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Multiple Testing in a Two-Stage Adaptive Design
With Combination Tests Controlling FDR

Sanat K. SARKAR, Jingjing CHEN, and Wenge GUO

Testing multiple null hypotheses in two stages to decide which of these can be rejected or accepted at the first stage and which should be
followed up for further testing having had additional observations is of importance in many scientific studies. We develop two procedures,
each with two different combination functions, Fisher’s and Simes’, to combine p-values from two stages, given prespecified boundaries on
the first-stage p-values in terms of the false discovery rate (FDR) and controlling the overall FDR at a desired level. The FDR control is proved
when the pairs of first- and second-stage p-values are independent and those corresponding to the null hypotheses are identically distributed
as a pair (p1, p2) satisfying the p-clud property. We did simulations to show that (1) our two-stage procedures can have significant power
improvements over the first-stage Benjamini–Hochberg (BH) procedure compared to the improvement offered by the ideal BH procedure
that one would have used had the second stage data been available for all the hypotheses, and can continue to control the FDR under some
dependence situations, and (2) can offer considerable cost savings compared to the ideal BH procedure. The procedures are illustrated
through a real gene expression data. Supplementary materials for this article are available online.

KEY WORDS: Early acceptance and rejection boundaries; False discovery rate; Single-stage BH procedure; Stepdown test; Stepup test;
Two-stage multiple testing.

1. INTRODUCTION

Gene association or expression studies that usually involve a
large number of endpoints (i.e., genetic markers) are often quite
expensive. Such studies conducted in a multistage adaptive
design setting can be cost effective and efficient, since genes are
screened in early stages and selected genes are further investi-
gated in later stages using additional observations. Multiplicity
in simultaneous testing of hypotheses associated with the
endpoints in a multistage adaptive design is an important issue,
as in a single-stage design. For addressing the multiplicity
concern, controlling the familywise error rate (FWER), the
probability of at least one Type I error among all hypotheses, is
a commonly applied concept. However, these studies are often
explorative, so controlling the false discovery rate (FDR), which
is the expected proportion of Type I errors among all rejected
hypotheses, is more appropriate than controlling the FWER
(Weller et al. 1998; Benjamini and Hochberg 1995; Storey and
Tibshirani 2003). Moreover, with large number of hypotheses
typically being tested in these studies, better power can be
achieved in a multiple testing method under the FDR framework
than under the more conservative FWER framework.

Although adaptive designs with multiple endpoints have
been considered in the literature under the FDR framework
(Zehetmayer, Bauer, and Posch 2005, 2008; Victor and
Hommel 2007; Posch, Zehetmayer, and Bauer 2009), the theory
presented so far (see, e.g, Victor and Hommel 2007) toward
developing an FDR controlling procedure in the setting of a
two-stage adaptive design with combination tests does not seem
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tively. We thank the AE and two referees whose comments led a much improved
presentation.

to be as simple as one would hope for. Moreover, it does not
allow setting boundaries on the first stage p-values in terms of
FDR and operate in a manner that would be a natural extension
of standard single-stage FDR controlling methods, like the BH
(Benjamini and Hochberg 1995) or methods related to it, from
a single-stage to a two-stage design setting. So, we consider the
following to be our main problem in this article:

To construct an FDR controlling procedure for simultaneous
testing of the null hypotheses associated with multiple end-
points in the following two-stage adaptive design setting: The
hypotheses are sequentially screened at the first stage as re-
jected or accepted based on prespecified boundaries on their
p-values in terms of the FDR, and those that are left out at the
first stage are again sequentially tested at the second stage
having determined their second-stage p-values based on ad-
ditional observations and then using the combined p-values
from the two stages through a combination function.

We propose two FDR controlling procedures, one extending
the original single-stage BH procedure, which we call the BH-
TSADC Procedure (BH-type procedure for two-stage adaptive
design with combination tests), and the other extending an adap-
tive version of the single-stage BH procedure incorporating an
estimate of the number of true null hypotheses, which we call
the Plug-In BH-TSADC Procedure, from single-stage to a two-
stage setting. Let (p1i , p2i) be the pair of first- and second-stage
p-values corresponding to the ith null hypothesis. We provide a
theoretical proof of the FDR control of the proposed procedures
under the assumption that the (p1i , p2i)’s are independent and
those corresponding to the true null hypotheses are identically
distributed as (p1, p2) satisfying the p-clud property (Brannath,
Posch, and Bauer 2002), and some standard assumption on the
combination function. We consider two special types of com-
bination function, Fisher’s and Simes’, which are often used in
multiple testing applications, and present explicit formulas for
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probabilities involving them that would be useful to carry out
the proposed procedures at the second stage either using critical
values that can be determined before observing the p-values or
based on estimated FDR’s that can be obtained after observing
the p-values.

We carried out extensive simulations to investigate how well
our proposed procedures perform in terms of FDR control and
power under independence with respect to the number of true
null hypotheses and the selection of early stopping boundaries.
Simulations were also performed (1) to examine the cost savings
our procedures can potentially offer relative to the maximum
possible cost incurred ideally by the BH method one would
have used had the second stage data been available for all the
endpoints, and (2) to evaluate whether or not the proposed pro-
cedures can continue to control the FDR under different types
of (positive) dependence among the underlying test statistics
we consider, such as equal, clumpy, and autoregressive of order
one [AR(1)] dependence. Our simulation studies indicate that
between the two proposed procedures, the BH-TSADC seems to
be the better choice in terms of controlling the FDR and power
improvement over the single-stage BH procedure when π0, the
proportion of true nulls, is large. If π0 is not large, the Plug-In
BH-TSADC procedure is better, but it might lose the FDR con-
trol when the p-values exhibit equal or AR(1) type dependence
with a large equal- or auto-correlation. In terms of cost, both
our procedures can provide significantly large savings.

We applied our proposed two-stage procedures to reanalyze
the data on multiple myeloma considered before by Zehetmayer,
Bauer, and Posch (2008), of course, for a different purpose. The
data consist of a set of 12,625 gene expression measurements
for each of 36 patients with bone lytic lesions and 36 patients in
a control group without such lesions. We considered these data
in a two-stage framework, with the first 18 subjects per group for
Stage 1 and the next 18 per group for Stage 2. With some precho-
sen early rejection and acceptance boundaries, these procedures
produce significantly more discoveries than the first-stage BH
procedure relative to the additional discoveries made by the
ideal BH procedure based on the full data from both stages.

The article is organized as follows. We review some basic
results on the FDR control in a single-stage design in Section 2,
present our proposed two-stage procedures in Section 3, discuss
the results of simulations studies in Section 4, and illustrate the
real data application in Section 5. We conclude the article in
Section 6 with some remarks on the present work and brief dis-
cussions on some future research topics including those related
to designing an FDR-based two-stage study. Proofs of our main
theorem and propositions are given in Appendix.

