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29.1 Introduction

The ‘Hat Problem’ has been making rounds in Mathematics, Statistics and
Computer Science departments for quite some time. The problem straddles all
these disciplines. For a technical description of the problem, see Buhler (2002).
For a popular article on the problem, see Robinson (2001). The original hat
problem appeared in Todd Ebert’s thesis in Computer Science in connection
with complexity theory. A version of the problem can be found in Ebert and
Vollmer (2000). It is interesting to note that how this purely recreational prob-
lem has come to the research frontier with many problems yet unsolved. A
simple version of the problem involves three participants and two colors. Three
friends (Brenda, Glenda, Miranda say) are planning to participate in a game-
show in which a big prize can be won collectively. The host of the game-show
places a hat on each of the participants. The hat is either black or red. The
choice of the colors is random and the placements are independent. What this
means is that all the eight configurations of hats, listed in Table 29.1, on the
heads of the participants are equally likely. Each participant can see the colors
of the hats of her team mates but has no idea what the color of her hat is. The
host asks each of the team mates separately what the color of her hat is. A
team mate can guess the color of her hat, red (R) or black (B), or pass (P).
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Table 29.1: List of all configurations (3 people and 2 colors)

Configuration Brenda Glenda Miranda Probability

1 Red Red Red 1/8
2 Red Red Black 1/8
3 Red Black  Red 1/8
4 Red Black  Black 1/8
5 Black  Red Red 1/8
6 Black  Red Black 1/8
7 Black  Black  Red 1/8
8 Black  Black  Black 1/8

The other members of the team will not know what her response is. They can
win the prize collectively if at least one of the team mates guesses the color and
whoever guesses must be right. For example, if every one passes, they can not
win the prize. If only one guesses the color and the others pass, the one who
guesses must be right in order to win the prize. If two guess the color and the
other passes, both the guesses must be right in order to win the prize. If all
three guess, all guesses must be right in order to win the prize. Before partici-
pating in the game-show, the team mates can get into a huddle and formulate
a strategy of responses. The basic question is: what is the best strategy of
responses so as to maximize the chances of winning the prize.

Let us analyze a couple of strategies. One simple strategy is that every one
guesses. If this is the case, the chances of winning the prize are 1/8. Another
strategy is that one elects to guess and the others decide to pass. Winning
the prize now solely depends on the one who elects to guess. The chances of
winning the prize are then 50 per cent. Is there a strategy which will improve
the chances of winning the prize to more than 50 per cent? It is not obvious.
In order to improve the chances of winning, it seems that only one of the team
mates should guess the color and the others to pass, but who guesses and who
passes should be based on what actually they see on the stage. Consider the
following strategy.

Instructions to Brenda

a. If the colors of hats of your team mates are both red, say that the color
of your hat is black.

b. If the colors of hats of your team mates are both black, say that the color
of your hat is red.

c. If the colors of hats of your team mates are different, pass.

The same instructions are given to Glenda and Miranda.



The Hat Problem and Some Variations 3

Table 29.2: Actual configurations along with responses and outcomes (3 people
and 2 colors)

Actual Configuration Responses Outcome
Brenda Glenda Miranda Brenda Glenda Miranda

R R R B B B Loss

R R B P P B Win

R B R P B P Win

R B B R P P Win

B R R B P P Win

B R B P R P Win

B B R P P R Win

B B B R R R Loss

Under this strategy, let us evaluate the chances of winning the prize. The details
are provided in Table 29.2.

It is now clear that the chances of winning the prize under this strategy
are 75 per cent. One can also show that there is no way one can improve the
chances of winning to more than 75 per cent. For future reference, let us call
this strategy as Strategy O.

There are two main objectives we want to pursue in this article. One is to
extend the hat problem to the case of three colors and three team mates. We
will present an optimal strategy the team mates can pursue which will maximize
the chances of winning the prize collectively. The other is to stay within the
environment of two colors and three team mates but the eight configurations
that are possible are not equally likely. More precisely, we will be given a
probability distribution on the set of all hat configurations and the task is to
determine an optimal strategy which will maximize the probability of winning
the prize. We will also present some other variations of the hat problem. Finally,
we will end the paper with a number of open questions.

29.2 Hamming Codes

The hat problem has a close connection with ‘Covering Codes’. In this section,
the connection is explained in a rudimentary fashion.

Covering and packing are two of the most intriguing problems in Mathe-
matics useful in Engineering. A packing problem in the traditional Euclidean
space is to ask for the maximal number of identical non-intersecting spheres
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in a large volume. As an example, suppose we have a box with dimensions 1
meter X 1 meter x 1 meter. We want to pack the box with identical balls of
radius 10 centimeters. In what way should we pack the box so as to accom-
modate maximum number of balls? On the other hand, a covering problem in
an Euclidean space asks for the minimal number of identical spheres to cover a
specified volume.

