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Abstract

Complex large-scale studies, such as those related to microarray data and fMRI studies,

often involve testing multiple hierarchically ordered hypotheses. However, most existing false

discovery rate (FDR) controlling procedures do not exploit the inherent hierarchical structure

among the tested hypotheses. In this paper, we first present a generalized stepwise procedure

which generalizes the usual stepwise procedure to the case where each hypothesis is tested

with a different set of critical constants. This procedure is helpful in creating a general frame-

work under which our hierarchical testing procedures are developed. Then, we present several

hierarchical testing procedures which control the FDR under various forms of dependence

such as positive dependence and block dependence. Our simulation studies show that these

proposed methods can be more powerful in some situations than alternative methods such as

Yekutieli’s hierarchical testing procedure (Yekutieli, JASA 103 (2008) 309-316). Finally, we

apply our proposed procedures to a real data set involving abundances of microbes in different

ecological environments.
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NOTATION INDEX

The following summarizes commonly used notation and lists where each symbol is found.
Symbol Description Section Page

M,m The set of tested hypotheses {H1, . . . , Hm} and its cardinality. 2 4

Mi,mi The set of descendant hypotheses of Hi and its cardinality. 2 5

Di, di The set of ancestor hypotheses of Hi and its cardinality, also re-

ferred to as its depth.

2 5

T (·) A function that takes an index of a hypothesis and returns the

index of its parent hypothesis.

2 5

Fd The set of hypotheses with depth d, Fd = {Hi : di = d}. 2 5

Gd The union of F1, . . . ,Fd. A.2 25

D The maximum depth of the hypotheses Gd ⊆M so that GD =M. 2 4

` The total number of leaf hypotheses. 2 5

`i The number of leaf hypotheses in setMi. 2 5

R(A), R The number of rejected hypotheses belonging to any set A and

R = R(M).

2 5

V (A), V The number of falsely rejected hypotheses belonging to any setA
and V = V (M).

2 5

αi(·) The critical function for testing the ith hypothesis Hi. 2 6
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1. INTRODUCTION

In many problems involving the testing of multiple hypotheses, the hypotheses have an intrinsic,

hierarchical structure such as a tree-like or graphical structure. These hierarchical structures often

arise in multiple testing problems involving clinical trials (Mehrotra and Heyse, 2004; Dmitrienko

et al., 2007; Huque and Alosh, 2008), genomics research (Yekutieli et al., 2006; Goeman and Mans-

mann, 2008; Heller et al., 2009; Guo et al., 2010) and fMRI studies (Benjamini and Heller, 2007).

In general, hierarchical testing typically occurs while testing hierarchically structured hypotheses

where, upon the rejection of one hypothesis, followup hypotheses are to be tested. For instance,

Heller et al. (2009) introduced a hierarchical testing approach for analyzing microarray data where

individual genes were grouped into gene sets. The gene sets were tested and upon successfully

rejecting a gene set, the associated individual genes were tested. Guo et al. (2010) and Mehrotra

and Heyse (2004) used a similar hierarchical testing approach for time-course microarray data and

clinical safety data, respectively. Benjamini and Heller (2007) used a hierarchical testing approach

to study fMRI data where the brain was divided into brain regions and each brain region was tested

for significance. If a brain region was significant, the voxels within the brain region were tested. In

addition, Meinshausen (2008) introduced a hierarchical testing method for addressing the problem

of variable selection in multiple linear regression models.

In the field of multiple testing, the problem of controlling the familywise error rate (FWER)

for testing hierarchically ordered hypotheses has received considerable attention (Dmitrienko et al.,

2006, 2007; Goeman and Mansmann, 2008; Huque and Alosh, 2008; Meinshausen, 2008; Brechen-

macher et al., 2011; Goeman and Finos, 2012); however, the FWER control can be too conserva-

tive for large-scale multiple testing. There has been very few work towards developing general

methods for testing hierarchically ordered hypotheses that control the false discovery rate (FDR),

even though the FDR is a more appropriate error measure for large scale multiple testing. To our

knowledge, only Yekutieli (2008) has provided a general method for testing hierarchically ordered

hypotheses that is specifically intended for controlling the FDR. Yekutieli’s procedure, which is

based on the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995), is only shown

to control the FDR under independence. Some of the aforementioned procedures (Mehrotra and

Heyse, 2004; Benjamini and Heller, 2007; Heller et al., 2009; Guo et al., 2010) can only be applied

to special hierarchies consisting of only two layers.

In this paper, we propose new FDR controlling methods for testing hierarchically ordered hy-

potheses under various dependencies. Our approach towards controlling the FDR for testing hierar-

chically ordered hypotheses is different from that of Yekutieli’s. First, to assist in the development
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of our hierarchical testing procedures, we introduce a new concept of generalized stepwise proce-

dure, which generalizes the usual stepup, stepdown, and stepup-down procedures to the case where

each hypothesis is tested with a different set of critical constants. The hypotheses are organized

into different families according to their depth in the hierarchical structure. The formed families

are sequentially tested by using the generalized stepwise procedures for which the corresponding

critical constants take into account of the testing outcomes of higher-ranked families. Based on this

approach, we were able to develop several new hierarchical testing procedures which control the

FDR under various dependence structures including positive dependence and block dependence.