2. CONTROLLING THE FDR IN A SINGLE-STAGE
DESIGN

Suppose that there are m endpoints and the corresponding null
hypotheses Hi , i = 1, . . . , m, are to be simultaneously tested
based on their respective p-values pi , i = 1, . . . , m, obtained
in a single-stage design. The FDR of a multiple testing method
that rejects R and falsely rejects V null hypotheses is E(FDP),
where FDP = V/ max{R, 1} is the false discovery proportion.
Multiple testing is often carried out using a stepwise proce-
dure defined in terms of p(1) ≤ · · · ≤ p(m), the ordered p-values.

With H(i) the null hypothesis corresponding to p(i), a stepup
procedure with critical values γ1 ≤ · · · ≤ γm rejects H(i) for all
i ≤ k = max{j : p(j ) ≤ γj }, provided the maximum exists; oth-
erwise, it accepts all null hypotheses. A stepdown procedure, on
the other hand, with these same critical values rejects H(i) for
all i ≤ k = max{j : p(i) ≤ γi for all i ≤ j}, provided the max-
imum exists, otherwise, accepts all null hypotheses. The fol-
lowing are formulas for the FDR’s of a stepup or single-step
procedure (when the critical values are same in a stepup proce-
dure) and a stepdown procedure in a single-stage design, which
can guide us in developing stepwise procedures controlling the
FDR in a two-stage design. We will use the notation FDR1 for
the FDR of a procedure in a single-stage design.

Result 1. (Sarkar 2008). Consider a stepup or stepdown
method for testing m null hypotheses based on their p-values
pi , i = 1, . . . , m, and critical values γ1 ≤ · · · ≤ γm in a single-
stage design. The FDR of this method is given by

FDR1 ≤
∑
i∈J0

E

[
I
(
pi ≤ γR

(−i)
m−1(γ2,...,γm)+1

)
R

(−i)
m−1(γ2, . . . , γm) + 1

]
,

with the equality holding in the case of stepup method, where I
is the indicator function, J0 is the set of indices of the true null
hypotheses, and R

(−i)
m−1(γ2, . . . , γm) is the number of rejections

in testing the m − 1 null hypotheses other than Hi based on their
p-values and using the same type of the stepwise method with
the critical values γ2 ≤ · · · ≤ γm.

With pi having the cdf F (u) when Hi is true, the FDR of a
stepup or stepdown method with the thresholds γi , i = 1, . . . , m,
under independence of the p-values, satisfies the following:

FDR1 ≤
∑
i∈J0

E

(
F
(
γR

(−i)
m−1(γ2,...,γm)+1

)
R

(−i)
m−1(γ2, . . . , γm) + 1

)
.

When F is the cdf of U (0, 1) and these thresholds are chosen as
γi = iα/m, i = 1, . . . , m, the FDR equals π0α for the stepup
and is less than or equal to π0α for the stepdown method, where
π0 is the proportion of true nulls, and hence the FDR is controlled
at α. This stepup method is the so-called BH method (Benjamini
and Hochberg 1995), the most commonly used FDR controlling
procedure in a single-stage deign. The FDR is bounded above
by π0α for the BH as well as its stepdown analog under cer-
tain type of positive dependence condition among the p-values
(Benjamini and Yekutieli 2001; Sarkar 2002, 2008).

The idea of improving the FDR control of the BH method by
plugging into it a suitable estimate π̂0 of π0, that is, by consider-
ing the modified p-values π̂0pi , rather than the original p-values,
in the BH method, was introduced by Benjamini and Hochberg
(2000), which was later brought into the estimation-based ap-
proach to controlling the FDR by Storey (2002). A number
of such plugged-in versions of the BH method with proven
and improved FDR control mostly under independence have
been put forward based on different methods of estimating π0

(e.g., Storey, Taylor, and Siegmund 2004; Benjamini, Krieger,
and Yekutieli 2006; Sarkar 2008; Blanchard and Roquain 2009;
Gavrilov, Benjamini, and Sarkar 2009).
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3. CONTROLLING THE FDR IN A TWO-STAGE
ADAPTIVE DESIGN

Now suppose that the m null hypotheses Hi , i = 1, . . . , m,
are to be simultaneously tested in a two-stage adaptive design
setting. When testing a single hypothesis, say Hi , the theory of
two-stage combination test can be described as follows: given
p1i , the p-value available for Hi at the first stage, and two con-
stants λ < λ′, make an early decision regarding the hypothesis
by rejecting it if p1i ≤ λ, accepting it if p1i > λ′, and continu-
ing to test it at the second stage if λ < p1i ≤ λ′. At the second
stage, combine p1i with the additional p-value p2i available for
Hi using a combination function C(p1i , p2i) and reject Hi if
C(p1i , p2i) ≤ γ , for some constant γ . The constants λ, λ′, and
γ are determined subject to a control of the Type I error rate at
a prespecified level by the test.

For simultaneous testing, we consider a natural extension of
this theory from single to multiple testing. More specifically,
given the first-stage p-value p1i corresponding to Hi for i =
1, . . . , m, we first determine two thresholds 0 ≤ λ̂ < λ̂′ ≤ 1,
stochastic or nonstochastic, and make an early decision regard-
ing the hypotheses at this stage by rejecting Hi if p1i ≤ λ̂,
accepting Hi if p1i > λ̂′, and continuing to test Hi at the second
stage if λ̂ < p1i ≤ λ̂′. At the second stage, we use the additional
p-value p2i available for a follow-up hypothesis Hi and com-
bine it with p1i using the combination function C(p1i , p2i). The
final decision is taken on the follow-up hypotheses at the second
stage by determining another threshold γ̂ , again stochastic or
nonstochastic, and by rejecting the follow-up hypothesis Hi if
C(p1i , p2i) ≤ γ̂ . Both first-stage and second-stage thresholds
are to be determined in such a way that the overall FDR is
controlled at the desired level α.

Let p1(1) ≤ · · · ≤ p1(m) be the ordered versions of the first-
stage p-values, with H(i) being the null hypotheses correspond-
ing to p1(i), i = 1, . . . , m, and qi = C(p1i , p2i). We describe in
the following a general multiple testing procedure based on the
above theory, before proposing our FDR controlling procedures
that will be of this type.

A General Stepwise Procedure.

1. For two nondecreasing sequences of constants λ1 ≤ · · · ≤
λm and λ′

1 ≤ · · · ≤ λ′
m, with λi < λ′

i for all i = 1, . . . , m,
and the first-stage p-values p1i , i = 1, . . . , m, define
two thresholds as follows: R1 = max{1 ≤ i ≤ m : p1(j ) ≤
λj for all j ≤ i} and S1 = max{1 ≤ i ≤ m : p1(i) ≤ λ′

i},
where 0 ≤ R1 ≤ S1 ≤ m and R1 or S1 equals zero if the
corresponding maximum does not exist. Reject H(i) for
all i ≤ R1, accept H(i) for all i > S1, and continue testing
H(i) at the second stage for all i such that R1 < i ≤ S1.

