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Abstract. Spurred by developments such as cloud computing, there has
been considerable recent interest in the data-mining-as-a-service paradigm.
Users lacking in expertise or computational resources can outsource their
data and mining needs to a third-party service provider (server). Out-
sourcing, however, raises issues about result integrity: how can the data
owner verify that the mining results returned by the server are correct?
In this paper, we present AUDIO, an integrity auditing framework for
the specific task of distance-based outlier mining outsourcing. It provides
efficient and practical verification approaches to check both completeness
and correctness of the mining results. The key idea of our approach is to
insert a small amount of artificial tuples into the outsourced data; the ar-
tificial tuples will produce artificial outliers and non-outliers that do not
exist in the original dataset. The server’s answer is verified by analyzing
the presence of artificial outliers/non-outliers, obtaining a probabilistic
guarantee of correctness and completeness of the mining result. Our em-
pirical results show the effectiveness and efficiency of our method.

1 Introduction

Advances in networking technologies have triggered a new computing paradigm
called cloud computing. It allows data owners, especially the ones who have large
volume of data but limited budget for data analysis, to outsource their data and
data mining needs to a third-party service provider. This is referred as the data-
mining-as-a-service (DMAS) model [26, 30]. The model allows data owners to
leverage hardware and software solutions provided by DMAS providers, without
developing their own. There are a few active cloud-based DMAS projects in
industry. For example, Google provides cloud-based Google Prediction APIs [2].

Among various types of data mining applications, outlier mining, a classic
data mining problem, has seen the possibility to be married with the DMAS
paradigm. Outlier mining has been in critical need in many real-world applica-
tions such as credit card fraud detection, discovery of criminal activities, weather
prediction, marketing and customer segmentation. The task of outlier mining is
to find data objects that do not comply with the general patterns of the ma-
jority. Sometimes outliers are data errors whose existence may affect the data
analysis [8, 9]. The problem of outlier detection has been widely studied in the
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data mining community [3, 6, 17, 27]. It has been shown that detecting outliers
is of high computational complexity [17], becoming prohibitive for data of high
dimensionality [3]. Although researchers have identified several important op-
timization techniques [4, 27] to improve the efficiency of outlier detection, it is
difficult for the data owner who lacks of professional expertise to implement
these techniques. DMAS provides a natural solution for such data owner who
desires to find outliers from her datasets for analysis purpose.

Although outsourcing is advantageous for the data owner of limited capabil-
ities to achieve sophisticated analysis on their large volume of data, it triggers
serious security concerns. One of the major security issues is result integrity; the
question to be answered is how the data owner (client) of weak computational
power can be assured that a service provider (server) returns faithful mining
results [1, 7]. There are many reasons that the server may return wrong answer.
For example, a server may return wrong mining result accidentally due to soft-
ware bugs, or keep part of the mining result to itself intentionally so that it
can sell the retained result to the competitors of the client for profit. There also
exists a strong financial incentive for the server to return incorrect answers that
require less work and are unlikely to be detected by the client.

We consider two types of service providers, the semi-honest server and the
malicious server, that may return wrong result. The semi-honest server executes
the mining algorithm honestly; however, it may modify the outlier mining result
by accident. The malicious server executes the mining algorithm unfaithfully
(e.g., runs the algorithm on a portion of the dataset) and returns the incorrect
result on purpose. Our goal of integrity verification is to enable the client, who
is of weak computational power, to verify whether the server that is potentially
semi-honest or malicious returns correct and complete outlier mining result. By
correctness, we mean that each returned tuple is a true outlier. By completeness,
we mean that all true outliers are returned by the server.

We design and implement AUDIO, a lightweight integrity auditing framework
for outlier mining-as-a-service. AUDIO includes two entities, the client and the
remote, untrusted third-party server. To catch the semi-honest server, before
outsourcing, the client constructs a set of artificial tuples that consist of artificial
outliers (AOs) and artificial non-outliers (ANOs). Both AOs and ANOs are
inserted into the original dataset and sent together to the server. Meanwhile, the
client maintains a small piece of auxiliary information locally. After receiving the
result from the server, the client verifies the correctness and completeness of the
result by analyzing the returned outliers against AOs and ANOs, and quantifies
the probabilistic guarantees of completeness and correctness. There are a few
nice properties of our verification techniques. First, incorrect and incomplete
answers from the server can be caught with high confidence by a small number
of AOs and ANOs. Second, the complexity of our solution is linear to the number
of AOs and ANOs, which are independent from the database size. This makes
it feasible to efficiently verify the outlier mining results of large databases.

Although it is not new to accomplish verification by inserting counterfeit tu-
ples in other contexts [28, 32] and other data mining problems (e.g., association
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rule mining [31]), it has not been explored of how to verify the result of out-
sourced outlier mining via counterfeit tuples. Indeed, inserting counterfeit tuples
leads to unique challenges to outlier mining. For example, since some outliers
in the original dataset may not be outliers anymore in the new dataset after
insertion, how to construct counterfeit tuples and design verification techniques
to ensure all original outliers are still discoverable in the dataset with newly
inserted counterfeit tuples? None of the existing techniques based on insertion
of counterfeit tuples can address such challenge.