A discrete analogue of the covering problem involves the so-called Hamming
Space. For a fixed positive integer n, it is the set of all n-tuples where each com-
ponent in any n-tuple is either zero or one. The elements of the Hamming space
are called points. Any non-empty subset of the Hamming space is called a code
and its elements are called codewords. The Hamming distance between any two
points is the number of components at which the points differ. The Hamming
distance is a non-negative integer from zero to n. The minimum distance of a
code is the smallest of the pairwise distances between its codewords. Let = be
a point in the Hamming space and r» > 0. A sphere of radius r with center at x
in the Hamming space consists of all points within distance r from the center
T.

Covering problem: Given n and r, what is the smallest number of spheres
of radius r so that every point in the Hamming space belong to at least one of
the spheres?

Example. Suppose n =3 and r = 1.
Hamming Space: 000, 001, 010, 011, 100, 101, 110, 111
S(000, 1) = Sphere with center at 000 and radius one = 000, 001, 010, 100
S(111, 1) = Sphere with center at 111 and radius one = 111, 110, 101, 011

Every point in the Hamming space belongs to one of these two spheres. In
other words, these two spheres cover the whole space. This covering is minimal.

Any such minimal covering gives rise to an optimal strategy in the hat
problem. Identify 0 = R and 1 = B. Let L be the set of centers of the
spheres and W its complement. In this example, L = 000,111 and W =
001,010, 100,110,101,011. A strategy S now can be developed such that for
this strategy the set of losing configurations is L and the set of winning config-
urations is W. We begin with instructions to the team mates that make up the
strategy S. The team mates Brenda, Glenda, and Miranda are ordered in the
order they are mentioned and instructions to them proceed in that order. To
begin with, they should be appraised with the notation 0 = R and 1 = B, and
also with the sets L and W.

Instructions to Brenda

Suppose you see 00. (This means that Brenda sees red hats on both Glenda
and Miranda.) If there is a unique u € {0, 1} such that ©00 € W, say that the
color of your hat is u. Otherwise, pass. Here, u is unique and in fact, v = 1.
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Suppose you see 01. (This means that Brenda sees red hat on Glenda and
black hat on Miranda.) If there is a unique u € {0, 1} such that ©01 € W, then
say that the color of your hat is u. Otherwise, pass. Here, u is not unique. As
a matter of fact, 001 and 101 both belong to W. In this case, you should pass.

Suppose you see 10. (This means that Brenda sees black hat on Glenda and
red hat on Miranda.) If there is a unique u € {0,1} such that u10 € W, then
say that the color of your hat is u. Otherwise, pass. Here, u is not unique. As
a matter of fact, 010 and 110 both belong to W. In this case, you should pass.

Suppose you see 11. (This means that Brenda sees black hats on both
Glenda and Miranda.) If there is a unique u € {0, 1} such that ull € W, then
say that the color of your hat is u. Otherwise, pass. Here u is unique. As a
matter of fact, u = 0.

Instructions to Glenda

Suppose you see 00. (This means that Glenda sees red hats on both Brenda
and Miranda.) If there is a unique u € {0, 1} such that 0u0 € W, say that the
color of your hat is u. Otherwise, pass. Here, u is unique and in fact, v = 1.

Suppose you see 01. (This means that Glenda sees red hat on Brenda and
black hat on Miranda.) If there is a unique u € {0, 1} such that Oul € W, then
say that the color of your hat is u. Otherwise, pass. Here, u is not unique. As
a matter of fact, 001 and 011 both belong to W. In this case, you should pass.

Suppose you see 10. (This means that Glenda sees black hat on Brenda and
red hat on Miranda.) If there is a unique u € {0,1} such that 1u0 € W, then
say that the color of your hat is u. Otherwise, pass. Here, u is not unique. As
a matter of fact, 100 and 110 both belong to W. In this case, you should pass.

Suppose you see 11. (This means that Glenda sees black hats on both
Brenda and Miranda.) If there is a unique u € {0, 1} such that 1lul € W, then
say that the color of your hat is u. Otherwise, pass. Here, u is unique. As a
matter of fact, u = 0.

By now, the tone of instructions should be clear. Instructions to Miranda
follow in the same tone.

In the general case of 2 colors and n participants, we look at the correspond-
ing Hamming space and a minimal cover. An optimal strategy is built based
on the minimal cover in the same way as outlined above. For a connection
between the hat problem and minimal covers, see Lenstra and Seroussi (2004).
For a comprehensive discussion of Hamming space and covers, see Cohen et al.
(1997).
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29.3 Three Team Mates and Three Colors

We now consider the case of three team mates and three colors. Each of the
team mates is fitted with a hat, which is red (R), black (B), or green (G), by
the host. All the 27 configurations of hats are equally likely. Each participant
can see the color of the hat each of her team mates has but can not see the
color of her own hat. Each participant is required to guess the color of her hat
or pass. In order to win the prize collectively, at least one team mate should
guess the color of her hat and whoever guesses must be right. What is the best
strategy that will maximize the probability of winning the prize?