2. At the second stage, consider q(i), i = 1, . . . , S1 − R1,
the ordered versions of the combined p-values qi =
C(p1i , p2i), i = 1, . . . , S1 − R1, for the follow-up null hy-
potheses, and find R2(R1, S1) = max{1 ≤ i ≤ S1 − R1 :
q(i) ≤ γR1+i,S1}, given another nondecreasing sequence of
constants γr1+1,s1 ≤ · · · ≤ γs1,s1 , for every fixed r1 < s1.
Reject the follow-up null hypothesis H(i) corresponding
to q(i) for all i ≤ R2 if this maximum exists, otherwise,
reject none of the follow-up null hypotheses.

Remark 1. We should point out that the above two-stage
procedure screens out the null hypotheses at the first stage by

accepting those with relatively large p-values through a stepup
procedure and by rejecting those with relatively small p-values
through a stepdown procedure. At the second stage, it applies a
stepup procedure to the combined p-values. Conceptually, one
could have used any type of multiple testing procedure to screen
out the null hypotheses at the first stage and to test the follow-
up null hypotheses at the second stage. However, the particular
types of stepwise procedure we have chosen at the two stages
provide flexibility in terms of developing a formula for the FDR
and eventually determining explicitly the thresholds we need to
control the FDR at the desired level.

Let V1 and V2 denote the total numbers of falsely rejected
among all the R1 null hypotheses rejected at the first stage and
the R2 follow-up null hypotheses rejected at the second stage,
respectively, in the above procedure. Then, the overall FDR in
this two-stage procedure is given by

FDR12 = E

[
V1 + V2

max{R1 + R2, 1}
]

.

The following theorem (to be proved in Appendix) will guide
us in determining the first- and second-stage thresholds in
the above procedure that will provide a control of FDR12 at
the desired level. This is the procedure that will be one of those
we propose in this article. Before stating the theorem, we need
to define the following notations.

• R
(−i)
1 : Defined as R1 in terms of the m − 1 first-stage

p-values {p11, . . . , p1m} \ {p1i} and the sequence of con-
stants λ2 ≤ · · · ≤ λm.

• S
(−i)
1 : Defined as S1 in terms of {p11, . . . , p1m} \ {p1i} and

the sequences of constants λ′
2 ≤ · · · ≤ λ′

m.
• R̃

(−i)
1 : Defined as R1 in terms of {p11, . . . , p1m} \ {p1i} and

the sequence of constants λ1 ≤ · · · ≤ λm−1.
• R

(−i)
2 : Defined as R2 with R1 replaced by R̃

(−i)
1 and S1

replaced by S
(−i)
1 + 1 and noting the number of rejected

follow-up null hypotheses based on all the combined
p-values except the qi and the critical values other than
the first one; that is,

R
(−i)
2 ≡ R

(−i)
2

(
R̃

(−i)
1 , S

(−i)
1 + 1

)
= max

{
1 ≤ j ≤ S

(−i)
1 − R̃

(−i)
1 : q

(−i)
(j )

≤ γR̃
(−i)
1 +j+1,S

(−i)
1 +1

}
,

where q
(−i)
(j ) ’s are the ordered versions of the combined

p-values for the follow-up null hypotheses except the qi .

Theorem 1. The FDR of the above general multiple testing
procedure satisfies the following inequality:

FDR12 ≤
∑
i∈J0

E

[
I
(
p1i ≤ λR

(−i)
1 +1

)
R

(−i)
1 + 1

]
+
∑
i∈J0

E

×
⎡⎣I
(
λR̃

(−i)
1 +1 < p1i ≤ λ′

S
(−i)
1 +1

, qi ≤ γR̃
(−i)
1 +R

(−i)
2 +1,S

(−i)
1 +1

)
R̃

(−i)
1 + R

(−i)
2 + 1

⎤⎦.

The theorem is proved in Appendix.

3.1 BH-type Procedures

We are now ready to propose our FDR controlling multiple
testing procedures in a two-stage adaptive design setting with
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combination function. Before that, let us state some assumptions
we need.

Assumption 1. The combination function C(p1, p2) is non-
decreasing in both arguments.

Assumption 2. The pairs (p1i , p2i), i = 1, . . . , m, are inde-
pendently distributed and the pairs corresponding to the null
hypotheses are identically distributed as (p1, p2) with a joint dis-
tribution that satisfies the “p-clud” property (Brannath, Posch,
and Bauer 2002), that is,

Pr (p1 ≤ u) ≤ u and Pr (p2 ≤ u|p1) ≤ u for all 0 ≤ u ≤ 1.

Let us define the function

H (c; t, t ′) =
∫ t ′

t

∫ 1

0
I (C(u1, u2) ≤ c)du2du1, 0 < c < 1.

When testing a single hypothesis based on the pair (p1, p2)
using t and t ′ as the first-stage rejection and acceptance thresh-
olds, respectively, and c as the second-stage rejection threshold,
H (c; t, t ′) is the chance of this hypothesis to be followed up and
rejected in the second stage when it is null.

Definition 1. (BH-TSADC Procedure).

1. Given the level α at which the overall FDR is to be
controlled, three sequences of constants λi = iλ/m, i =
1, . . . , m, λ′

i = iλ′/m, i = 1, . . . , m, for some prefixed
λ < α < λ′, and γr1+1,s1 ≤ · · · ≤ γs1,s1 , satisfying

H
(
γr1+i,s1 ; λr1 , λ

′
s1

) = (r1 + i)(α − λ)

m
,

i = 1, . . . , s1 − r1, for every fixed 1 ≤ r1 < s1 ≤ m,
find R1 = max{1 ≤ i ≤ m : p1(j ) ≤ λj for all j ≤ i} and
S1 = max{1 ≤ i ≤ m : p1(i) ≤ λ′

i}, with R1 or S1 being
equal to zero if the corresponding maximum does not
exist.

2. Reject H(i) for i ≤ R1; accept H(i) for i > S1; and continue
testing H(i) for R1 < i ≤ S1, if R1 < S1, making use of the
additional p-values p2i’s available for all such follow-up
hypotheses at the second stage.

3. At the second stage, consider the combined p-values
qi = C(p1i , p2i) for the follow-up null hypotheses. Let
q(i), i = 1, . . . , S1 − R1, be their ordered versions. Re-
ject H(i) (the null hypothesis corresponding to q(i))
for all i ≤ R2(R1, S1) = max{1 ≤ j ≤ S1 − R1 : q(j ) ≤
γR1+j,S1}, provided this maximum exists, otherwise, re-
ject none of the follow-up null hypotheses.

Proposition 1. Let π0 be the proportion of true null hypothe-
ses. Then, the FDR of the BH-TSADC method is less than or
equal to π0α, and hence controlled at α, if Assumptions 1 and 2
hold.

The proposition is proved in Appendix.