To our best knowledge, we are the first to address the problem of providing
integrity assurance for outsourcing of outlier mining. Our contributions include
the following:

(1) To catch the semi-honest server, we propose an artificial-tuple (AT ) based
approach providing both correctness and completeness guarantee by inserting
artificial outliers (AOs) and non-outliers (ANOs) into the original data. We
formally quantify both correctness and completeness guarantees, and discuss
how to design AOs and ANOs so that the outlierness of AOs and non-outlierness
of ANOs do not need to be verified by mining of the dataset.

(2) Inserting AOs and ANOs may change the (non)outlierness of the real
tuples. We propose a verification mechanism that will not eliminate any true
outlier. We also discuss how to remove the false positive outliers (i.e., the non-
outliers returned as outliers) introduced by AOs and ANOs and recover all true
outliers efficiently.

(3) We define the possible misbehaviors by the malicious server, and show
how the malicious server can defeat the AT -based approach. We also discuss the
challenges of designing efficient verification approaches to catch the malicious
server.

(4) We complement our analytical results with an extensive set of experiments
showing the efficiency and the effectiveness of our AT -based approach.

The paper is organized as following. Sec.2 discusses related work. Sec.3 in-
troduces the preliminaries. Sec.4 presents our AT -based approach to catch the
semi-honest server. Sec.5 discusses the limits of our AT -based approach to catch
the malicious server, as well as the design of deterministic approaches. Sec.6
presents our experimental results. Sec.7 concludes the paper.

2 Related Work
The issue of integrity assurance for database management was initially raised in
the database-as-a-service (DAS) paradigm [14]. The studied problem is how to
assure the integrity of SQL query evaluation over the hosted relational databases.
The proposed solutions include Merkle hash trees [20, 23], signatures on a chain
of paired tuples [25], challenge tokens [28], and counterfeit records [32]. [33, 34]
extend the security concerns to the data in a metric space and spatial domain.
These work share the same integrity concerns in the outsourcing paradigm. How-
ever, their focus is different from ours.

The problem of how to protect sensitive data and data mining results in
the data-mining-as-a-service (DMAS) paradigm has caught much attention re-
cently. Wong et al. [30] consider utilizing a one-to-n item mapping together with
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non-deterministic addition of cipher items to protect the identification of indi-
vidual items in the scenario that frequent pattern mining task is outsourced.
Unfortunately, this work has potential privacy flaws; Molloy et al. [22] show how
privacy can be breached in the framework of [30]. Tai et al. [29] consider the same
scenario and proposed a database transformation scheme that is based on a no-
tion of k-support anonymity. To achieve k-support anonymity, they introduced
a pseudo taxonomy tree; the third party server will discover the generalized fre-
quent itemsets instead. Giannotti et al. [12] define a similar privacy model as
k-support that requires each item must be indistinguishable from the other k−1
items regarding their frequencies. They provide formal privacy analysis of their
k-privacy model on both items and frequent patterns. Although these works fo-
cus on frequent pattern mining, their encryption techniques can be applied to
our work to provide further protection on data and mining results.

Our problem falls into the category of integrity assurance of data-mining-as-
a-service (DMAS) paradigm. However, there is very little work in this category.
Wong et al. [31] propose auditing techniques for outsourcing of frequent itemset
mining. They generate a (small) artificial database such that all itemsets in
the database are guaranteed to be frequent and their exact support counts are
known. By hosting the artificial database with the original one and checking
whether the server has returned all artificial itemsets, the data owner can verify
whether the server has returned correct and complete frequent itemsets. To our
best knowledge, Wong et al. [31] are the first (and the only) work that addresses
the integrity auditing issue of the DMAS paradigm. Their techniques on frequent
itemset mining cannot be directly applied to our problem of outlier mining.

3 Preliminaries
Distance-based Outlier Mining. In this paper, we focus on distance-based
outliers, which is well-defined for datasets of any dimension and more suitable
for real-world applications where the data distribution does not fit any standard
distribution [17]. In particular, an object O in a dataset D is a (p, d)-outlier if at
least p% of the objects in D lie greater than distance d from O [17]. Otherwise, O
is a non-outlier with regard to the (p, d) setup. For simplicity, we say O is a non-
outlier if it is not a (p, d)-outlier. We assume p% ∗ |D| always returns an integer,
as it indicates the number of tuples. We use Euclidean distance to measure the
distance between two tuples. In particular, given two tuples t(a1, . . . , ak) and

t′(a′1, . . . , a
′
k), dist(t, t

′) =
√

∑k
i=1(ai − a′i)

2.