Let us formulate the problem mathematically. Brenda can see the colors
of the hats of her team mates. What she sees is: RR, RB, BR, BB, RG, GR,
GG, BG, or GB on Glenda and Miranda, respectively. She needs to respond:
R, B, G, or P (Pass). Formally, we can introduce a map from the set of all
possible hat configurations she sees on her team mates to the set of all possible
responses. Thus, an instruction is a map f described by,

(RR, RB, BR, BB, RG,GR, GG, BG,GB} L (R, B,G, P}.

Let F be the collection of all instructions. The cardinality of the set F is 47 =
262,144. A strategy is a triplet S = (f1, f2, f3), where each f; is a member of F.
Using the strategy S means that Brenda follows the instruction fi, Glenda fo,
and Miranda f3. Let S be the collection of all strategies. The cardinality of S
is 427 ~ 1.8 % 10'6. For any given strategy, one can work out the probability of
winning the prize. A complete enumeration of all strategies along with winning
probability using a computer in order to find an optimal strategy is not feasible.

We restrict ourselves to symmetric strategies. A strategy S = (f1, fo, f3) is
said to be symmetric if f{ = fo = f3. This means that all participants follow
the same instructions. The total number of symmetric strategies is 262, 144.
This number is manageable by a computer. We have written a program which
enumerates all symmetric strategies and computes the corresponding winning
probabilities. We have identified optimal strategies from the list. There are
several. A careful scrutiny of the optimal strategies led us to synthesize verbally
what the instructions should be.

Designate one of the colors as ‘primary’ and another color as ‘secondary.” For
example, we may take red as primary and black as secondary. The instructions
to the participants are centered on these designations.

Instructions to Brenda

1. If both the colors you see are primary, say that the color of your hat is
the secondary color.
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Table 29.3: List of all configurations along with responses under the symmetric
strategy S (next page) and outcomes (3 people and 3 colors)

Actual Configuration Responses Outcome
Brenda Glenda Miranda Brenda Glenda Miranda

R R R B B B Loss
R R B P P B Win
R B R P B P Win
R B B R P P Win
B R R B P P Win
B R B P R P Win
B B R P P R Win
B B B R R R Loss
R R G P P B Loss
R G R P B P Loss
R G G R P P Win
G R R B P P Loss
G R G P R P Win
G G R P P R Win
G G G R R R Loss
B B G R R R Loss
B G B R R R Loss
B G G R R R Loss
G G B R R R Loss
G B G R R R Loss
G B B R R R Loss
R B G R P P Win
R G B R P P Win
B R G P R P Win
B G R P P R Win
G R B P R P Win
G B R P P R Win
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2. If only one of the colors you see is primary, pass.

3. If none of the colors you see is primary, say that the color of your hat is
the primary color.

If the primary color is red and the secondary is black, mathematically, instruc-
tions to Brenda can be spelled out as follows.

f(RR) = B;
{(RB) = P; f(BR) = P; f(RG) = P; f(GR) = P; {(BB) = R;
f(BG) = R; f(GB) = R; f(GG) = R.

The same instructions are given to Glenda and Miranda. If they adopt this
symmetric strategy S = (f, f, f), the chances of winning the prize are 15/27.
In Table 29.3 we outline all possible hat configurations and responses following
the optimal symmetric strategy described above. In 15 cases out of 27, the
team mates can win the prize. This is an optimal strategy among all symmetric
strategies. In Section 29.5, we will show that this symmetric strategy is indeed
optimal among all strategies.

29.4 Three Team Mates and m Colors

The problem outlined in Section 29.3 can be generalized to the case of m(> 3)
colors. The number of participants remains the same. Each participant is fitted
with a hat whose color is one of the m colors given. Let C1, (o, ..., Cy, be the
colors that are used in the game. The total number of configurations of hats
is m3. As in Section 29.3, we confine our attention to symmetric strategies
S =(f,f, f), where f is any instruction, i.e., f is a map from the set

{(:Ev y) 1T, Y € {Cla 027 ) Cm}}
into the set
{Cla 027 tey Cm7 P}7

where the symbol P stands for ‘Pass.” The vector (z,y) stands for the colors
of the hats any participant will see on her team mates. When the host asks a
participant about the color of her hat, she needs to respond C1, Co, ..., Cy,, or
P. An optimal strategy uses the following instruction f for each participant.