The BH-TSADC procedure can be implemented alternatively,
and often more conveniently, in terms of some FDR estimates
at both stages. With R(1)(t) = #{i : p1i ≤ t) and R(2)(c; t, t ′) =
#{i : t < p1i ≤ t ′, C(p1i , p2i) ≤ c}, let us define

F̂DR1(t) =
⎧⎨⎩

mt

R(1)(t)
if R(1)(t) > 0

0 if R(1)(t) = 0,

and

F̂DR2|1(c; t, t ′)

=
⎧⎨⎩

mH (c; t, t ′)
R(1)(t) + R(2)(c; t, t ′)

if R(2)(c; t, t ′) > 0

0 if R(2)(c; t, t ′) = 0,

Then, we have the following:
The BH-TSADC procedure: An alternative definition. Re-

ject H(i) for all i ≤ R1 = max{1 ≤ k ≤ m : F̂DR1(p1(j )) ≤
λ for all j ≤ k}; accept H(i) for all i > S1 = max{1 ≤ k ≤ m :
F̂DR1(p1(k)) ≤ λ′}; continue to test H(i) at the second stage
for all i such that R1 < i ≤ S1, if R1 < S1. Reject H(i),
the follow-up null hypothesis corresponding to q(i), at the
second stage for all i ≤ R2(R1, S1) = max{1 ≤ k ≤ S1 − R1 :
F̂DR2|1(q(k); R1λ/m, S1λ

′/m) ≤ α − λ}.
Remark 2. The BH-TSADC procedure is an extension of

the BH procedure, from a method of controlling the FDR in a
single-stage design to that in a two-stage adaptive design with
combination tests. When λ = 0 and λ′ = 1, that is, when we
have a single-stage design based on the combined p-values, this
method reduces to the usual BH method. Note that F̂DR1(t) is
a conservative estimate of the FDR of the single-step test with
the rejection pi ≤ t for each Hi . So, the BH-TSADC procedure
screens out those null hypotheses as being rejected (or accepted)
at the first stage the estimated FDR’s at whose p-values are all
less than or equal to λ (or greater than λ′).

Clearly, the BH-TSADC procedure can potentially be
improved in terms of having a tighter control over its FDR at
α by plugging a suitable estimate of π0 into it while choosing
the second-stage thresholds, similar to what is done for the BH
method in a single-stage design. As said in Section 2, there are
different ways of estimating π0, each of which has been shown
to provide the ultimate control of the FDR, of course when the
p-values are independent, by the resulting plugged-in version of
the single-stage BH method (see, e.g., Sarkar 2008). However,
we will consider the following estimate of π0, which is of the
type considered in Storey, Taylor, and Siegmund (2004) and
seems natural in the context of the present adaptive design
setting where m − S1 of the null hypotheses are accepted as
being true at the first stage:

π̂0 = m − S1 + 1

m(1 − λ′)
.

The following theorem gives a modified version of the
BH-TSADC procedure using this estimate.

Definition 2. (Plug-In BH-TSADC Procedure).
Consider the BH-TSADC procedure with R1 and S1 based on

the sequences of constants λi = iλ/m, i = 1, . . . , m, and λ′
i =

iλ′/m, i = 1, . . . , m, given 0 ≤ λ < λ′ ≤ 1, and the second-
stage critical values γ ∗

R1+i,S1
, i = 1, . . . , S1 − R1, given by the

equations

H
(
γ ∗

r1+i,s1
; λr1 , λ

′
s1

) = (r1 + i)(α − λ)

mπ̂0
, (1)

for i = 1, . . . , s1 − r1.

Proposition 2. The FDR of the Plug-In BH-TSADC method
is less than or equal to α if Assumptions 1 and 2 hold.
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Figure 1. Comparison of simulated FDRs of BH-TSADC and Plug-In BH-TSADC procedures with simulated FDRs of first-stage and full-data
BH procedures, with m = 100, λ = 0.005, 0.010,and 0.025, λ′ = 0.5, and α = 0.05. The online version of this figure is in color.

A proof of this proposition is given in Appendix.
As in the BH-TSADC procedure, the Plug-In BH-TSADC

procedure can also be described alternatively using estimated
FDR’s at both stages. Let

F̂DR
∗
2|1(c; t, t ′)

=
⎧⎨⎩

mπ̂0H (c; t, t ′)
R(1)(t) + R(2)(c; t, t ′)

if R(2)(c; t, t ′) > 0

0 if R(2)(c; t, t ′) = 0,

Then, we have the following:
The Plug-In BH-TSADC procedure: An alternative definition.

At the first stage, decide the null hypotheses to be rejected, ac-
cepted, or continued to be tested at the second stage based on
F̂DR1, as in (the alternative description of) the BH-TSADC
procedure. At the second stage, reject H(i), the follow-up
null hypothesis corresponding to q(i), for all i ≤ R∗

2 (R1, S1) =
max{1 ≤ k ≤ S1−R1 : F̂DR

∗
2|1(q(k); R1λ/m, S1λ

′/m) ≤ α−λ}.

3.2 Two Special Combination Functions

We now present explicit formulas of H (c; t, t ′) for two spe-
cial combination functions—Fisher’s and Simes’—often used
in multiple testing applications∗.

Fisher’s combination function: C(p1, p2) = p1p2.

HFisher(c; t, t ′) =
∫ t ′

t

∫ 1

0
I (C(u1, u2) ≤ c)du2du1

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c ln

(
t ′

t

)
if c < t

c − t + c ln

(
t ′

c

)
if t ≤ c < t ′

t ′ − t if c ≥ t ′,

(2)

for c ∈ (0, 1).

∗The H function for Simes’ combination function is also given in an unpublished
manuscript, Chen, J., Sarkar, S. K. and Bretz, F. (2011). “Finding Critical Values
with Prefixed Early Stopping Boundaries and Controlled Type I Error for Two-
Stage Combination Test.”
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Figure 2. Comparison of simulated average powers of BH-TSADC and Plug-In BH-TSADC procedures with simulated average powers of
first-stage and full-data BH procedures, with m = 100, λ = 0.005, 0.010, and 0.025, λ′ = 0.5, and α = 0.05. The online version of this figure
is in color.

Simes’ combination function: C(p1, p2) = min{2 min(p1,

p2), max(p1, p2)}.
HSimes(c; t, t ′)

=
∫ t ′

t

∫ 1

0
I (C(u1, u2) ≤ c)du2du1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c

2
(t ′ − t) if c ≤ t

c

(
t ′

2
− t

)
+ c2

2
if t < c ≤ min(2t, t ′)

c(t ′ − t) if t ′ < c ≤ 2t

c

2
(1 + t ′) − t if 2t < c ≤ t ′

c

2
(1 + 2t ′) − c2

2
− t if max(2t, t′) ≤ c ≤ 2t′

t ′ − t if c ≥ 2t ′,

for c ∈ (0, 1).
See also Brannath, Posch, and Bauer (2002) for formula (2).

These formulas can be used to determine the critical values γi’s

before observing the combined p-values or to estimate the FDR
after observing the combined p-values at the second stage in the
BH-TSADC and Plug-In BH-TSADC procedures with Fisher’s
and Simes’ combination functions. Of course, for large values
of m, it is numerically more challenging to determine the γi’s
than estimating the FDR at the second stage, and so in that case
we would recommend using the alternative versions of these
procedures.

Given the p-values from the two stages, Fisher’s combination
function allows us to give equal importance to the evidences
from both stages before forming a composite evidence toward
deciding on the corresponding null hypothesis. Simes’ combina-
tion function, on the other hand, allows us to make this decision
based on the strength of evidence provided by each individual
p-value relative to the other.