Outsourcing Setting. In the outlier-mining-as-a-service framework, the data
owner (client) outsources her data D, with the configuration of p and d values
for (p, d)-outlierness, to the server. The server discovers (p, d)-outliers from D
and returns them to the client. We assume the server will return exact outliers
instead of approximate ones [16, 18].
Types of Dishonest Servers and Assurance Goal. We consider two types
of servers that may return invalid answer.

– The semi-honest server that runs the outlier mining algorithm on the out-
sourced dataset faithfully. However, it may return wrong outliers accidentally
due to software bugs or human mistakes when collecting the answer.
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– The malicious server that returns wrong answer intentionally. For example,
it may only examine a portion of the outsourced dataset and returns cheaper
(and incorrect) answer. Furthermore, the malicious server tries to escape the
verification if it knows the details of the verification mechanism.

Let O be the real outliers in the outsourced data D, and OS be the outliers

returned by the server. We define the precision of O as P = |O∩OS |
|OS | (i.e., the

percentage of returned outliers that are correct), and the recall of O as R =
|O∩OS |

|O| (i.e., the percentage of correct outliers that are returned). Our aim is to

catch incorrect answer (i.e., P < 1) and incomplete answer (i.e., R < 1) with high
probability. To this end, we define (α, a)-completeness and (β, b)-correctness.

Definition 1. Given a dataset D and a verification method M , let prp and prr
be the probabilities that M catches the server that returns the result of precision
P ≤ a and recall R ≤ b respectively, where a, b ∈ [0, 1] are given thresholds. We
say M can verify (α, a)-correctness if prp ≥ α, and can verify (β, b)-completeness
if prr ≥ β, where α, β ∈ [0, 1] are given thresholds.

4 Artificial Tuple (AT) based Verification

We develop a verification mechanism using artificial tuples (ATs) to catch the
semi-honest server. In particular, before outsourcing the dataset D, the client
generates a set of artificial outliers AO and a set of artificial non-outliers ANO
respectively. Then the client inserts AO and ANO into the original dataset D,
and sends the new dataset D+ = D ∪AO ∪ANO to the server. Since the semi-
honest server cannot distinguish AOs and ANOs from the real tuples in D, it
should return all AOs but no ANOs, if it is honest. Thus by checking against
AOs and ANOs, the client will be able to obtain probabilistic guarantees of
completeness and correctness. How to measure the probabilistic guarantees will
be discussed in Section 4.2. Next, we first discuss how to construct AOs and
ANOs efficiently for preparation of verification (Section 4.1). Second, we discuss
how to use AOs and ANOs to accomplish verification (Section 4.2).

4.1 Verification Preparation
Construction of Artificial Non-outliers (ANOs). Our ANO construction
procedure is based on the concept of close tuples that we will define soon. Given
a tuple t and a distance d, we define two sets, TL(t, d) that stores all tuples whose
distance to t is less than d, and TU (t, d) that stores all tuples whose distance to
t is greater than d. Formally, TL(t, d) = {t′|t′ ∈ D, dist(t, t′) < d}, and TU (t, d)
= {t′|t′ ∈ D, dist(t, t′) > d}. We say a tuple t′ ∈ TL(t, d) is the farthest close
neighbor of tuple t with regard to distance d, if the distance between t and t′ is
the largest among all tuples in TL(t, d), and a tuple t′ ∈ TU (t, d) is the closest
distant neighbor of tuple t with regard to distance d, if the distance between t
and t′ is the smallest among all tuples in TU (t, d). Then we have:
Definition 2. Given the dataset D of r dimensions and a tuple t ∈ D, let ta ∈ D
be the farthest close neighbor of t, and tb ∈ D be the closest distant neighbor of t.
Let P be an r-sphere with t as the centroid, and min(d−da

2 , db−d
2 ) as the radius,
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where d is the distance parameter of (p, d)-outlier mining, da = dist(t, ta), and
db = dist(t, tb). Then we call any tuple t ∈ P a close tuple to t.
Next, we show that the close tuples of t have the same distance property as t.

Lemma 1. Given a tuple t and a close tuple tc of t, for each tuple t′ 6= t, tc, it
must be true that: (1) if dist(t, t′) < d, then dist(tc, t

′) < d; (2) if dist(t, t′) > d,
then dist(tc, t

′) > d.
Proof: Since ta is the farthest close neighbor of t, for any t′ s.t. dist(t, t′) < d,
we have dist(t, t′) ≤ da < d, and dist(t, tc) < d−da

2 , leading to dist(t′, tc) ≤

dist(t, t′)+dist(t′, tc) < da+
d−da

2 = d+da

2 . Since da < d, then it must be true that

dist(tc, t
′) < d. Similarly, we have dist(t, t′) ≥ db > d, and dist(t, tc) < db−d

2 .

Thus, dist(tc, t
′) ≥ dist(t, t′)−dist(t, tc) > db−

db−d
2 = db+d

2 . Since db > d, then
it must be true that dist(tc, t

′) > d. ⊓⊔

(a) ANO construction (b) AO construction

Fig. 1. Construction of ANOs and AOs

Based on Lemma 1, next, we prove that any close tuple of tuple t always has
the same non-outlierness as t.
Theorem 1. Given a dataset D and any tuple t ∈ D that is a non-(p, d)-outlier,
any close tuple of t must be a non-(p, d)-outlier in D.