To begin with, declare one of the colors as ‘primary’ and one of the remaining
colors as ‘secondary.’
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Table 29.4: List of all configurations of hats and winning ones (3 people and m
colors)

Configurations Cardinality No. Winning Configurations
(C1,C1,Ch) 1 0
(C1,C1,Cy),5=2,3,....,m m—1 1
(Cl,Cj,Cl),]:2,3,..,m m—1 1
(C’j,C’l,C’l),]:2,3,...,m m—1 1

(C1,Ci,C)) iy 5 =2,3,...,m (m—1)? (m—1)>
(Ci,C1,C) 0,5 =2,3,...,m (m —1)? (m—1)>
(Ci,Cj,C) 0,5 =2,3,....m (m—1)? (m—1)>
(C,Cj,C) 1,5, k=2,3,...,m (m—1)* 0

Instructions (f) to any participant

1. If the colors of the hats of your team mates are both primary, you should
say that the color of your hat is secondary color.

2. If only one of the colors of the hats of your team mates is primary, you
should pass.

3. If none of the colors of the hats of your team mates is primary, you should
say that the color your hat is the primary color.

Let us calculate the probability of winning the prize under the strategy
S = (f, f, f), where f is the instruction described above. For simplicity, let
us declare that C; is the primary color and C5 the secondary. We will make
a complete list of all configurations of hats and then count how many of these
configurations lead to winning the prize. To facilitate the calculations, form
eight subsets of the set of all hat configurations based on the number of times
the primary color C is present in the configurations. The entire set of config-
urations is given in Table 29.4.

An explanation is in order on the above table. As an example, look at the
hat configuration (C1, C;, Cj) for some ¢, j = 2,3,...,m. Under the instructions
f outlined above, Brenda’s response would be C7, in which case she is right,
and Glenda and Miranda would pass. Thus (C1,C;, Cj) would be a winning
configuration under the strategy S = (f, f, f). The total number of such hat
configurations is (m — 1)2, and as we have just observed, each one of them is a
winning configuration. In totality, the team will win the prize in 3 (m — 1)2 +3
cases out of m3 possible configurations. Hence the probability of winning the
prize under the strategy S is given by

3(m—1)%+3
m3 '
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Let us contrast this strategy with the simple strategy, in which one of the
participants chooses to guess the color of her hat while others choose to pass.
Under this simple strategy, the probability of winning the prize is % This
probability is certainly less than Mm;ﬂﬁ

We do not know that the strategy S, which is optimal in the set of all sym-
metric strategies, is optimal in the set of all strategies. However, the winning
probability for S is very close to the upper bound, which will be discussed in
the next section.

29.5 An Upper Bound for the Winning Probability

Let us consider the hat problem with g colors C1,Cy, ..., Cy and n(> 3) par-
ticipants. The participants are numbered serially from 1 to n. The modus
operandi is similar to the basic hat problem. Each participant will be seeing
the hats of the remaining (n — 1) participants. Her response is Cy, Cy, . .., Cy,
or P(Pass). The set of all hat configurations is ¥ = {C4, Cs,...,C,}". Let C
= {C1,Cy,...,Cy, P}. An instruction to Participant No. ¢ is a map f; from
the set

{:EllEg c X _1Ti41 Ty Xy € {01, 02, ey Cq} for all ’L}

into the set C. The entity x1xo - x;_12441 - - -5 stands as a generic symbol
for the colors of the hats Participant No.i would see on her team mates and
filxyzo - xi_1Ti41 - - - xy) is the response to the query what the color of her
hat is. A strategy S = (f1, f2, ..., fn) is an n-tuple, where f; is the instruction
that Participant No. ¢ follows, ¢ = 1,2,...,n. For a given strategy S, we can
check whether or not a configuration of hats is winning. Let Wg denote the set
of all winning configurations under the strategy S and Lg losing configurations.
Obviously, #Wgs + #Lg = ¢". The objective is to find a strategy S for which
#Wg is maximum, or equivalently, #Lg is minimum.

We will now work out an upper bound for #Wg. For each i = 1,2,...,n,
let

Qi ={r1x2 - Ti1xiTiq1 Ty €55 fi (T122- - - Ti—1Tiq1 -+ - xp) # P}

Note that @Q; = ¢, the null set, if and only if f; = P, i.e., as per the instruc-
tion f;, Participant No. i passes all the time. It is now clear that @Q; is a
multiple of q. Let #Q; = g % t;, where t; is a non-negative integer. Take any
L1X " Xj—1T;Lj41 " Tp in QZ Then, Xrq1x9 - '$i—10j$i+1 - Iy € QZ for all
j=1,2,...,q. Of these g configurations, in only one configuration the guess by
Participant No. ¢ will be correct. Consequently, in ¢; configurations from @),
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the guesses by Participant No. i will be correct and in the remaining (¢ — 1)t;
configurations the guesses will be incorrect.