4. SIMULATION STUDIES

There are a number of important issues related to our pro-
posed procedures that are worth investigating. Modifying the
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Figure 3. Comparison of simulated FDRs of BH-TSADC and Plug-In BH-TSADC procedures with simulated FDRs of first-stage and full-data
BH procedures, with m = 1000, λ = 0.005, 0.010, 0.025, λ′ = 0.5, and α = 0.05. The online version of this figure is in color.

first-stage BH method to make it more powerful in the present
two-stage adaptive design setting relative to the ideal BH method
that would have been used had the second stage data been col-
lected for all the hypotheses, without losing the ultimate control
over the FDR, is an important rationale behind developing our
proposed methods. Hence, it is important to numerically in-
vestigate how well the proposed procedures control the FDR
and how powerful they can potentially be compared to both
the first-stage and ideal BH methods. Since the ultimate con-
trol over the FDR has been theoretically established for our
methods only under independence, it would be worthwhile to
provide some insight through simulations into their FDRs un-
der some dependence situations. The consideration of cost ef-
ficiency is as essential as that of improved power performance
while choosing a two-stage multiple testing procedure over its
single-stage version, and so it is also important to provide nu-
merical evidence of how much cost savings our procedures can
potentially offer relative to the maximum possible cost incurred
by using the ideal BH method. We conducted our simulation

studies addressing these issues. More details about these studies
and conclusions derived from them are given in the following
subsections.

4.1 FDR and Power Under Independence

To investigate how well our procedures perform relative to
the first-stage and full-data BH methods under independence,
we (1) generated two independent sets of m uncorrelated random
variables Zi ∼ N (μi, 1), i = 1, . . . , m, one for Stage 1 and the
other for Stage 2, having set mπ0 of these μi’s at zero and the
rest at 2; (2) tested Hi : μi = 0 against Ki : μi > 0, simultane-
ously for i = 1, . . . , m, by applying each of the following pro-
cedures at α = 0.05 to the generated data: The (alternative ver-
sions of) BH-TSADC and Plug-In BH-TSADC procedures, each
with Fisher’s and Simes’ combination functions, the first-stage
BH method, and the BH method based on combining the data
from two stages (which we call the full-data BH method); and
(3) noted the false discovery proportion and the proportion of
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Figure 4. Comparison of simulated average powers of BH-TSADC and Plug-In BH-TSADC procedures with simulated average powers of
first-stage and full-data BH procedures, with m = 1000, λ = 0.005, 0.010, 0.025, λ′ = 0.5, and α = 0.05. The online version of this figure is in
color.

false nulls that are rejected. We repeated Steps 1–3 1000 times
and averaged out the above proportions over these 1000 runs to
obtain the final simulated values of FDR and average power (the
expected proportion of false nulls that are rejected) for each of
these procedures.

The simulated FDRs and average powers of these procedures
for different values of π0 and selections of early stopping bound-
aries have been graphically displayed in Figures 1–8. Figures 1
and 3 compare the BH-TSADC and Plug-In BH-TSADC proce-
dures based on both Fisher’s and Simes combination functions
with the first-stage and full-data BH procedures in terms of
the FDR control for m = 100 (Figure 1) and 1000 (Figure 3),
the early rejection boundary λ = 0.005, 0.010, or 0.025, and
the early acceptance boundary λ′ = 0.5; whereas, Figures 2 and
4 do the same in terms of the average power. Figures 5–8 are
reproductions of Figures 1–4, respectively, with different selec-
tions of early rejection and acceptance boundaries: λ = 0.025
and λ′ = 0.5, 0.8, or 0.9.

4.2 FDR Under Dependence

We considered three different scenarios for dependent p-
values in our simulation study to investigate the FDR control of
our procedures under dependence. In particular, we generated
two independent sets of m = 100 correlated normal random
variables Zi ∼ N (μi, 1), i = 1, . . . , m, one for Stage 1 and the
other for Stage 2, with mπ0 of the μi’s being equal to 0 and
the rest being equal to 2, and a correlation matrix exhibiting
one of the three different types of dependence—equal, clumpy,
and AR(1) dependence. In other words, the Zi’s were assumed
to have a common, nonnegative correlation ρ in case of equal
dependence, were broken up into 10 independent groups with
10 of the Zi’s within each group having a common, nonnegative
correlation ρ in case of clumpy dependence, and were assumed
to have correlations ρij = Cor(Zi, Zj ) of the form ρij = ρ|i−j |

for all i 	= j = 1, . . . , m, and some nonnegative ρ in case of
AR(1) dependence. We then applied the (alternative versions
of) the BH-TSADC and Plug-In BH-TSADC procedures at level
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Figure 5. Comparison of simulated FDRs of BH-TSADC and Plug-In BH-TSADC procedures with simulated FDRs of first-stage and full-data
BH procedures, with m = 100, λ = 0.025, λ′ = 0.5, 0.8, 0.9, and α = 0.05. The online version of this figure is in color.

α = 0.05 with both Fisher’s and Simes combination functions,
λ = 0.025, and λ′ = 0.5 to these datasets. These two steps were
repeated 1000 times before obtaining the simulated FDRs for
these procedures.

Figures 9– 11 graphically display the simulated FDRs of these
procedures for different values of π0 and types of dependent p-
values considered.

4.3 Cost Saving

Let us consider determining the cost saving in the context
of a genome-wide association study. Because of high cost of
genotyping hundreds of thousands of markers on thousands of
subjects, such genotyping is often carried out in a two-stage
format. A proportion of the available samples are genotyped
on a large number of markers in the first stage, and a small
proportion of these markers are selected and then followed up by
genotyping them on the remaining samples in the second stage.

Suppose that c is the unit cost of genotyping one marker for
each patient, n is the total number of patients assigned across
stages 1 and 2, and m is the total number of markers for each
patient. Then, if we had to apply the full-data BH method,
the total cost of genotyping for all these patients would be
n × m × c. Whereas, if we apply our proposed methods with a
fraction f of the n patients assigned to stage 1, then the expected
total cost would be f × n × m × c + (1 − f ) × n × [m −
E(S(f ))] × c, where S(f ) is the total number of rejected and
accepted hypotheses in the first stage. Thus, for our proposed
methods, the expected proportion of saving from the maximum
possible cost of using the full-data BH method is

(1 − f ) × n × E(S(f )) × c

m × n × c
= (1 − f )E(S(f ))

m
.

Table 1 presents the simulated values of this expected pro-
portion of cost saving for our proposed two-stage methods in
multiple testing of m (= 100, 1000, or 5000) independent nor-
mal means in the present two-stage setting with a fraction f
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Figure 6. Comparison of simulated average powers of BH-TSADC and Plug-In BH-TSADC procedures with simulated average powers of
first-stage and full-data BH procedures, with m = 100, λ = 0.025, λ′ = 0.5, 0.8, 0.9, and α = 0.05. The online version of this figure is in color.

(= 0.25, 0.50, or 0.75) of the total number of patients being
allocated to the first stage.

