1, . . . , n, satisfying

H(αi) =


(k−1)kα

(n+k−i−1)(n+k−i) for i such that 1 ≤ ⌊γi⌋+ 1 ≤ k
⌊γi⌋(⌊γi⌋+1)α

(n+⌊γi⌋−i)(n+⌊γi⌋+1−i) for i such that ⌊γi⌋+ 1 > k,

for any fixed 2 ≤ k ≤ n0, controls the γ-kFDP at α under Assumptions 1, 3
and 4.

Proof. A proof of this theorem relies on the following lemma that follows
from Theorem 5.2 of Sarkar (2008b):

Lemma 4.1. Let R̂ denote the number of rejections in the stepup proce-
dure based on all the n0 null p-values and the critical values αi satisfying

H(αi) =
i ∨ k(i ∨ k − 1)α

n0(n0 − 1)
, i = 1, . . . , n0,

where i ∨ k = max(i, k). Then, for any fixed 2 ≤ k ≤ n0, Pr
(
R̂ ≥ k

)
≤ α

under Assumptions 1, 3 and 4.
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Proceeding as in our proof of Theorem 3.1, we note that

{V ≥ max[g(R), k]} =
n0∪
v=k

{
P̂(v) ≤ αR, V ≥ max[g(R), k], V = v

}
⊆

n0∪
v=k

{
P̂(v) ≤

V (V − 1)α

(n−R+ V )(n−R+ V − 1)
, V ≥ max[g(R), k], V = v

}

⊆
n0∪
v=k

{
P̂(v) ≤

V (V − 1)α

n0(n0 − 1)
, V ≥ max[g(R), k], V = v

}

⊆
n0∪
v=k

{
P̂(v) ≤

v(v − 1)α

n0(n0 − 1)

}
.

(22)

The fact that the probability of the event in the right-hand side of (22) is
less than or equal to α under Assumptions 1, 3 and 4 follows from Lemma 4.1.
Thus, we get the desired result noting that γ-kFDP = Pr (V ≥ max{g(R), k}).

Remark 4.3. As seen from Figure 4, by tolerating only up to one false
rejection, one can significantly improve powers of the Lehmann-Romano
stepdown γ-FDP procedure and its stepup analogue when the underlying
test statistics are slightly or moderately correlated. However, when the test
statistics are highly correlated, generalizing these Lehmann-Romano step-
wise γ-FDP procedures to those controlling the γ-2FDP do not seem to work
well.

5. Conclusion. This paper is mostly devoted to advancing the theory
and methodology of the FDP control. First, we have considered the existing
notion of γ-FDP and developed newer results extending and often improving
what is available so far in the literature. Second, we have generalized the
notion of γ-FDP to make it more appropriate and enhance the power of
an existing γ-FDP procedure, and have given procedures controlling this
generalized error rate under different dependence scenarios. We have given
numerical evidence to show that the proposed methods can continue to have
superior performance compared to the ones they intend to improve under
some dependence situations.

6. Appendix. Proof of (6). Consider a single-step test based on the
p-values P̂1, . . . , P̂n0 and the constant threshold t. Let R̂1 denote the number
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(a) Simulated γ-kFDP.
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Fig 4. Simulated γ-kFDP’s and average powers of the original Lehmann-Romano stepdown
procedure (LR SD) and its stepup analog (LR SU), and their generalizations (GLR SD
and GLR SU, respectively) controlling the γ-2FDP for simultaneous testing of µi = 0
against µi = 3 in n = 100 normal random variables N(µi, 1) with a common correlation ρ
at level α = 0.05, for different values of ρ and (π0, γ) = (0.5, 0.1), (0.5, 0.2), (0.8, 0.1), and
(0.8, 0.2). (Runs per simulation = 2,000.)

imsart-aos ver. 2011/05/20 file: Draft[2]-annals.tex date: September 26, 2011



25

of rejections. Then, we have

I
(
P̂(i) ≤ t

)
= I

(
R̂1 ≥ i

)
=

n0∑
j=1

n0∑
r=i

I
(
R̂1 = r, P̂j ≤ t

)
r

≤ 1

i

n0∑
j=1

I
(
P̂j ≤ t, R̂1 ≥ i

)
≤ 1

i

n0∑
j=1

I
(
P̂j ≤ t

)
,

the desired result.

Proof of (10). With R̂1 defined in proving (6), we have for each i =
2, . . . , n0,

I
(
P̂(i) ≤ t

)
= I

(
R̂1 ≥ i

)
≤ I

(
R̂1(R̂1 − 1) ≥ i(i− 1)

)
≤ 1

i(i− 1)

n0∑
j=1

n0∑
l(̸=j)=1

I
(
P̂j ≤ t, P̂l ≤ t

)
,

which proves the desired inequality.

Proof of (13). Let us define R̂2 as the number of rejections in the stepup
procedure based on the p-values P̂i, i = 1, . . . , n0, and the critical values αi,
i = 1, . . . , n0. Then,

I(R̂2 ≥ k)

= I

(
n0∪
r=k

{
P̂(r) ≤ αr

})
=

n0∑
j=1

n0∑
r=k

I
(
R̂2 = r, P̂j ≤ αr

)
r

=
n0∑
j=1

n0∑
r=k

I
(
R̂2 ≥ r, P̂j ≤ αr

)
r

−
n0∑
j=1

n0−1∑
r=k

I
(
R̂2 ≥ r + 1, P̂j ≤ αr

)
r

=
n0∑
j=1

n0∑
r=k

I
(
R̂2 ≥ r, P̂j ≤ αr

)
r

−
n0∑
j=1

n0∑
r=k+1

I
(
R̂2 ≥ r, P̂j ≤ αr−1

)
r − 1

≤
n0∑
j=1

I
(
R̂2 ≥ k, P̂j ≤ αk

)
k

+
n0∑
j=1

n0∑
r=k+1

I
(
αr−1 < P̂j ≤ αr

)
I
(
R̂2 ≥ r

)
r

≤
n0∑
j=1

I
(
P̂j ≤ αk

)
k

+
n0∑
j=1

n0∑
r=k+1

I
(
αr−1 < P̂j ≤ αr

)
r

,

the desired result.
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Proof of (21). A proof of this is similar to that of (13). For any fixed i
such that 2 ≤ i ≤ n0, first we note that

I

(
n0∪
r=i

{
P̂(r) ≤ αr

})
= I(R̂2 ≥ i)

=
n0∑
j=1

n0∑
j′ (̸=j)=1

n0∑
r=i

I
(
R̂2 = r,max(P̂j , P̂j′) ≤ αr

)
r(r − 1)

.(23)

As in the proof of (13), the right-hand side of (23) can be shown to be less
than or equal to the following:

n0∑
j=1

n0∑
j′ (̸=j)=1

I
(
max(P̂j , P̂j′) ≤ αi

)
i(i− 1)

+
n0∑

r=i+1

I
(
αr−1 < max(P̂j , P̂j′) ≤ αr

)
r(r − 1)

 .
This proves the inequality.
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