Let us interpret and understand all these entities in the context of the hat
problem with two colors (R and B) and 3 participants. Suppose the instructions
f1, fo and f3 to Brenda, Glenda and Miranda, respectively, are:

Brenda Glenda Miranda

fi(RR) =P fo(RR) =B f;(RR) =R
fulRB) =P f(RB)=P [;(RB) =R
fu(BR) =P f(BR)=P [;(BR) =R
fu(BB)=B fo(BB)=R f3(BB) =R

Then Q1 = {RBB, BBB}, Q2 = {RRR, RBR, BRB, BBB}, Q3 = {RRR, RRB,
RBR, RBB, BRR, BRB, BBR, BBB}. Further, t; = 1, t2 = 2 and t3 = 4. Of
the two configurations in )1, if BBB is the configuration of hats, Brenda’s guess
will be correct. Of the four configurations in )2, Glenda’s guess will be correct
for each of the configurations RBR and BRB. Finally, of the eight configurations
in Y3, Miranda’s guess will be correct for each of the configurations RRR, RBR,
BRR and BBR.

In the general case, the configurations in @); can be partitioned into two
sets, one set ();1 containing configurations in each of which Participant No. 4’s
guess will be correct as per her instruction f; and the other set ;o containing
configurations in each of which Participant No. i#’s guess will be incorrect,
with cardinalities ¢; and (¢ — 1)t;, respectively. Now take any configuration
from X. Let us determine whether or not it is a winning configuration as per
the strategy S = (f1, fo, ..., fn). It is a winning configuration if at least one
participant guessed correctly. Consequently,

Ws CQi1UQi2U---UQin.

Therefore,
#Ws <t1+lo+ - +1tn.

On the other hand, if at least one participant guesses wrongly under a given
configuration, then it is a losing configuration. Therefore,

n

Since #Wg + #Lg = ¢", it follows that

(g—1)(ti+ta+---+1tp)
n

#Wg < q" —
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Thus an upper bound for #Wg over all strategies S reduces to the following
optimization problem:

(= D)(ti+ta+---+1tp)
n

Mazimize min{ty +ta+---+1tn,q¢" —

}

subject to the constraints 0<t; <¢" % i=1,2,...,n.

Let us review the optimization problem vis-a-vis the hat problem with 2
colors, 3 participants, the strategy S spelled out above. Note that Wg = {RBR,
BRR, BBR}; #Ws = 3; Qu = {BBB}; Qa1 = {RBR, BRB}; Qs = {RRR,
RBR, BRR, BBR}; #Wgs < t1 + to + t3; and #Lg = 5 > {atietts),

Let us now tackle the general optimization problem.

(¢— Dt +t2+---+tn)}

(¢g—1)(ta +t2+---+tn)}}

Mazximize min{t1 +ito+ -+ iy, q" —

< min {ma:n{tl +to+-+ty},¢" —mazx {
n

—1
= min {z,q” 4 z}
n

n

n

P

where z = max{ty +t2 + -+ -+ t,} and all the maximums are taken over all
t1,t2, ..., t, subject to the constraints spelled out above. Consequently, an upper
bound for the winning probability is given by #q_l.

In the case of the hat problem with 2 colors and n participants, an upper
bound for the winning probability is 2. In particular, for the problem with
2 colors and 3 participants, an upper bound for the winning probability is 3/4.
The strategy presented in Section 29.1 has the winning probability 3/4 and
hence it is indeed optimal. In the case of the hat problem with 2 colors and
4 participants, an upper bound for the winning probability is 4/5. However,
there is no strategy for which the winning probability is 4/5. This can be
shown as follows. First of all, we show that there is a strategy S* with winning
probability 3/4. Suppose the four participants are: Brenda, Glenda, Miranda
and Yolanda. We instruct Brenda to pass. We instruct Glenda, Miranda and
Yolanda to ignore Brenda and play the game as though they are the only
participants, and follow the three player optimal strategy. Under this strategy
S*, the probability of winning the prize is 3/4. Now, let S be any strategy. Its
winning probability must be of the form m/16. Note that 3/4 = 12/16 < 4/5
but 13/16 > 4/5. Consequently, the winning probability under S has to be
< 3/4. Hence S* is optimal for the game with four players and 2 colors.

For the hat problem with 2 colors and n participants, one can always find
a strategy with winning probability 3/4. Instruct (n — 3) participants to pass



The Hat Problem and Some Variations 13

all the time and the three remaining participants play the game as though they
are the only participants.

For the hat problem with 2 colors and 5 participants, an upper bound with
winning probability is 5/6. However, there is no strategy which achieves this
winning probability. An optimal strategy in this case has a winning probability
3/4 only.