To our knowledge, the procedures are the first procedures developed for testing hierarchically

ordered hypotheses with proven control of the FDR under dependence structures other than inde-

pendence. Furthermore, our simulation study shows that these procedure are quite powerful. The

most powerful procedure, which we prove controls the FDR under positive block dependence, sig-

nificantly outperforms Yekutieli’s procedure in terms of power even though Yekutieli’s procedure

is only shown to control the FDR under independence, which is a special case of positive block

dependence.

Another interesting finding of this research is that when the hierarchy takes on some special

configurations, our procedures reduce to the existing FDR controlling procedures. For example,

when there is no hierarchical structure, our proposed procedures reduce to the BH procedure and

the Benjamini-Yekutieli (BY) procedure (Benjamini and Yekutieli, 2001). When the hierarchy

takes on a fixed sequence structure, our procedures are equivalent to the fixed sequence procedures

in Lynch et al. (2016). This shows that our procedures are the combination of stepwise and fixed

sequence methods.

The rest of this paper is outlined as follows. In Section 2, we provide relevant notation and

definitions that will be used throughout this paper. Section 3 presents our proposed generalized

stepwise procedure. Section 4 presents our new hierarchical testing procedures with proven control

of the FDR under various dependencies. Sections 5 and 6 present a simulation study and real data

analysis where we compare our procedures with Yekutieli’s procedure. Finally, Section 7 provides

some brief discussions.

2. PRELIMINARIES

Suppose there are m hypotheses H1, . . . , Hm to be tested that are organized hierarchically in a

tree-like structure where each hypothesis can have several child hypotheses but at most one parent

hypothesis. LetM = {H1, . . . , Hm} be the set of the m tested hypotheses. Let T : {0, . . . ,m} →
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H1 

H2 H3 

(a)

H1 

H2 H3 

H4 H5 H7 H6 

(b)

Figure 1: (a) An example of a hierarchical structure with 3 hypotheses for which H2 and H3 are
only tested if H1 is rejected. (b) An example of a hierarchical structure with 7 hypotheses for
which H2 and H3 are only tested if H1 is rejected, H4 and H5 are only tested if H2 is rejected, and
H6 and H7 are only tested if H3 is rejected.

{0, . . . ,m} be a function that takes an index of a hypothesis and returns the index of the parent

hypothesis with T (0) = 0. That is, if Hi has a parent hypothesis, its parent hypothesis is HT (i);

otherwise Hi does not have a parent hypothesis and T (i) = 0. Define T 0(i) = i and T k(i) =

T (T k−1(i)) for any positive integer k. Let Di = {Hj : T k(i) = j for k = 0, . . . ,m} so that

Di is the set of all ancestor hypotheses of Hi, which includes Hi. Let di be the cardinality of

Di, di = |Di|. The depth of Hi in the hierarchy is defined as di. Let D be the maximum depth

of the m hypotheses to be tested. If di = 1, then Hi does not have a parent hypothesis. Let

Mi = {Hj : T k(j) = i for k = 0, . . . ,m} so thatMi is the set of all descendant hypotheses of

Hi, which also includes Hi. We will refer to the hypotheses in set Mi as the subtree under Hi.

Let mi be the cardinality ofMi, mi = |Mi|. If mi = 1, then Hi has no children and it is referred

to as a leaf hypothesis. We denote the number of leaf hypotheses in the whole hierarchy by ` and

the number of leaf hypotheses in the subtree under Hi by `i. Formally, ` =
∑

Hj∈M I{mj = 1}
and `i =

∑
Hj∈Mi

I{mj = 1}. Our procedures introduced in Section 4 group the hypotheses

into D families by depth where family d contains all hypotheses with depth d, that is, Fd =

{Hi ∈ M : di = d}. For example, in Figure 1(a), T (2) = T (3) = 1 and H2 and H3 are leaf

hypotheses. In Figure 1(b), T (6) = T (7) = 3,D6 = {H1, H3, H6},M2 = {H2, H4, H5}, and

F3 = {H4, H5, H6, H7}.
The hypotheses in the hierarchical structure are tested hierarchically by a testing procedure

based on their corresponding p-values P1, . . . , Pm. By hierarchical testing, we mean a hypothesis

is only tested if its parent hypothesis has been rejected or it does not have a parent hypothesis.

For any set A ⊆ M, define R(A) and V (A) to be the number of rejected hypotheses and falsely

rejected hypotheses among the hypotheses in set A, respectively. For example, R(M) and V (M)
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are the number of rejected hypotheses and falsely rejected hypotheses among all the m tested

hypotheses, respectively, and R(Mi) and V (Mi) are number of rejected hypotheses and falsely

rejected hypotheses among the hypotheses in the subtreeMi, respectively. For simplicity, often

we will use R and V to denote R(M) and V (M), respectively. The FWER of this procedure is

defined as Pr (V > 0). The FDR of this procedure is defined as FDR = E (V/R), where we use

the convention that V/R = 0 when R = 0. In addition, we will always use |A| to denote the

cardinality of any set A throughout the paper.