4.4 Conclusions

Our simulations in Sections 4.1 and 4.2 mimic the scenarios
with equal allocation of sample size between the two stages. So,
if we measure the performance of a two-stage procedure by how
much power improvement it can offer over the first-stage BH

method relative to that offered by the ideal, full-data BH method,
then our proposed two-stage FDR controlling procedures with
Fisher’s combination function are seen from Figures 1 to 8
to do much better under such equal allocation, at least when
the p-values are independent both across the hypotheses and
stages, than those based on Simes’ combination function. Of
course, our procedures based on Simes’ combination function
are doing reasonably well in terms of this measure of relative
power improvement. Its performance is roughly between those

Table 1. Simulated values of the expected proportion of cost saving (with λ = 0.025 and λ′ = 0.5)

m = 100 m = 1000 m = 5000

π0 = 0.5 π0 = 0.9 π0 = 0.5 π0 = 0.9 π0 = 0.5 π0 = 0.9

f = 0.25 0.4321 0.5653 0.4337 0.5716 0.4336 0.5723
f = 0.50 0.2405 0.4325 0.2442 0.4401 0.2442 0.4407
f = 0.75 0.1075 0.2300 0.1082 0.2319 0.1090 0.2320
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Figure 7. Comparison of simulated FDRs of BH-TSADC and Plug-In BH-TSADC procedures with simulated FDRs of first-stage and full-data
BH procedures, with m = 1000, λ = 0.025, λ′ = 0.5, 0.8, 0.9, and α = 0.05. The online version of this figure is in color.

of the first-stage and the full-data BH methods. Between our
two proposed procedures, whether it is based on Fisher’s or
Simes’ combination function, the BH-TSADC appears to be the
better choice when π0 is large, like more than 50%, which is
often the case in practice. It controls the FDR not only under
independence, which is theoretically known, but also the FDR
control seems to be maintained even under different types of
positive dependence, as seen from Figures 9 to 11. If, however,
π0 is not large, the Plug-In BH-TSADC procedure provides
a better control of the FDR, although it might lose the FDR
control when the statistics generating the p-values exhibit equal
but moderate to high dependence. Also seen from Figures 1 to
8, there is no appreciable difference in the power performances
of the proposed procedures over different choices of the early
stopping boundaries. From Table 1, we notice that our two-stage
methods can provide large cost savings. For instance, with 90%
true nulls and half of the total sample size allocated to the first
stage, our procedures can offer 44% saving from the maximum
cost of using the ideal, full-data BH method. This proportion

gets larger with increasing proportion of true nulls or decreasing
proportion of the total sample size allocated to the first stage.

5. A REAL DATA APPLICATION

To illustrate how the proposed procedures can be im-
plemented in practice, we reanalyzed a dataset taken from
an experiment by Tian et al. (2003) and post-processed by
Jeffery, Higgins, and Culhance (2006). Zehetmayer, Bauer, and
Posch (2008) considered these data for a different purpose. In
this dataset, multiple myeloma samples were generated with
Affymetrix Human U95A chips, each consisting 12,625 probe
sets. The samples were split into two groups based on the pres-
ence or the absence of focal lesions of bone.

The original dataset contains gene expression measurements
of 36 patients without and 137 patients with bone lytic lesions,
However, for the illustration purpose, we used the gene expres-
sion measurements of 36 patients with bone lytic lesions and a
control group of the same sample size without such lesions. We
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Figure 8. Comparison of simulated average powers of BH-TSADC and Plug-In BH-TSADC procedures with simulated average powers of
first-stage and full-data BH procedures, with m = 1000, λ = 0.025, λ′ = 0.5, 0.8, 0.9, and α = 0.05. The online version of this figure is in color.

considered these data in a two-stage framework, with the first 18
subjects per group for Stage 1 and the next 18 subjects per group
for Stage 2. We prefixed the Stage 1 early rejection boundary λ

at 0.005, 0.010, or 0.015, and the early acceptance boundary λ′

at 0.5, 0.8, or 0.9, and applied the proposed (alternatives ver-
sions of) BH-TSADC and plug-in BH-TSADC procedures at
the FDR level of 0.025.

In particular, we considered all m = 12,625 probe set gene
expression measurements for the first stage data of 36 patients
(18 patients per group) and the full data of 72 patients (36 pa-
tients per group) across two stages, and analyzed them based
on a stepdown procedure with the critical values λi = iλ/m,
i = 1, . . . , m, and a stepup procedure with the critical values
λ′

i = iλ′/m, i = 1, . . . , m, using the corresponding p-values
generated from one-sided t-tests applied to the first-stage data.
We noted the probe sets that were rejected by the stepdown pro-
cedure and those that were accepted by the stepup procedure.
With these numbers being r1 and m − s1, respectively, we took

the probe sets that were neither rejected by the stepdown proce-
dure nor accepted by the stepup procedure, that is, the probe sets
with the first-stage p-values more than r1λ/m but less than or
equal to s1λ

′/m, for further analysis using estimated FDR based
on their first-stage and second-stage p-values combined through
Fisher’s and Simes’ combination functions as described in the
alternative versions of the BH-TSADC and plug-in BH-TSADC
procedures.

The results of this analysis are reported in Table 2. As
seen from this table, the BH-TSADC with Fisher’s combina-
tion function is doing the best. For instance, with λ = 0.005
and λ′ = 0.9, the proportion of additional discoveries it makes
over the first-stage BH method is 104/125 = 83.2% of such
additional discoveries that the ideal, full-data BH method
could make, whereas these percentages are 52/125 = 41.6%,
32/125 = 25.6%, and 16/125 = 12.8% for the BH-TSADC
with Simes’ combination function, the Plug-In BH-TSADC with
Fisher’s combination function, and the Plug-In BH-TSADC
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Figure 9. Comparison of simulated FDRs of BH-TSADC and Plug-In BH-TSADC procedures under equal dependence with m = 100,
λ = 0.025, λ′ = 0.5, and α = 0.05. The online version of this figure is in color.

with Simes’combination function, respectively. This pattern of
dominance of the BH-TSADC with Fisher’s combination func-
tion over the other procedures is noted for other values of λ and
λ′ as well.

This table provides some additional insights into our
procedures. For instance, under positive dependence across

hypotheses, which can be assumed to be the case for this dataset,
it appears that the BH-TSADC procedure, with either Fisher’s
or Simes’ combination function, tend to become steadily more
powerful with increasing λ′ but fixed λ or with decreasing λ

but fixed λ′. Note that we did not have the opportunity to get
this insight from our simulation studies.