For the hat problem with 2 colors and n participants with n of the form
2% — 1, there is always an optimal strategy with winning probability n/(n + 1),
the upper bound. For a description of an optimal strategy, see Buhler (2002).

If ¢ (number of colors) = 3 and n = 3, the upper bound is 3/5. The
strategy described in Section 29.3 has the winning probability 15/27. For any
strategy S in this context, the winning probability must be of the form m/27.
Note that 16/27 < 3/5 but 17/27 > 3/5. The question arises whether or not
there is a strategy S with winning probability 16/27. Using Coding Theory
argument, which is not present here, we have shown that there is no strategy
with winning probability 16/27. Consequently, the strategy presented in Section
29.3 is indeed optimal for the game with 3 colors and 3 participants.

In the case of the hat problem with m colors and 3 participants, the upper
bound for winning probability is 3/(m + 2). The symmetric strategy we have

described in Section 29.4 has the winning probability Mm;ﬂﬁ The difference
3(m—1)243 .

between the upper bound and =—_—5—— is very small. As a matter of fact,
3 3(m—-1)°+3 6
(m +2) m?3 - m3’

which is close to zero even for moderate values of m. Consequently, we can say
that the strategy presented in Section 29.4 is almost optimal.

29.6 General Distribution

We now work in the environment of 2 colors and 3 participants. The eight
possible configurations of hats need not be equally likely. Let the distribution
on the set of all configurations be given by
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Configuration Brenda Glenda Miranda Probability

1 Red Red Red P1
2 Red Red Black D2
3 Red Black  Red D3
4 Red Black  Black D4
5 Black Red Red D5
6 Black Red Black D6
7 Black Black Red p7
8 Black Black Black Ds

Given the distribution p;’s, the objective is to find an optimal strategy which
maximizes the probability of winning the prize. For example, if p; = 0 = ps,
then there is a strategy which gives the probability of winning as unity no
matter what the values of the other probabilities are. If p; = 0.47 = pg and
po = p3 = pgs = p5 = pg = p7 = 0.01, the strategy described in Section 29.1 is
no longer optimal.

For a given distribution, one way to find an optimal strategy is to calculate
the probability of winning the prize for each of the possible 531,441 strategies.
From this collection of all strategies, we are able to identify 12 strategies and it
is enough to calculate the probability of winning for each of these 12 strategies
in order to determine an optimal strategy. The reasoning now follows.

Recall that an instruction to a participant is a map

f:{RR,RB,BR, BB} — {R, B, P}.

A strategy is a triplet S = (f1, f2, f3), where fi is an instruction to Brenda,
fo to Glenda, and f3 to Miranda. Note that the total number of strategies
is 813 = 531,441. Given any strategy S, one can determine the set Wy of all
winning configurations of hats. For example, if fi = R, fo = R, and f3 = B,
then the only configuration that leads to the prize is RRB if the participants
adopt the strategy S = (f1, fo, f3). Thus, Wg = {RRB}. We can now introduce
a relation in the set of all strategies. Say that the strategy S = (f1, f2, f3) is at
least as good as the strategy T' = (g1, g2, g3) if Wp C Wg. Denote this relation
by T' < S. Given a choice between S and T, we would adopt the strategy S.
The relation < is transitive and reflexive. Consequently, it is a partial order.

We have written a computer program to make a complete list of all strategies
along with their sets of winning configurations. A careful scrutiny of the list
yields 12 maximal strategies. What this means in terms of the stipulated partial
order is that given any strategy 1" one can find one of the maximal strategies S
such that Wp C Wg. It is now transparent that for a given distribution on the
set of all configurations, an optimal strategy is one of these 12 strategies. We
will now give a list of all these 12 maximal strategies.



Maximal Strategy 1

Instruction to Brenda
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Instruction to Glenda Instruction to Miranda

fi(RR) =B f2=h
fi(RB) =P

fi(BR) =P

fi(BB) =R

Ws = Winning set of configurations

— {RRB, RBR, RBB, BRR, BRB, BBR}

f3=fi

15

Note: This strategy is the same as the one described in Section 1. Maximal

Instruction to Glenda Instruction to Miranda

= {RRR, RRB, RBR, BRB, BBR, BBB}
Maximal Strategy 3

Instruction to Brenda

Strategy 2
Instruction to Brenda
fi(RR) =R f2(RR) =P
fi(RB) =P f2(RB) =R
fi(BR)=P f2(BR) =B
f1i(BB) =B f2(BB) =P
Ws = Winning set of configurations

Instruction to Glenda Instruction to Miranda

fi(RR) =P f2(RR) =R
fi(RB) =R f2(RB) =P
fi(BR) =B f2(BR) =P
fi(BB) =P f2(BB) = B
Ws = Winning set of configurations