Most existing multiple testing procedures are stepwise methods which are based on the ordered

p-values P(1) ≤ · · · ≤ P(m) with corresponding hypotheses H(1), . . . , H(m). Typically the rejection

thresholds of a stepwise procedure are based on a sequence of non-decreasing critical constants

but in this paper, for convenience, we will instead test the hypotheses using a non-decreasing,

non-negative function α0 : {0, . . . ,m + 1} → R called a critical function where α0(0) = 0. For

example, the critical function of the BH procedure is α0(r) = rα/m. A stepwise procedure first

determines the number of rejections R based on the critical function, then for each i = 1, . . . ,m,

it rejects Hi if Pi ≤ α0(R) and accepts Hi if Pi > α0(R). With P(0) ≡ 0 and P(m+1) ≡ ∞,

a stepup procedure sets R = max{0 ≤ r ≤ m : P(r) ≤ α0(r)}. A stepdown procedure sets

R = min{1 ≤ r ≤ m+ 1 : P(r) > α0(r)}−1. Finally, a stepup-down procedure of order k, which

generalizes stepup and stepdown procedures, sets R = max{0 ≤ r ≤ k − 1 : P(r) ≤ α0(r)} if

P(k) > α0(k) and R = min{k + 1 ≤ r ≤ m + 1 : P(r) > α0(r)} − 1 if P(k) ≤ α0(k). When

k = m, the stepup-down procedure reduces to the stepup proceudre and when k = 1, it reduces to

the stepdown procedure. It should be noted that the event {P(r) ≤ α0(r)} is equivalent to the event

{r ≤
∑m

i=1 I{Pi ≤ α0(r)}}. Thus, the number of rejections can also be expressed by

R = max

{
0 ≤ r ≤ m : r ≤

m∑
i=1

I{Pi ≤ α0(r)}

}
(1)

for the stepup procedure,

R = min

{
1 ≤ r ≤ m+ 1 : r >

m∑
i=1

I{Pi ≤ α0(r)}

}
− 1 (2)
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for the stepdown procedure, and

R =

max {0 ≤ r ≤ k − 1 : r ≤
∑m

i=1 I{Pi ≤ α0(r)}} if k >
∑m

i=1 I{Pi ≤ α0(k)}

min {k + 1 ≤ r ≤ m+ 1 : r >
∑m

i=1 I{Pi ≤ α0(r)}} − 1 if k ≤
∑m

i=1 I{Pi ≤ α0(k)}
(3)

for the stepup-down procedure of order k. Refer to Tamhane et al. (1998) and Sarkar (2002) for

further discussion on stepup-down procedure.

Throughout this paper we make use of the following basic assumption regarding marginal p-

values: for any p-value Pi with Hi being true,

Pr (Pi ≤ p) ≤ p for any 0 ≤ p ≤ 1. (4)

We consider several types of joint dependence throughout this paper: arbitrary dependence, posi-

tive dependence, and block dependence. Under arbitrary dependence, the p-values are not known

to have any specific type of dependence structure. Positive dependence and block dependence are

characterized by the following assumptions.

Assumption 1. Positive Dependence Assumption

For any coordinatewise non-decreasing function of the p-values ψ,

E (ψ(P1, . . . , Pm) | Pi ≤ p) is non-decreasing in p for each p-value Pi such that Hi is true. (5)

Assumption 2. Block Dependence Assumption

For each d = 1, . . . , D, the p-values corresponding to the hypotheses in Fd are independent of the

p-values corresponding to the hypotheses not in Fd.

Assumption 1 is slightly more relaxed than the condition of positive regression dependence on

a subset (PRDS) introduced in Benjamini and Yekutieli (2001). Assumption 2 only characterizes

the joint dependence of the p-values across families but does not describe the joint dependence

within families.

3. GENERALIZED STEPWISE PROCEDURE

In order to present our hierarchical testing procedures in the next section, in this section, we present

a new type of procedure termed as generalized stepwise procedure, including generalized stepup,

stepdown, and stepup-down procedures, which generalizes the usual stepup, stepdown, and stepup-
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down procedures. In a non-hierarchical multiple testing problem where a stepwise procedure is

used to test the hypotheses, the tested hypotheses often have the same importance and thus, it is

natural to test those hypotheses with the same critical function, as shown in (3). However, when

the hypotheses have a hierarchical structure, the importance of a hypothesis depends on where it

is located in the hierarchy. Hence, for a desired procedure, each hypothesis should be tested with

a different critical function that reflects its importance, and so we generalize the usual stepwise

procedure as follows.

Given m non-decreasing critical functions αi(r), i = 1, . . . ,m, our proposed generalized step-

wise procedure rejects Hi if Pi ≤ αi(R) for each i = 1, . . . ,m where R is determined as follows.

For the generalized stepup procedure,

R = max

{
0 ≤ r ≤ m : r ≤

m∑
i=1

I{Pi ≤ αi(r)}

}
, (6)

for the generalized stepdown procedure,

R = min

{
1 ≤ r ≤ m+ 1 : r >

m∑
i=1

I{Pi ≤ αi(r)}

}
− 1, (7)

and for the generalized stepup-down procedure of order k,

R =

max {0 ≤ r ≤ k − 1 : r ≤
∑m

i=1 I{Pi ≤ αi(r)}} if k >
∑m

i=1 I{Pi ≤ αi(k)}

min {k + 1 ≤ r ≤ m+ 1 : r >
∑m

i=1 I{Pi ≤ αi(r)}} − 1 if k ≤
∑m

i=1 I{Pi ≤ αi(k)}.
(8)

It is easy to see that when αi(r) = α0(r) for each i = 1, . . . ,m, (6), (7), and (8) reduce to (1),

(2), and (3), respectively. Thus, the generalized stepup, stepdown, and stepup-down procedures

reduce to the usual stepwise procedures, respectively. It should be noted that when k = m, (8)

reduces to (6) and when k = 1, (8) reduces to (7).