The correctness of Theorem 1 is straightforward as tc and t have the same
number of tuples whose distances is greater than the given distance threshold d.

We make use of Theorem 1 to construct ANOs. In particular, we pick a seed
tuple tseed that is a non-outlier tuple in the original dataset D, and construct its
close tuples as ANOs. Fig. 1(a) illustrates the construction procedure of ANOs.
To pick tseed, we repeatedly pick a tuple from the dataset randomly, and verify
its non-outlierness, until a non-outlier tuple is reached. The probability that tseed
will be picked at the x-th trial is g(x) = (1− fto

n
)( fto

n
)x−1, where fto and n are

the number of outliers and the number of tuples in D. It is straightforward that
1 ≤ x ≤ n−fto. Define φ = fto

n
. Then g(x) = (1−φ)φx−1, where 1 ≤ x ≤ n−nφ.

The expected value of x equals to E(x) = (n−φn)φn−φn+1−(n−φn+1)φn−φn+1
(φ−1)2 . As

the outliers always take a small portion of the database, φ is a small number
(e.g., φ = 0.05% [24]). Therefore, E(x) ≈ 1. In other words, it is highly likely
that tseed can be picked by the first random trial.
Construction of Artificial Outlier (AOs). Our construction procedure is
based on the definition of distant tuples. To be more specific, given a r-dimension
dataset D and a set of tuples S ⊆ D, we say a tuple t /∈ S is a distant tuple
of S if for each tuple t′ in S, dist(t, t′) > d, where d is the parameter setting of
(p, d)-outlierness. We have the following lemma to show what kind of tuples can
be distant tuples.
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Lemma 2. Given a r-dimension dataset D and a set of tuples S ⊆ D, let mini

and maxi be the minimum and maximum value of the i-th (1 ≤ i ≤ r) attribute
of S. Then any tuple t(a1, . . . , ar) /∈ S is a distant tuple of S if there are k
(1 ≤ k ≤ r) attributes such that on each attribute Ai, t[Ai] < (mini −

d√
k
) or

ai > (maxi +
d√
k
).

The correctness of Lemma 2 follows naturally from the distance functions
and the properties of the distant tuples. Next, we show that (p, d)-outliers can
be generated from the distant tuples.

Theorem 2. Given the dataset D and a set of tuples S ⊆ D, any distant tuple
t of S must be a (p, d)-outlier in D if |S| ≥ p|D|.

The correctness of Theorem 2 is straightforward as the tuple t of S is of
distance of d to p percentage of tuples in D. Based on Theorem 2, we design
the AO construction procedure as follows. First, the client picks a sample S
of size [p|D|] tuples randomly from D. Second, the client treats S as an r-
dimension hypercube R. In R, the edge at the i-th dimension represents the
range [mini,maxi] of the data values in S. Then the client randomly picks k
dimensions (possibly k = 1) of R. Last, the client expands the k dimensions of
R by d√

k
(i.e., change the minimum and maximum value of the i-th attribute to

be mini −
d√
k
and maxi +

d√
k
). Let the expanded hypercube be R′. Then any

tuple tao that is created outside of R′ must be a (p, d)-outlier of D. Fig. 1(b)
illustrates the construction procedure in a 2-dimensional dataset.
Complexity analysis. ANOs can be constructed with at most two passes of
the original dataset. The complexity of constructing AOs is O(n), where n is
the size of D. Therefore, the complexity of the verification preparation is O(n).

4.2 Verification

We realized that (p, d)-outliers in the original dataset D may not be (p, d)-
outliers in D+ = D ∪ ANO ∪ AO, as inserting tuples into the original dataset
D may change the (non)outlierness of some true tuples in the original dataset.
This may ruin the verification method as the semi-honest server may be wrongly
caught as returning incorrect answer. Therefore, the client should ensure that
all (p, d)-outliers in D appear in mining of D+. In this section, we discuss: (1)
how the client configures the p parameter so that the true (p, d)-outliers in D are
still present in D+, and (2) how to eliminate the false positives (i.e., the tuples
returned according to the new p parameter but not (p, d)-outliers in D).

First, we show how to guarantee that the (p, d)-outliers in D are still outliers
in D+ by changing the parameter p of (p, d)-outlier mining.

Theorem 3. Given a dataset D and a set of AOs and ANOs, any (p, d)-outlier

in D must be a (p1, d)-outlier in D+ = D ∪AO ∪ANO, where p1 = p|D|
|D+| .

Proof: For a true tuple t ∈ D, let m and f be the number of true and artificial
tuples (including both AOs and ANOs) whose distance to t is at least d in D+.