Table 2. The numbers of discoveries made out of 12625 probe sets in the Affymetrix Human U95A Chips data from Tian et al. (2003) by the
BH-TSADC and Plug-In BH-TSADC procedures, each with either Fisher’s or Simes’ combination function, at the FDR level of 0.025

Fisher’s Simes’ BH

BH-TSADC Plug-in BH-TSADC BH-TSADC Plug-in BH-TSADC Stage 1 data Full data

λ = 0.005
λ′ = 0.5 84 58 33 17 2 127
λ′ = 0.8 97 35 42 17 2 127
λ′ = 0.9 106 34 54 18 2 127
λ = 0.010
λ′ = 0.5 74 41 24 13 2 127
λ′ = 0.8 81 31 30 16 2 127
λ′ = 0.9 90 31 37 18 2 127
λ = 0.015
λ′ = 0.5 56 31 17 12 2 127
λ′ = 0.8 63 29 23 15 2 127
λ′ = 0.9 69 27 30 18 2 127
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Figure 10. Comparison of simulated FDRs of BH-TSADC and Plug-In BH-TSADC procedures under clumpy dependence with m = 100,
λ = 0.025, λ′ = 0.5, and α = 0.05. The online version of this figure is in color.
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Figure 11. Comparison of simulated FDRs of BH-TSADC and Plug-In BH-TSADC procedures under AR(1) dependence with m = 100,
λ = 0.025, λ′ = 0.5, and α = 0.05. The online version of this figure is in color.
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6. CONCLUDING REMARKS

This article has been motivated by the need to have a two-
stage strategy for testing multiple null hypotheses, not known
before, that allows making early decisions on the null hypothe-
ses in terms of rejection, acceptance, or continuation to the
second stage for further testing with more observations, and
eventually controls the FDR in a nonasymptotic setting, as the
first step toward designing an FDR based two-stage study. We
have produced two such strategies by generalizing the classical
BH method and its adaptive version from single-stage to the
present two-stage setting. We have proved their FDR control
under independence and provided simulation evidence showing
their meaningful improvements over the first-stage BH method
relative to those ideally offered by the full-data BH method in
terms of both power and cost savings, and given an example of
their utilities in practice. We also have presented numerical ev-
idence that the proposed strategies can maintain a control over
the FDR even under some dependence situations.

Now that we know how to test multiple hypotheses in the
present two-stage adaptive design format controlling the FDR,
we can get to addressing issues related to designing FDR based
two-stage studies. One such issue is optimal allocation of sample
sizes to the two stages. Let us briefly outline the steps one can
take toward addressing this issue.

Suppose that we have a study involving m genes, and
our problem is to identify the differentially expressed genes
between two independent groups by simultaneously testing
Hi : δi = 0 against Ki : δi 	= 0 for i = 1, . . . , m, where δi =
(μix − μiy)/σi is the (standardized) effect size defined in terms
of μix and μiy , the group means, and σ 2

i , the common group vari-
ance, for the ith gene, given that we decide to have the maximum
N number of observations per gene for all the groups and stages
combined and choose some fixed early stopping boundaries
λ < λ′. Assume that the observed expression levels for each
group follow normal distributions, with proper normalization,
so that we can apply the two-sample t test once such observations
are available. We consider using equal sample size per group
for this test. An optimal FDR based two-stage design based on
our method of multiple testing can be constructed as follows.

Assume that we take n1 = Nf/2 observations per group for
each gene at the first stage, for some fraction 0 < f < 1, and ad-
ditional n2 = N (1 − f )/2 observations per group for each of the
m − S(f ) follow-up genes, where S(f ) denotes (as in Section
3.4) the total number of rejected and accepted null hypotheses
at the first stage. Let x̄i1 and ȳi1 be the estimates of μix and μiy ,
respectively, and s2

i1 be the pooled estimate of σ 2
i , for the ith

gene based on the first-stage observations, and x̄i2, ȳi2, and s2
i2

be those estimates based on the additional observations for the
ith follow-up gene. Let tij = (x̄ij − ȳij )/sij

√
2/nj = δ̂i

√
nj/2,

where δ̂ij = (X̄ij − Ȳij )/sij , for i = 1, . . . , m, j = 1, 2. Then,
pi1 = 2[1 − G1(|ti1|) is the first-stage p-value for the ith gene,
for i = 1, . . . , m, and pi2 = 2[1 − G2(|ti2|) is the second-stage
p-value for the ith follow-up gene, where Gj is the cumulative
distribution function of the central t distribution with nj − 2
degrees of freedom.

Now, if we find the f for which our proposed two-stage
method of multiple testing based on these first- and second-stage
p-values maximize the average power at specified alternatives

for some targeted genes, then that f will provide a good FDR
based two-stage design, given N, λ and λ′. Of course, it brings
forth some newer and interesting theoretical issues that need to
be addressed.

We have proposed our FDR controlling procedures in this
article considering a nonasymptotic setting. However, one may
consider developing procedures that would asymptotically con-
trol the FDR by taking the following approach toward finding
the first- and second-stage thresholds subject to the early bound-
aries λ < λ′ and the final boundary α on the FDR. Given two
constants t < t ′, consider making an early decision regarding
Hi by rejecting it if p1i ≤ t , accepting it if p1i > t ′, and contin-
uing to test it at the second stage if t < p1i ≤ t ′. At the second
stage, reject Hi if C(p1i , p2i) ≤ c. Storey’s (2002) estimate of
the FDR at the first-stage is given by

F̂DR
∗
1(t) =

⎧⎨⎩
mπ̂0t

R(1)(t)
if R(1)(t) > 0

0 if R(1)(t) = 0,

for some estimate π̂0 of π0. Similarly, the cumulative FDR at
the second stage can be estimated as follows:

F̂DR
∗
2(c, t, t ′)

=
⎧⎨⎩

mπ̂0[t + H (c; t, t ′)]
R(1)(t) + R(2)(c; t, t ′)

if R(1)(t) + R(2)(c; t, t ′) > 0

0 if R(1)(t) + R(2)(c; t, t ′) = 0

Let

t̂λ = sup{t : F̂DR1(t ′) ≤ λ for all t ′ ≤ t},
t̂λ′ = inf{t : F̂DR1(t ′) > λ′ for all t ′ > t},

and

ĉα(λ, λ′) = sup{c : F̂DR2(c, t̂λ, t̂λ′ ) ≤ α}.
Then, reject Hi if p1i ≤ t̂λ or if t̂λ < p1i ≤ t̂λ′ and C(p1i , p2i) ≤
ĉα(λ, λ′). This may control the overall FDR asymptotically un-
der the weak dependence condition and the consistency property
of π̂0 (as in Storey, Taylor, and Siegmund 2004).

The foregoing discussion also suggests how to estimate the
FDR for each hypothesis in a completed two-stage design of
the present form. For instance, for hypothesis with the pair of
p-values (p1, p2), the estimated FDR is F̂DR

∗
1(p1) if p1 ≤ t̂λ or

p1 ≥ t̂λ′ , and is F̂DR
∗
2(c(p1, p2), t̂λ, t̂λ′) if t̂λ < p1 < t̂λ′ .

There is another important issue related to the present prob-
lem which we have not touched in this article but hope to ad-
dress in a different communication. There are other combination
functions, such as Fisher’s weighted product (Fisher 1932) and
weighted inverse normal (Mosteller and Bush 1954); their per-
formances would be worth investigating.

APPENDIX

Proof of Theorem 1.