The generalized stepwise procedure is fairly general and we present two examples to show its

broad applicability.

Example 1. Consider a weighted multiple testing problem where Hi has corresponding weight

wi, i = 1, . . . ,m. A weighted stepwise procedure with the critical function α0(r) tests Hi based

on weight-adjusted p-values Pi/wi instead of Pi. This is equivalent to a generalized stepwise

procedure with the critical functions αi(r) = wiα0(r), i = 1, . . . ,m so that the weighted stepwise

procedure can be regarded as a special case of the generalized stepwise procedure.
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Example 2. Fixed sequence procedures assume the testing order of the hypotheses has been spec-

ified a-priori and that Hi is not tested unless H1, . . . , Hi−1 have all been rejected. Lynch et al.

(2016) showed that the fixed sequence procedure that rejects Hi when Pi ≤ mα/(m − i + 1)

controls the FDR at level α under arbitrary dependence. This procedure is a special case of the

generalized stepdown procedure with critical functions αi(r) = I{r ≥ i}mα/(m− r + 1). Other

fixed sequence procedures can be defined similarly.

From (8), it can be seen that many of the familiar properties of stepwise procedures also hold for

the generalized stepwise procedure. For example, the number of rejections R is a coordinatewise

non-increasing function of the p-values andR is a non-decreasing function of k (i.e. a stepup-down

procedure of order k rejects more hypotheses than a stepup-down procedure of order k − 1). The

most important property is a self-consistency property which allows us to express R as

R =

m∑
i=1

I{Pi ≤ αi(R)}. (9)

(Blanchard and Roquain (2008) discussed a weaker self-consistency condition for the usual step-

wise procedure with the critical function α0(r), which is the inequalityR ≤
∑m

i=1 I{Pi ≤ α0(R)}).
This property ensures that R as determined in (8) is indeed the number of rejections by the gen-

eralized stepwise procedure. Thus, the event {Hi is rejected} can be expressed as {Pi ≤ α0(R)}
with R being the number of rejections. To see why this property holds, let us define ψ(r) =∑m

i=1 I{Pi ≤ αi(r)}. When k > ψ(k), then R = max{0 ≤ r ≤ k − 1 : r ≤ ψ(r)} and if

k ≤ ψ(k), then R+ 1 = min{k + 1 ≤ r ≤ m+ 1 : r > ψ(r)}. In either case, it is easy to see that

R ≤ ψ(R) and R+ 1 > ψ(R+ 1). The fact that ψ(R+ 1) < R+ 1 implies ψ(R+ 1) ≤ R. Thus,

R = ψ(R) since R ≤ ψ(R) ≤ ψ(R + 1) ≤ R.

To conclude this section, we present an efficient algorithm for finding the number of rejections

by the generalized stepwise procedure. The algorithm is particularly useful when the number of

hypotheses is very large.

Algorithm 1. Given a positive integer 1 ≤ k ≤ m and critical functions αi(·), i = 1, . . . ,m, define

ψ(r) =
∑m

i=1 I{Pi ≤ αi(r)}.

1. Let t = 1 and rt = k.

2. If rt > ψ(rt), then

(a) Increase t by 1 and set rt = ψ(rt−1).
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(b) If rt ≤ ψ(rt), then let R = rt and stop; otherwise, if rt > ψ(rt), repeat step 2(a).

3. Otherwise, if rt ≤ ψ(rt), then

(a) Increase t by 1 and set rt = ψ(rt−1) + 1.

(b) If rt > ψ(rt), then let R = rt − 1 and stop; otherwise, if rt ≤ ψ(rt), repeat step 3(a).

Proposition 1. The value of R in (8) can be solved by algorithm 1.

Proof. The proof is in the Appendix.

4. HIERARCHICAL FDR CONTROL

In this section, we describe our procedure to test hierarchically ordered hypotheses. The tested

hypotheses are arranged into D families, F1, . . . ,FD, where Fd is the family of hypotheses with

depth d. Given m non-decreasing critical functions αi(r), i = 1, . . . ,m, the hypotheses are tested

as follows.

Definition 1. General Hierarchical Testing Procedure

1. Test F1 by using the generalized stepup procedure with critical functions αi(r), Hi ∈ F1.

Let S1 be the set of rejected hypotheses and R(F1) be the number of rejected hypotheses in

F1. Test F2.

2. To test Fd, use the generalized stepup procedure with critical functions

α∗i (r) = I
{
HT (i) is rejected

}
αi

(
r +

d−1∑
j=1

R(Fj)

)
, Hi ∈ Fd.

Let Sd be the set of rejected hypotheses and R(Fd) be the number of rejected hypotheses in

Fd. Test Fd+1.

3. The set of rejected hypotheses is
⋃D

d=1 Sd and the total number of rejections isR =
∑D

d=1R(Fd).