Now we prove that it must be true that m+f
|D+| ≥ p1 = p|D|

|D+| . This can be proven by

the following. Since tuple t is a (p, d)-outlier in D, it must be true that m ≥ p|D|.

This naturally leads to that m+f
|D+| ≥

p|D|
|D+| , with f ≥ 0. ⊓⊔
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Fig. 2. (p1, d)-outliers and (p2, d)-outliers in D+ VS. (p, d)-outlier in D; O1: (p1, d)-
outliers in D+, O2: (p2, d)-outliers in D+.

Following Theorem 3, the client asks for (p1, d)-outliers in the outsourced dataset
D+; all outliers in D must appear in the answer if the server is honest. Note
that all AOs must be appear in (p1, d)-outliers of D

+ too. However, it is not true
that all (p1, d)-outliers in D+ must be (p, d)-outliers in D. To eliminate those
(p1, d)-outliers in D+ that are not (p, d)-outliers in D, we have:

Theorem 4. Given a dataset D, let |AO| and |ANO| be the numbers of inserted
AOs and ANOs respectively. Then any (p2, d)-outlier in D+ = D ∪AO ∪ANO

must be a (p, d)-outlier in D, where p2 = p|D|+|AO|+|ANO|
|D+| .

Proof: For a tuple t ∈ D+, let m and f be the number of true and artificial tuples
(including both AOs and ANOs) whose distance to t is at least d in D+. Since
the m true tuples must exist in D, we aim to prove that m

|D| ≥ p. This can be

proven as follows. Since t is a (p2, d)-outlier in D+, it must hold that m+f
|D+| ≥ p2.

This leads to that m + f ≥ p|D| + |AO| + |ANO|. Since f ≤ |AO| + |ANO|, it
must be true that m ≥ p|D|. Then the theorem follows. ⊓⊔

Following Theorem 4, all constructed ANOs must be (p2, d)-non-outliers in
D+.

Fig. 2 illustrates the relationship among (p1, d), (p2, d) outliers in D+ and
(p, d)-outliers in D. For a given tuple t, let pert be the percentage of tuples in
D+ = D ∪ AO ∪ ANO whose distance to t is at least d (d: the d parameter for
(p, d)-outlierness). Then t will fall into one of the following three categories:

– t is a (p, d)-outlier in D, if pert ≥ p2 = p|D|+|AO|+|ANO|
|D+| ;

– t is a (p, d)-non-outlier in D, if pert < p1 = p|D|
|D+| ;

– t is either a (p, d)-outlier or a (p, d)-non-outlier in D, otherwise.

Based on both Theorem 3 and Theorem 4, the outsourcing and the verifica-
tion procedures are designed the following. When outsourcing D+ = D ∪ AO ∪
ANO to the server, the client asks for (p1, d)-outliers and (p2, d)-outliers, where

p1 = p|D|
|D+| , and p2 = p|D|+|AO|+|ANO|

|D+| . Note that O2 ⊆ O1; therefore the client

can get both sets of outliers by outsourcing the task once.
After receiving the (p1, d)-outliers O1 and (p2, d)-outliers O2 from the server,

the client verifies the completeness and correctness as the following.
Completeness Verification. To verify whether the server has returned all
true outliers, the client checks whether AO ⊆ O1. If AO 6⊆ O1, the client catches
the incomplete outlier answer with 100%; otherwise, the client computes the
completeness probability prr = 1 − α|AO|. To satisfy (α, a)-completeness (i.e.,
prr ≥ a), the client has to construct AOs of size
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|AO| = ⌈logα(1− a)⌉. (1)

Correctness Verification. For the correctness verification, the client checks
whether ANO ∩O2 is empty. If it is not, the client catches the incorrect answer
with 100%; otherwise, the client returns the correctness probability prp = 1 −
β|ANO|. To meet the (β, b)-correctness (i.e., prp ≥ b) requirement, |ANO| must
satisfy that

|ANO| = ⌈logβ(1− b)⌉. (2)

Equation 1 and 2 show that |AO| and ANOs are independent of the size of
the original dataset; thus our mechanism is especially useful for large datasets.
Furthermore, we observe that it does not need large number of |ANO| and |AO|
to catch with high correctness probability the server that changes a small fraction
of result. For instance, when α = 0.99 (i.e., the server changes 1% of the outliers)
and a = 0.99 (i.e., the probability to catch such answer is at least 0.99), we only
need to add 459 AOs.
Overhead Analysis. The complexity of distinguishing ANOs and AOs from
real tuples in the returned result is O(|ANO| + |AO|). Both correctness and
completeness verification take O(1) complexity. Therefore, the complexity of
verification isO(|ANO|+|AO|). Our empirical study shows that |ANO| and |AO|
are relatively small even for large datasets (Section 6), this enables the client to
accomplish verification on resource-constrained devices (e.g., smart phones).