FDR12 = E

[
V1 + V2

max{R1 + R2, 1}
]

≤ E

[
V1

max{R1, 1}
]

+ E

[
V2

max{R1 + R2, 1}
]
.
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Now,

E

[
V1

max{R1, 1}
]

=
∑
i∈J0

E

[
I (p1i ≤ λR1 )

max{R1, 1}
]

≤
∑
i∈J0

E

[
I
(
p1i ≤ λ

R
(−i)
1 +1

)
R

(−i)
1 + 1

]
;

(as shown in Sarkar 2008; see also Result 1). And,

E

[
V2

max{R1 + R2, 1}
]

=
∑
i∈J0

E

×
[

I (λR1+1 < p1i ≤ λ′
S1

, qi ≤ γR1+R2,S1 , S1 > R1, R2 > 0)

R1 + R2

]
.

(A.1)

Writing R2 more explicitly in terms of R1 and S1, we see that the
expression in Equation (3) is equal to

∑
i∈J0

m∑
s1=1

s1−1∑
r1=0

s1−r1∑
r2=1

E
[(

I
(
λr1+1 < p1i ≤ λ′

s1
, qi ≤ γr1+r2,s1 , R1 = r1,

S1 = s1, R2(r1, s1) = r2

))/
(r1 + r2)

]
=
∑
i∈J0

m∑
s1=1

s1−1∑
r1=0

s1−r1∑
r2=1

E
[(

I
(
λr1+1 < p1i ≤ λ′

s1
,

qi ≤ γr1+r2,s1 R̃
(−i)
1 = r1, S

(−i)
1 = s1 − 1,

R
(−i)
2 (r1, s1) = r2 − 1

))/
(r1 + r2)

]
=
∑
i∈J0

m−1∑
s1=0

s1∑
r1=0

s1−r1∑
r2=0

E
[(

I
(
λr1+1 < p1i ≤ λ′

s1+1,

qi ≤ γr1+r2+1,s1+1, R̃
(−i)
1 = r1, S

(−i)
1 = s1,

R
(−i)
2 (r1, s1 + 1) = r2

))/
(r1 + r2 + 1)

]
=
∑
i∈J0

E
[(

I
(
λ

R̃
(−i)
1 +1 < p1i ≤ λ′

S
(−i)
1 +1

,

qi ≤ γ
R̃

(−i)
1 +R

(−i)
2 +1,S

(−i)
1 +1

))/(
R̃

(−i)
1 + R

(−i)
2 + 1

)]
.

Thus, the theorem is proved. �

Proof of proposition 1.

FDR12 ≤
∑
i∈J0

E

[
PrH

(
p1 ≤ λ

R
(−i)
1 +1

)
R

(−i)
1 + 1

]
+
∑
i∈J0

E

×
⎡⎣PrH

(
λ

R̃
(−i)
1 +1<p1 ≤λ′

S
(−i)
1 +1

, C(p1, p2)≤γ
R̃

(−i)
1 +R

(−i)
2 +1,S

(−i)
1 +1

)
R̃

(−i)
1 + R

(−i)
2 + 1

⎤⎦
≤
∑
i∈J0

E

[
λ

R
(−i)
1 +1

R
(−i)
1 + 1

]
+
∑
i∈J0

E

×
⎡⎣Pr

(
λ

R̃
(−i)
1 +1<u1 ≤ λ′

S
(−i)
1 +1

, C(u1, u2) ≤ γ
R̃

(−i)
1 +R

(−i)
2 +1,S

(−i)
1 +1

)
R̃

(−i)
1 + R

(−i)
2 + 1

⎤⎦.
(A.2)

The first sum in Equation (4) is less than or equal to π0λ, since
λ

R
(−i)
1 +1 = [R(−i)

1 + 1]λ/m, and the second sum is less than or equal to
π0(α − λ), since the probability in the numerator in this sum is equal
to

H
(
γ

R̃1
(−i)+R

(−i)
2 +1,S

(−i)
1 +1; λ

R̃1
(−i)+1, λ

′
S

(−i)
1 +1

)
=
[
R̃

(−i)
1 + 1 + R

(−i)
2

]
(α − λ)

m
.

Thus, the proposition is proved. �

Proof of Proposition 2. This can be proved as in Proposition 1.
More specifically, first note that the FDR here, which we call the
FDR∗

12, satisfies the following:

FDR∗
12 ≤

∑
i∈J0

E

[
I
(
p1i ≤ λ

R
(−i)
1 +1

)
R

(−i)
1 + 1

]
+
∑
i∈J0

E

×
⎡⎣I
(
λ

R̃
(−i)
1 +1 ≤ p1i ≤ λ′

S
(−i)
1 +1

, qi≤γ ∗
R̃

(−i)
1 +R

∗(−i)
2 +1,S

(−i)
1 +1

)
R̃

(−i)
1 + R

∗(−i)
2 + 1

⎤⎦,
(A.3)

where

R
∗(−i)
2 ≡ R

∗(−i)
2

(
R̃

(−i)
1 , S

(−i)
1 + 1

)
= max

{
1 ≤ j ≤ S

(−i)
1 − R̃

(−i)
1 : q

(−i)
(j ) ≤ γ ∗

R̃
(−i)
1 +j+1,S

(−i)
1 +1

}
,

with q
(−i)
(j ) being the ordered versions of the combined p-values except

the qi . As in Proposition 1, the first sum in Equation (5) is less than or
equal to π0λ. Before working with the second sum, first note that the
γ ∗ satisfying Equation (1), that is, the following equation:

H
(
γ ∗

r1+i,s1
; λr1 , λ

′
s1

) = (r1 + i)(α − λ)(1 − λ′)
m − s1 + 1

,

is less than or equal to the γ ∗∗ satisfying

H
(
γ ∗∗

r1+i,s1
; λr1 , λ

′
s1

) = (r1 + i)(α − λ)(1 − λ′)

m − s
(−j )
1

,

for any fixed j = 1, . . . , m. So, the second sum in Equation (5) is less
than or equal to

∑
i∈J0

E

⎡⎢⎣ I
(
λ

R̃
(−i)
1 +1 ≤ p1i ≤ λ′

S
(−i)
1 +1

, qi ≤ γ ∗∗
R̃

(−i)
1 +R

∗(−i)
2 +1,S

(−i)
1 +1

)
R̃

(−i)
1 + R

∗(−i)
2 + 1

⎤⎥⎦
=
∑
i∈J0

E

⎡⎢⎣H
(
γ ∗∗

R̃
(−i)
1 +R

∗(−i)
2 +1,S

(−i)
1 +1

; λ
R̃

(−i)
1 +1, λ

′
S

(−i)
1 +1

)
R̃

(−i)
1 + R

∗(−i)
2 + 1

⎤⎥⎦
= (α − λ)

∑
i∈J0

E

[
1 − λ′

m − S
(−i)
1

]
≤ α − λ,

since
∑

i∈J0
E[ 1−λ′

m−S
(−i)
1

] ≤ 1; see, for instance, Sarkar (2008, p. 151).

Hence, FDR∗
12 ≤ π0λ + α − λ ≤ α, which proves the proposition. �

SUPPLEMENTARY MATERIALS

As suggested by one of the reviewers, we have examined
the performance of our proposed procedures in a complicated
genetic mode with exponentially decreasing effect sizes. The
simulation results can be found in the supplementary materials.

[Received June 2011. Revised September 2012.]
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