= {RRR, RRB, RBB, BRR, BBR, BBB}
Maximal Strategy 4

Instruction to Brenda

Instruction to Glenda Instruction to Miranda

fi(RR) =P f2(RR) =P
fi(RB) =B f2(RB) = B
fi(BR) =R f2(BR) =R
fi(BB) =P f2(BB) = B
Ws = Winning set of configurations

= {RRR, RBR, RBB, BRR, BRB, BBB}
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Maximal Strategy 5

Instruction to Brenda Instruction to Glenda Instruction to Miranda

f(RR) =R f2(RR) = P f3(RR) = P
fi(RB) = R f2(RB) = P f3(RB) = P
fi(BR) = R f2(BR) = P f3(BR) =P
fu(BB) =R f2(BB) = P f3(BB) = P
Ws = Winning set of configurations

= {RRR, RRB, RBR, RBB}
Maximal Strategy 6

Instruction to Brenda Instruction to Glenda Instruction to Miranda

fi(RR) =B f2(RR) =P f3(RR) =P
fi(RB) =B f2(RB) =P f3(RB) = P
fi(BR) =B f2(BR) =P f3(BR) =P
f1(BB) =B f2(BB) =P f3(BB) = P
Ws = Winning set of configurations

= {BRR, BRB, BBR, BBB}
Maximal Strategy 7

Instruction to Brenda Instruction to Glenda Instruction to Miranda

f(RR) =P f2(RR) =R f3(RR) = P
fi(RB) = P f2(RB) = R f3(RB) = P
fi(BR) = P f2(BR) = R f3(BR) =P
fu(BB) =P f2(BB) = R f3(BB) = P
Ws = Winning set of configurations

= {RRR, RRB, BRR, BRB}
Maximal Strategy 8

Instruction to Brenda Instruction to Glenda Instruction to Miranda

fi(RR) =P f2(RR) = B f3(RR) = P
fi(RB) = P f2(RB) = B f3(RB) = P
fi(BR) = P f2(BR) = B f3(BR) =P
fu(BB) =P f2(BB) = B f3(BB) = P
Ws = Winning set of configurations

— {RBR, RBB, BBR, BBB}



Maximal Strategy 9

Instruction to Brenda
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Instruction to Glenda

Instruction to Miranda

fi(RR) =P f2(RR) =P
fi(RB) =P f2(RB) =P
fi(BR) =P f2(BR) =P
fi(BB) =P f2(BB) =P
Ws = Winning set of configurations

= {RRR, RBR, BRR, BBR}

Maximal Strategy 10

Instruction to Brenda

Instruction to Glenda

Instruction to Miranda

fi(RR) =P f2(RR) =P
fi(RB) =P f2(RB) = P
fi(BR) =P f2(BR) = P
fi(BB) =P f2(BB) = P
Ws = Winning set of configurations

— {RRB, RBB, BRB, BBB}

Maximal Strategy 11

Instruction to Brenda

Instruction to Glenda

Instruction to Miranda

fi(RR) =R f2(RR) =R
fi(RB) =B f2(RB) = B
fi(BR) =B f2(BR) =B
fi(BB) =R f2(BB) =R
Ws = Winning set of configurations

— {RRR, RBB, BRB, BBR}

Maximal Strategy 12

Instruction to Brenda

Instruction to Glenda

Instruction to Miranda

fi(RR) =B f2(RR) =B
fi(RB) =R f2(RB) =R
fi(BR) =R f2(BR) =R
fi(BB) =B f2(BB) = B
Ws = Winning set of configurations

— {RRB, RBR, BRR, BBB!
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A summary of these strategies along with their winning and losing configura-
tions is given in the following table.

Max. Str. Config.

RRR RRB RBR RBB DBRR BRB BBR BBB
1 L W W W W W W L
2 W W W L L W W W
3 W W L W W L W W
4 W L W W W W L W
5 W W W W L L L L
6 L L L L W W W W
7 W W L L W W L L
8 L L W W L L W W
9 W L W L W L W L
10 L W L W L W L W
11 W L L W L W W L
12 L W W L W L L W

Some comments are in order on these maximal strategies. No two of these
strategies are comparable. This means that the winning set of configurations
of any of these strategies is neither contained in nor contains the winning set of
configurations of any one of the other strategies. In addition, an examination
of the entire set of strategies yields other valuable information. There are no
strategies with exactly three winning configurations or five winning configura-
tions.

For any given distribution p;’s, the above table can be used to determine
an optimal strategy which maximizes the probability of winning the prize. One
simply calculates the probability of winning under each of these 12 strategies.
Pick the one with maximum probability then. Let us look at the distribution
p1 = pg = 0.47 and po = p3 = ps = p5 = pg = pr = 0.01. There are three
optimal strategies available: Strategies 2, 3 and 4. The winning probability is
0.98.