4.3 Recovery of True (p, d)-Outliers at Client Side
Since the returned (p1, d)-outliers may contain some false positive tuples that
are not (p, d)-outliers in D, the client will recover the real (p, d)-outliers in D
from the returned (p1, d)-outliers O1 and (p2, d)-outliers O2. To achieve this,
first, the client eliminates all AOs (if there is any) from O2 and O2 (how to
distinguish real tuples, AOs, and ANOs will be discussed in Section 4.4). Let
the remaining (p2, d)-outliers be O′

2. Second, the client examines each tuple in
O1 −O2, and keeps those that are (p, d)-outliers in D. Let these tuples be O12.
Then O12 ∪O′

2 includes all true (p, d)-outliers in D. As will shown in Section 6,
the tuples in O1−O2 takes a negligible portion of D (less than 0.2%). Therefore,
the complexity of outlierness examination of tuples in O12 should be O(|D|).

4.4 Auxiliary Data for Verification
Auxiliary data sent to the server. Before the data owner (client) sends out
her dataset, she signs each tuple with a cryptographic signature. The signa-
ture consists of two sub-signatures: Siga and Sigt. Siga provides authenticity
guarantee, so that any modification on the original tuples can be caught, while
Sigt is used to distinguish the true tuples from the artificial ones that will be
inserted for verification of completeness and correctness. In particular, given a
tuple t(a1, . . . , an), Siga = H(a1 ⊕ . . . an), and

Sigt =







H(Siga ⊕ c1), If t is a true tuple in D;
H(Siga ⊕ c2), If t is an AO;
H(Siga ⊕ c3), If t is an ANO.

The client predefines three constants c1, c2, and c3, for the true tuples, the
AOs, and the ANOs respectively. The client stores the three constants and the
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hash function H locally. We require that the hash function H is an efficiently
computable collision-resistance hash function. It takes a variable-length input
and returns a fixed length binary sequence. Furthermore, it should be difficult
to reverse the hash value, i.e., given H(x), it is computational infeasible to
compute x. Therefore, the server cannot easily modify the signature.

After completes the computation of signatures, the client sends the dataset
to the server. Each tuple in the dataset is associated with its two signatures Siga
and Sigt. When the server returns the outlier tuples to the client, he is required
to return the two signatures of these tuples too.
Auxiliary data at the client side. The client maintains the hash function H,
the number of AOs and ANOs, and the three constants c1, c2, and c3 that are
used to construct the signatures. It is straightforward that the space overhead
of these auxiliary information is negligible. For each outlier tuple t returned
by the server, the client computes its signature Siga, and the three signatures
Sig1t = H(Siga ⊕ c1), Sig

2
t = H(Siga ⊕ c2), and Sig3t = H(Siga ⊕ c3), by using

the three constants c1, c2, and c3 that it has stored locally. Then by comparing
the signatures Sig1t , Sig

2
t , Sig

3
t against the Sigt that is attached to t, the client

can distinguish whether t is a true tuples, an AO or an ANO.

5 Discussion

5.1 Dealing with Malicious Server

We consider the following two types of misbehaviors by the malicious server:
(1) Cheap computation: the server picks a portion of the dataset D′ ⊆ D and
return outliers of D′ as the outliers of D;
(2) Verification-aware cheating: the server is aware of the details of the veri-
fication mechanism, and escapes from verification by returning incorrect mining
result that fits what the verification mechanism expects.

Unfortunately, our AT-based approach cannot catch the two types of mis-
behaviors by the malicious server. First, our AT-based approach cannot catch
cheap computation. If the dataset portion D′ that the server picks satisfies that
D′ ⊆ S, where S is the sample that is used to construct AOs (Section 4.1),
the outliers of D′ should contain all AOs, i.e., the server can succeed to es-
cape from the completeness verification. Since the probability that D′ ⊆ S is
prob = |S|/|D| = p, where p is the parameter used for (p, d)-outlier mining that
is close to 1 in practice [17], the server can escape the completeness verification
with very high probability even by mining a small portion of dataset. On the
other hand, if the portion D′ contains tseed (i.e., the seed tuple that is used to
construct ANOs), none of the ANOs will be returned, and thus the server can
escape the correctness verification. The probability that the server picks D′ that

contains tseed is prob = |D′|
|D| . The server has to pick a large portion of D if it

tries to escape the correctness verification with high probability.
Second, our AT-based approach cannot catch verification-aware cheating.

When the server knows the verification mechanism, especially how AOs/ANOs
are constructed, it is able to identify AOs/ANOs. First, it can find all AOs easily
by two passes of the outsourced dataset. In particular, due to the fact that the
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p value of the (p, d)-outlierness setup is always very close to 1 in practice, the
sample S used to construct AOs (Section 4.1) is close to the entire dataset D.
Therefore, the constructed AOs will be the skyline points ofD. Based on this, the
malicious server can easily identify the tuples that have the maximum/minimum
values of each attribute as AOs. This can be done by traversing the dataset twice
(one pass to find maximum/minimum values of each attribute and another one
to decide AOs). On the other hand, due to the fact that all ANOs must be the
close tuples (Definition 2) to a non-outlier tuple, the malicious server can identify
all ANOs by searching for non-outlier tuples that are close to at least one non-
outlier. This requires the server to find all non-outliers, whose complexity is at
least as high as the cost of mining all outliers. Though expensive, this enables
the server to identify ANOs and escape from the correctness verification.