The above procedure is termed as a hierarchical testing procedure since the procedure will

accept any hypothesis whose parent hypothesis has been accepted. This can be seen in the con-

struction of the critical functions in step 2 where α∗i (r) = 0 if Hi’s parent hypothesis HT (i) has
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not been rejected so that Hi cannot be rejected. It should be noted that the parents of all hypothe-

ses in Fd are in Fd−1, which is tested before testing Fd. Hence, for each Hi ∈ Fd, the event

{HT (i) is rejected} is observed by the time Fd is tested.

Remark 1. In Definition 1, when all the hypotheses inFd have the same critical functions and every

Hi ∈ Fd can be tested (i.e. HT (i) is rejected), the generalized stepup procedure used for testing

Fd reduces to the usual stepup procedure. However, our critical functions for testing hierarchically

ordered hypotheses, which are presented in the next subsections, are not the same and depend on

where the hypothesis is located in the hierarchy. Furthermore, since the hypotheses in Fd may

not have the same parent, the parent hypotheses HT (i) could be rejected for some, but not all, of

Hi ∈ Fd. Hence, only in an uncommon case does the generalized stepup procedure reduce to the

usual stepup procedure for testing Fd.

Following (9), the hierarchical testing procedure has the following self-consistency property in

each family Fd,

R(Fd) =
∑

Hi∈Fd

I{Pi ≤ α∗i (R(Fd))}, d = 1, . . . , D,

where α∗i (r) = I
{
HT (i) is rejected

}
αi(r +

∑d−1
j=1 R(Fj)). Hence, the event {Hi is rejected} is

equivalent to the event {HT (i) is rejected, Pi ≤ αi(
∑di

j=1R(Fj))}, where
∑di

j=1R(Fj) is the num-

ber of rejections in the first di families, F1, . . . ,Fdi . This property will be useful to prove the FDR

control of our procedures.

Now that we have defined our hierarchical testing procedure, we will consider various de-

pendence structures, such as positive dependence, arbitrary dependence, and block dependence,

and develop newer hierarchical testing procedures which control the FDR under these dependence

structures. The proofs of all the theorems in this section are in the appendix.

4.1 Procedure under Positive Dependence

We first consider positive dependence structure. Positive dependence has received much attention

in multiple testing due to the fact that several popular multiple testing procedures have been de-

veloped under this type of dependence (see Sarkar (1998); Benjamini and Yekutieli (2001); Sarkar

(2002); Guo and Sarkar (2016)). Our procedure under positive dependence is as follows.

Theorem 1. FDR Control under Positive Dependence
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Under Assumption 1, the hierarchical testing procedure with critical functions

αi(r) =
`iα

`

mi + r − 1

mi

, i = 1, . . . ,m,

strongly controls the FDR at level α.

Consider the special case when there is no hierarchical ordering (i.e. ` = m and `i = mi = 1)

so that the hypotheses do not have any pre-defined structure and the problem reduces to a non-

hierarchical multiple testing problem. We will refer to this configuration as the non-hierarchical

configuration. Under this configuration, all the hypotheses belong to the same family, F1, so

that the hierarchical testing procedure reduces to the usual stepup procedure which can be further

reduced to a normal stepup procedure since all the critical functions are equal to rα/m. Hence, the

procedure reduces to the stepup procedure with critical function rα/m, which is the BH procedure.

Thus, our result generalizes the BH to the testing of hierarchically ordered hypotheses.

Now, we consider another special case where each familyFi has exactly one hypothesisHi, i =

1, . . . ,m. Thus, the tested hypotheses H1, . . . , Hm are pre-ordered, ` = 1, and mi = m − i + 1.

We will refer to this configuration as the fixed sequence configuration. Under this configuration,

the hierarchical testing procedure reduces to the fixed sequence method introduced in Lynch et al.

(2016), where hypothesis Hi is rejected if, and only if, hypotheses H1, . . . , Hi−1 have all been

rejected and Pi ≤ mα/(m − i + 1). This method is shown to control the FDR at level α under

arbitrary dependence. Thus, our result also generalizes the fixed sequence procedure to the testing

of hierarchically ordered hypotheses.

Remarkably, our result has connected two opposing testing methods: the testing of non-ordered

hypotheses (through the BH procedure) and the testing of fully ordered hypotheses (through the

fixed sequence procedure).

Finally, we consider a third configuration which we call the binary tree configuration. This

configuration is helpful for evaluating the critical functions in the hierarchical setting and it is

defined as follows. There is one hypothesis in F1 and each hypothesis has two child hypotheses

except for the leaf hypotheses in FD. Hence, ` = 2D−1 and m = 2D − 1. For each d = 1, . . . , D,

there are 2d−1 hypotheses in Fd and for each Hi ∈ Fd, `i = 2D−d and mi = 2D−d+1 − 1. Under

this configuration, the critical functions of Theorem 1 are, after simplification,

αi(r) =
α

2d−1

(
1 +

r − 1

2D−d+1 − 1

)
, Hi ∈ Fd, d = 1, . . . , D. (10)
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Table 1: A comparison of critical functions for the procedure in Theorem 1 and Meinshausen’s
procedure when testing the hypotheses in Figure 1(b).