These maximal strategies have certain symmetric or anti-symmetric proper-
ties with respect to the configurations. For any strategy S, let W Lg (Win-Loss
Map) denote the map from the set {RRR, RRB, RBR, RBB, BRR, BRB, BBR,
BBB} of all configurations into the set {W, L} defined by

W Lg(Configuration) = W if the configuration is a winning one,

= L if the configuration is a losing one.
A strategy S is symmetric if
WLs(RRR) = WLs(BBB),
WLs(RRB) = WLs(BBR),
WLs(RBR) = WLs(BRB),
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and
WLs(RBB) = WLg(BRR).

If we flip R and B in the arguments of the map W Lg, the map remains invari-
ant. We can now check that the maximal strategies 1, 2, 3, and 4 are symmetric.
In addition, for each of these strategies, the number of winning configurations
is six. The total number of symmetric strategies each with six winning configu-
rations is four. We have exhausted all these strategies and they are indeed the
first four strategies listed above.

A strategy S is anti-symmetric if

WLs(RRR) # WLg(BBB),
WLs(RRB) # WLg(BBR),
WLs(RBR) # WLg(BRB),

and
WLs(RBB) # WLgs(BRR).

The next eight strategies in the list are all anti-symmetric. Each of these
strategies has exactly four winning configurations. These strategies can be
enumerated systematically by defining WL on the configurations RRR, RRB,
RBR and RBB only.

Configurations Win-Loss Maps
WLy WLy WLs WLy WLy WLs WLy WLg

RRR W L W L W L W L
RRB W L W L L W L W
RBR W L L W W L L W
RBB W L L W L W W L

This is a complete enumeration of all anti-symmetric strategies each with four
winning configurations.

The idea expounded so far can be extended to hat problems with n players
and two colors. Consider, for example, four players and two colors. The total
number of hat configurations is 16. Let pq,po, ..., p1g be any given probability
distribution on the set of all configurations. The objective is to determine an
optimal strategy which maximizes the winning probability. The total number
of strategy is 3%4. A complete enumeration of all these strategies is outside the
scope of any computer. However, one can write down maximal strategies for
this problem. For example, the total number of maximal strategies each with
12 winning configurations is 28. (Note that no strategy will give more than 12
winning configurations.) All these strategies will have to be symmetric! The
win-loss maps of all these strategies are obtained by selecting the configurations
from {RRRR, RRRB, RRBR, RRBB, RBRR, RBRB, RBBR, RBBB} and as-
signing them the letter W. The win-loss maps can be completed by symmetry.
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There are maximal strategies each with 10 wining configurations and also each
with 8 winning configurations.

29.7 Other Variations

There are a number of variations of the hat problem considered in the litera-
ture. See Buhler (2002) for some of these. We would like to mention one new
variation. Consider the hat problem with n colors and n participants. Each
participants is fitted with a hat whose color is randomly picked from the given
set of colors. Every participants can see the colors of hats of her team mates
but does not know the colors of her hat. Each participant is asked separately
to guess the color of her hat. No one is allowed to “Pass.” They can win col-
lectively the prize provided at least one of the guesses is correct. Is there a
strategy of responses which will guarantee 100% chances of winning the prize?
Yes, there is one. The reader may try to find one.

29.8 Some Open Problems

There are many open problems in the environment of traditional hat problem.
Take the case of 2 colors and n participants. Optimal strategies are known for
n=3,4,5,6,7, and 8. Optimal strategy is known if n = 2¥ —1 for some positive
integer k > 2. For all other cases, optimal strategies are not known. Take the
case of 3 colors and n participants. Except for the case n = 3, which has been
dealt in this paper, optimal strategies are not known. For the general cases of
q colors and n participants, virtually nothing is known.

29.9 The Yeast Genome Problem

One of the most important problems in cell biology is to understand functional-
ity of each and every gene of any living organism. A mammoth project, called
Deletion Project, is underway to study the DNA of the yeast organism. The
genome of yeast organism has been completely mapped out. It has about 6,000
genes. Experiments on yeast cells, under the Project, have the following basic
ingredients:
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1. Remove a gene from the cell.
2. Place the cell in a chamber at a set temperature.

3. Examine every one of the remaining cells whether or not it is active.

The data vector generated is of order 1 x 6000. Every entry in the vector,
except one, is 0 (inactive) or 1 (active). The missing entry corresponds to the
deleted gene. Repeat the Steps 1, 2 and 3 with respect to every gene. At the
set temperature, we will thus have 6,000 binary data vectors each vector having
exactly one blank space. The whole cell is also placed in the chamber without
removing any of its genes. The data vector generated will not have any blanks.
Using all these data vectors, one has to guess what would have been the role of
the deleted gene had it been present in the cell. It is hoped that hat problem
might provide some pointers.
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