Intuitively, any verification based on transformation of the original dataset
(e.g., inserting tuples) may not be able to catch the malicious server as it may
launch verification-aware cheating. On the other hand, randomly picking tu-
ples from the original dataset as samples and verifying the outlierness of the
samples may resist the verification-based cheating. However, to return high cor-
rectness/completeness guarantee, it needs to find a large portion of real outliers,
which may not be affordable by the client with limited computational power. We
conjecture that to catch a malicious server, especially to catch the verification-
aware cheating, the complexity of verification is as expensive as outlier mining.

5.2 From Probabilistic Approach to Deterministic Approach

It is possible that the client may require verification guarantee of 100% certainty.
For this case, our AT-based approach cannot meet the requirement, even though
it can provide a high probabilistic guarantee. Intuitively, let OS be the outliers
returned by the server, the client can verify the correctness of OS with 100%
certainty by checking whether each tuple in OS is an outlier inD. The complexity
is O(kn), where k is the size of OS , and n is the size of D. To verify completeness,
the client checks whether there exist any tuple in D−OS that is an outlier. The
complexity of completeness verification is O((n− k)n). The total complexity of
the deterministic approach is O(n2), which is as high as outlier mining itself.
Although we can optimize the outlier detection procedure [4, 27], we have to pay
for additional space overhead. We conjecture that the complexity of deterministic
approach (in terms of both time and space) is as expensive as outlier mining
itself.

6 Experimental Evaluation

We conducted an extensive set of experiments to evaluate both the assurance
guarantee and performance of our approach. In particular, we measured: (1)
the completeness and correctness guarantee; (2) the verification overhead at
the client side, including a) the construction time for AOs and ANOs, b) the
verification time to check AOs and ANOs, and c) the time of examining the
outlierness of tuples to eliminate false positives; (3) the mining overhead at the
server side.
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Fig. 3. Robustness of AT -based Approach

Setup. In our experiment, we used two datasets, the Letter dataset1 from UCI
MLC++ Library that contains 20k tuples, and the KDDCUP dataset2 that
contains 100k tuples. The Letter dataset has 16 numerical (integer) attributes.
The KDDCUP dataset contains 41 (numerical or categorical) attributes. In our
experiments, we used five numerical attributes, including duration, dst bytes,
flag, count, and serror rate attributes, of the KDDCUP dataset. For Letter
dataset, we used p = 0.8 and d = 15 that return 1% of the tuples as outliers, while
for KDDCUP dataset, we used p = 0.99 and d = 5000 that return 2% of the
tuples as outliers. All of our experiments are evaluated on a PC with a 2.4GHz
Intel Core 2 Duo CPU and 4GB RAM running Windows 7. We implemented
the algorithm in Java.

Robustness of the AT -based Approach. We simulate the incomplete result
by the semi-honest server as removing 5%, 10%, 15%, 20%, and 25% outliers
randomly (i.e., a = 95%, 90%, 85%, 80%, and 75%), and the possible incorrect
result as picking 5%, 10%, 15%, 20%, and 25% non-outliers randomly as outliers
(i.e., b = 95%, 90%, 85%, 80%, and 75%). Then, we measure the probability
of catching these incomplete and incorrect results by our AT -based approach
by the following: we repeat 500 trials on the Letter dataset and 100 trials on
the KDDCUP dataset. For each trial, first, we insert AOs and ANOs that are
constructed by using our AT -based approach. Second, we randomly pick a set of
outliers to remove (for producing incomplete answer) and non-outliers to insert
(for producing incorrect answer).

For completeness verification, we examine if all the AOs are returns. If at
least one AO is missing, we count the trial as a detected one. Similarly, for
correctness verification, we check if the result contains any ANO, and count the

1 http://www.sgi.com/tech/mlc/db/letter.all
2 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Fig. 4. AO&ANO Construction Time and Verification Time, Letter dataset

trial as detected if it does. After we finish all trials, we calculate the detection
probability as the prd = ndet

ntr
, where ndet is the number of detected trials and

ntr is the total number of trials.

First, we measured the detection probability of incomplete answer. Figure 3
(a) shows the result on the Letter dataset. We observe that the detection proba-
bility is always higher than the required α value (i.e., the probability threshold).
The same observation also holds for the KDDCUP dataset (Figure 3 (b)). We
also measured the detection probability of incorrect result. Figure 3 (c) & (d)
show the detection probability for Letter dataset and KDDCUP dataset re-
spectively. It can be easily observed that the detection probability of incorrect
result is always better than the required β value, i.e., the correctness probabil-
ity threshold. This proves the robustness of our AT -based approach for both
completeness and correctness verification.