Theorem 1 Meinshausen
r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

Family 1 αi(r) α - - - - - - α
Family 2 αi(r) - 2α/3 5α/6 - - - - α/2
Family 3 αi(r) - - 3α/4 α 5α/4 3α/2 7α/4 α/4

Compared to Meinshausen’s FWER controlling hierarchical testing procedure, which is equiv-

alent to the hierarchical testing procedure with critical functions `iα/`, i = 1, . . . ,m, the critical

functions of Theorem 1 are (mi + r − 1)/mi times larger for Hi. In the binary tree configuration,

Meinshausen’s critical function forHi inFd is αi(r) = α/2d−1, which is (1+(r−1)/(2D−d+1−1))

times smaller than the critical function in Theorem 1. Table 1 lists the critical functions of Theo-

rem 1 and Meinshausen’s procedure for testing the hypotheses in Figure 1(b) which has the binary

tree configuration. For family d, only the values of r between d and
∑d

j=1 |Fj| are listed in Table

1 due to the fact that if a hypothesis in family d is rejected, then all d of its ancestor hypotheses

including the hypothesis itself are rejected so that d ≤
∑d

j=1R(Fj) ≤
∑d

j=1 |Fj|.

Remark 2. It should be noted that the hierarchical testing procedure relies on the generalized stepup

procedure to test each family; however, our proof of the FDR control for the procedure in Theorem

1 (and our proof of FDR control for the remaining procedures in this section) still holds if the

generalized stepup-down procedure of any arbitrary order (including the generalized stepdown

procedure) is used to test each family. Nevertheless, in practice we are generally trying to maximize

the number of rejections subject to the FDR control. Since with the same critical functions, the

generalized stepup procedure is more powerful than the corresponding generalized stepup-down

and generalized stepdown procedures, we opted to use the generalized stepup procedure to test

each family.

4.2 Procedure under Arbitrary Dependence

In this subsection we introduce a FDR controlling hierarchical testing procedure under arbitrary

dependence. Since arbitrary dependence is a more general type of joint dependence than positive

dependence, it follows that the procedure under arbitrary dependence will not be quite as powerful

as the procedure from Theorem 1.
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Theorem 2. FDR Control under Arbitrary Dependence

The hierarchical testing procedure with critical functions

αi(r) =
`iα

`

mi + r − 1

mi

1

ci
, where ci = 1 +

|Gdi |−1∑
j=di

1/(mi + j),

for i = 1, . . . ,m, strongly controls the FDR at level α under arbitrary dependence.

Just like Theorem 1, we consider the non-hierarchical configuration of hypotheses. In this

special case, all of the critical functions are rα/(mc) where c =
∑m

j=1 1/j so that this procedure

reduces to the stepup procedure with critical function rα/(mc), which is the BY procedure. Thus,

this result extends the BY procedure to the testing of hierarchically ordered hypotheses. On the

other hand, we also consider the fixed sequence configuration. Here, the rejection threshold for Hi

is mα/(m− i+ 1), which is the same as the procedure from Theorem 1 under this configuration.

It is easy to see that the critical functions of this procedure are scaled down compared with

the procedure from Theorem 1 in order to ensure the FDR control under arbitrary dependence,

similar to the way the BY procedure is scaled down compared with the BH procedure. Consider

the example in Figure 1 (b) which consists of 7 hypotheses. Here, c1 = 1, c2 = c3 = 1.2, and

c4 = c5 = c6 = c7 = 1.76 which means the critical functions of Theorem 1 are as large, 1.2 times

larger, and 1.76 times larger than the critical functions of Theorem 2 for testing F1, F2, and F3,

respectively. The critical function of the BH procedure, on the other hand, is
∑7

i=1 1/i = 2.59

times larger than the critical function of the BY procedure for testing 7 hypotheses in the non-

hierarchical setting. This holds in general, that the constants in the critical functions of Theorem

2 are much smaller in the hierarchical setting than in the non-hierarchical setting (i.e. the BY

procedure). It shows that the FDR controlling procedure under arbitrary dependence tends to be

less affected by not having the assumption of positive dependence in the hierarchical setting than

in the non-hierarchical setting.

4.3 Procedures under Block Dependence

In this subsection, we consider block dependence and develop more powerful versions of the proce-

dures in Theorems 1 and 2 by taking this dependence into account. Since block dependence only

describes the dependence of the p-values across families, we consider both positive dependence

and arbitrary dependence to describe the dependence of the p-values within the families which we

will refer to as block positive dependence and block arbitrary dependence, respectively.
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In the fixed sequence configuration, block dependence reduces to independence. Under this

configuration of hypotheses, both of our procedures presented in this subsection reduce to the more

powerful FDR controlling fixed sequence procedure under independence, whereas the procedures

in the last two subsections reduce to the less powerful FDR controlling fixed sequence procedure

under arbitrary dependence (Lynch et al., 2016).

First, we consider block positive dependence.

Theorem 3. FDR Control under Block Positive Dependence

Under Assumption 1 and 2, the hierarchical testing procedure with critical functions

αi(r) =


`irα

`+ `i(r − 1)α
if Hi is not a leaf hypothesis

rα

`
if Hi is a leaf hypothesis

for i = 1, . . . ,m, strongly controls the FDR at level α.

In the non-hierarchical configuration, this procedure reduces to the BH procedure since all the

critical functions are rα/m. It should be noted that under this configuration there is only one

family so that block dependence is irrelevant and we are left with just the positive dependence

assumption. Thus, both this procedure and the procedure from Theorem 1, which both assume

positive dependence, reduce to the BH procedure in the non-hierarchical configuration.