Cost Analysis at Client Side. First, we measured the time performance of
constructing AOs and ANOs. Figure 4 (a) shows the AO construction time on
Letter dataset. We observe that the AO construction is extremely fast, which
needs 0.012 seconds at most even when α = 0.95 and a = 0.95. Furthermore,
when α and a values increase, AO construction time increases too, but only
slightly. Figure 4 (b) shows the ANO construction time on Letter dataset. It
takes more time than AO construction since it needs to find the tseed and verifies
whether it is a non-outlier. Nevertheless, it is still fast; it only needs 0.022 seconds
at most even when β = 0.95 and b = 0.95. Compared with the mining time
(around 200 seconds for the Letter dataset), the construction time of AOs and
ANOs is negligible. We also measured the construction time on KDDCUP
dataset. The construction time of the KDDCUP dataset is longer than that
of the Letter dataset, as the size of the KDDCUP dataset is four times larger
than that of the Letter dataset. However, the AO/ANO construction is still
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fast; AO construction only needs 0.16 seconds at most, while ANO construction
only needs 0.035 seconds at most. We omit the result due to limited space.

Second, we measured the verification time at the client side. Figure 4 (c)
shows the time of completeness verification on Letter dataset. We observed that
the time grows when α and a increase. This is straightforward as higher α and
a require larger number of AOs. Figure 4 (d) shows the time of correctness
verification on Letter dataset. Contrast to completeness verification, the time of
correctness verification decreases with the growth of β and b. This is because with
increasing b value, there are fewer real non-outliers inserted as incorrect answer
(for simulation). Even though meanwhile larger b value requires more ANOs,
the number of inserted real non-outliers decreases faster than that of ANOs.
This leads to the decreasing number of outliers (including real non-outliers and
ANOs) that the client receives, and consequently less verification time.

a, b α, β α, β α, β α, β α, β

0.75 0.8 0.85 0.9 0.95

0.75 1 1 1 2 2
0.80 1 1 2 2 4
0.85 2 2 4 4 5
0.90 4 4 5 5 6
0.95 5 6 6 8 8

a, b α, β α, β α, β α, β α, β

0.75 0.8 0.85 0.9 0.95

0.75 2 4 4 6 13
0.80 4 4 6 13 14
0.85 6 8 14 17 23
0.90 14 19 23 23 48
0.95 47 70 77 101 167

(a) Letter Dataset (20K tuples) (b) KDDCUP Dataset (100K tuples)

Table 1. Number of Tuples Whose Outlierness Are Examined during Post-Processing

Third, we measured the performance of outlier recovery at the client side. We
first measured the number of tuples whose outlierness needs to be examined in
the dataset. Table 1 (a) & (b) show the result of Letter dataset and KDDCUP
dataset respectively. Both tables show that the number of tuples whose outlier-
ness needs to be examined only takes a small portion of the dataset. For example,
at most 8 tuples in Letter dataset (0.04% of the dataset) and at most 167 tuples
in KDDCUP dataset (0.16% of dataset) that were examined. Furthermore, we
noticed that though it is possible that the tuples that need to be examined can
contain true and false positive outliers, in our experiments, all examined tuples
are false positive outliers (real non-outliers).
Overhead at Server Side.We measured the mining overhead at the server side
as |TD+ − TD|/TD, where TD and TD+ are the time of mining outliers from the
original database D and the dataset D+ = D∪AO∪ANO. Figure 5 (a) and (b)
show the result of the Letter dataset and KDDCUP dataset respectively. We
observed that adding AOs and ANOs does not introduce much mining overhead.
For example, it leads to at most additional 1.2% of the original mining time on
the Letter dataset, and at most additional 0.25% of the original mining time on
the KDDCUP dataset. The overhead on KDDCUP dataset is much smaller
because we insert the same number of artificial tuples for the same α, β, a, b
values into a larger dataset. This proves that our AT -based approach is more
suitable for datasets of large size.

7 Conclusion
Outsourcing mining tasks to a third-party data-mining-as-a-service (DMAS)
provider which is potentially untrusted arises serious concern on the integrity
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Fig. 5. Mining overhead

of the mining results. In this paper, we focused on verifying the integrity of
outlier mining result. We consider two types of server, namely the semi-honest
server and the malicious server, that may return incorrect/incomplete outliers.
We proposed AUDIO, a practical and efficient integrity auditing framework that
can provide high correctness and completeness guarantees for the semi-honest
server in the DMAS paradigm. We designed efficient approaches of construct-
ing artificial tuples for verification purpose, and demonstrated the efficiency and
effectiveness of our approach via an extensive set of experiments.

In the future, we will continue to explore the verification methods for the
malicious server. We will investigate whether it is feasible to design efficient
verification mechanisms if the server only knows partial details of the verification
mechanism, e.g., the server knows there are artificial tuples in the dataset but
does not know how these tuples are constructed. We will also examine how to
design verification techniques to deal with datasets with updates.
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