In the hierarchical setting, this procedure offers a large improvement over the critical functions

of Theorem 1. To see this, consider the binary tree configuration. In this case, the critical functions

are

αi(r) =
rα

2d−1 + (r − 1)α
, Hi ∈ Fd, d = 1, . . . , D − 1 and αi(r) =

rα

2D−1 , Hi ∈ FD. (11)

Comparing (10) to (11), one can see that (11) is, in general, much larger than (10), approximately

r/(1 + (r− 1)/(2D−d+1− 1)) times larger when α is small. For example, when D = 5, d = 3, and

r = 4 the increase is by a factor of almost 3. Also, compared to Meinshausen’s FWER controlling

hierarchical testing procedure, which uses critical function `iα/`, i = 1, . . . ,m, the critical func-

tions of Theorem 3 are approximately r times larger under every configuration for small α. Hence,

the procedure from Theorem 3, which requires the strongest dependence assumption to control the

FDR, is our most powerful hierarchical testing procedure.

Finally, we consider block arbitrary dependence.
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Theorem 4. FDR Control under Block Arbitrary Dependence

Under Assumption 2, the hierarchical testing procedure with critical functions

αi(r) =


`irα

`+ `i(r − 1)α

1

ci
if Hi is not a leaf hypothesis

rα

`

1

ci
if Hi is a leaf hypothesis

where

ci =


1 +

∑|Fdi
|−1

j=1

`− `iα
(j + di)(`+ `i(j + di − 2)α)

if Hi is not a leaf hypothesis

1 +
∑|Fdi

|−1
j=1

1

j + di
if Hi is a leaf hypothesis

and |Fdi | is the cardinality of Fdi , strongly controls the FDR at level α.

This procedure reduces to the BY procedure in the non-hierarchical configuration so that both

procedures under arbitrary dependence reduce to the BY procedure. Similar to the procedures

from Theorems 1 and 2, the critical functions of this procedure are a factor smaller than the critical

functions of Theorem 3. Again, we consider the hypotheses in Figure 1 (b). Here, c1 = 1, c2 =

c3 = 1.317, and c4 = c5 = c6 = c7 = 1.760 at α = 0.05. In this example, the ci’s are significantly

smaller than the constant for the BY procedure for testing 7 hypotheses, which is 2.59. However,

c2 and c3 for Theorem 4 are larger than c2 and c3 for Theorem 2, which are both 1.2, but this is

not true in general for the ci’s. The portion of the critical function without ci, is generally much

larger for Theorem 4 than for Theorem 2 so that the procedure from Theorem 4 is typically more

powerful than the procedure from Theorem 2.

Remark 3. Our proofs of the theorems in this section heavily rely on mathematical induction. The

hierarchical structure of the hypotheses implies a recursive property where the hypotheses in the

subtree under any hypothesis also form a hierarchical structure. Hence, mathematical induction is

a natural choice for proving results for hierarchical structures.

Below, we demonstrate how the hierarchical testing procedure in Theorem 1 works through an

example as well as Yekutieli’s and Meinshausen’s hierarchical testing procedures.

Example 3. Consider the example presented in Figure 1(b). The maximum depth of the tree is 3

and the seven hypotheses in the tree are grouped as 3 families, which are {H1}, {H2, H3}, and

{H4, H5, H6, H7}. Suppose the p-values are p1 = 0.01, p2 = 0.75, p3 = 0.008, p4 = 0.6, p5 =
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Table 2: The procedure from Theorem 1 at level α = 0.05 to hierarchically test the hypotheses
presented in Figure 1(b) with p-values p1 = 0.01, p2 = 0.75, p3 = 0.008, p4 = 0.6, p5 = 0.85, p6 =
0.03, and p7 = 0.05.

Procedure 3 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 Outcome
Family 1
generalized stepup α∗i (R) 0.05 - - - - - - R = 1

Reject H1 and set R(F1) = 1

Family 2
generalized stepup α∗i (R) - 0.033 0.033 - - - - R = 1

Accept H2, reject H3 and set R(F2) = 1

Family 3
generalized stepup α∗i (R) - - - 0 0 0.05 0.05 R = 2

Accept H4 and H5 and reject H6 and H7. Set R(F3) = 2

0.85, p6 = 0.03, and p7 = 0.05 and the hypotheses are tested using the procedure from Theorem 1,

Yekutieli’s procedure, and Meinshausen’s procedure at level α = 0.05.

Table 2 shows the value of the variables step-by-step for the procedure from Theorem 1. The

first family is tested using the generalized stepup procedure and H1, the only hypothesis in this

family, is rejected. Now, R(F1) = 1. The second family is tested using the generalized stepup

procedure with critical functions α∗2(r) = α2(r+1) and α∗3(r) = α3(r+1). H3 can be rejected but

H2 cannot. Thus, R(F2) = 1. Finally, the third family is tested. Since H2 was accepted and H3

was rejected, we have α∗4(r) = α∗5(r) = 0, α∗6(r) = α6(r+ 2), and α∗7(r) = α7(r+ 2). Hypotheses

H6 and H7 are rejected by the generalized stepup procedure.

Yekutieli’s hierarchical testing procedure groups the hypotheses into families that share the

same parent hypothesis so that the 4 families are {H1}, {H2, H3}, {H4, H5}, and {H6, H7}. This

procedure rejects hypotheses H1 and H3 (Table 3). Meinshausen’s hierarchical testing procedure

uses a fixed rejection threshold `iα/` for testing Hi. This procedure rejects H1 and H3 (Table 4).

5. SIMULATION STUDY

We conducted a simulation study to evaluate the performance of the proposed procedures. Specif-

ically, the simulation study compared the performance of our proposed procedures, which are

labeled Procedures 1-4 corresponding to the procedures introduced in Theorems 1-4, against Yeku-

tieli’s FDR controlling procedure in terms of the FDR control and average power. Several depen-

dence configurations were considered as well as different hierarchical structures.
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Table 3: Yekutieli’s procedure at level α = 0.05 to hierarchically test the hypotheses presented in
Figure 1(b) with p-values p1 = 0.01, p2 = 0.75, p3 = 0.008, p4 = 0.6, p5 = 0.85, p6 = 0.03, and
p7 = 0.05.

Yekutieli’s Procedure i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 Outcome
Family 1
BH procedure αi(R) 0.0174 - - - - - - R = 1

Reject H1

Family 2
BH procedure αi(R) - 0.009 0.009 - - - - R = 1

Accept H2 and reject H3

Family 3
Not Tested - - - - - - -
Accept H4 and H5

Family 4
BH procedure αi(R) - - - - - 0 0 R = 0

Accept H6 and H7

Table 4: Meinshausen’s procedure at level α = 0.05 to hierarchically test the hypotheses presented
in Figure 1(b) with p-values p1 = 0.01, p2 = 0.75, p3 = 0.008, p4 = 0.6, p5 = 0.85, p6 = 0.03, and
p7 = 0.05.

Meinshausen’s Procedure i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 Outcome
Family 1
Single Step αi 0.05 - - - - - - R = 1

Reject H1

Family 2
Single Step αi - 0.025 0.025 - - - - R = 1

Accept H2 and reject H3

Family 3
Single Step αi - - - - - 0.0125 0.0125 R = 0

Accept H4, H5, H6, and H7
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We generated m normal random variables with covariance matrix Σ and mean vector ~µ =

(µ1, . . . , µm) to test the m hypotheses Hi : µi ≤ 0 versus H ′i : µi > 0, i = 1, . . . ,m. When Hi was

true, we set µi = 0. When Hi was false, we set µi to a positive value which was non-increasing

in its depth di. Our intention was to simulate the setting where hypotheses that are near the top

of the hierarchy are easier to reject than hypotheses near the bottom. As for the joint dependence,

we considered a common correlation structure where Σ had off-diagonal components equal to ρ

and diagonal components equal to 1. The p-value for testing the ith leaf hypothesis was calculated

using a one sided, one-sample Z-test.

We constructed two types of hierarchies: a shallow hierarchy and a deep hierarchy. Both

hierarchies had 1000 leaf hypotheses.

The leaf hypotheses were randomly chosen with probability π0 to be true and 1−π0 to be false.

Each non-leaf hypothesis was set to true only if all of its child hypotheses were true; otherwise it

was set to false. For both hierarchies, the tree was balanced so that each parent hypothesis had the

same number of child hypotheses. The two hierarchies are described in detail below.

Shallow Hierarchy: The maximum depth of this tree is 2 so that a hypothesis is either a leaf

hypothesis or a top-level hypothesis with no parent. There are 10 top-level hypotheses each of

which have 100 child hypotheses giving a total of 1010 hypotheses. For each false hypothesis Hi,

µi = 3 if di = 1 and µi = 2 if di = 2.

Deep Hierarchy: The maximum depth of this tree is 4 and there are 8 top-level parents. Each par-

ent hypothesis has 5 child hypotheses giving a total of 1248 hypotheses. For each false hypothesis

Hi, µi = 3.5 if di = 1, µi = 3 if di = 2 or 3, and µi = 2 if di = 4.

We set α = 0.05 and for each procedure, we noted the false discovery proportion, which is the

proportion of falsely rejected hypotheses among all rejected hypotheses, and the the proportion of

rejected false null hypotheses among all false null hypotheses. Each tree was generated and tested

5000 times and the simulated values of the FDR and average power were obtained by averaging

out the 5000 values of these two proportions, respectively.

Figure 2 displays the FDR and average power under independence as π0 varies from 0.2 to 1.

As seen from Figure 2, all the procedures control the FDR at level 0.05. In terms of power, Pro-

cedure 3 outperforms Yekutieli’s procedure quite substantially and in some cases even doubles the

power of Yekutieli’s procedure. Procedure 1, which controls the FDR under positive dependence,

outperforms Yekutieli’s procedure under the shallow hierarchy but is outperformed by Yekutieli’s

19



1 2 3

4 5 6

7 8 9

10 11

F
D

R
A

ve
ra

ge
 P

ow
er

 (
%

)

Proportion of True Null Leaf Hypotheses (π0) Proportion of True Null Leaf Hypotheses (π0)

0.2 0.4 0.6 0.8 1.0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

FDR (Shallow)

0.2 0.4 0.6 0.8 1.0

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

FDR (Deep)

0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

Power (Shallow)

0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

Power (Deep)

Proc. 4.1 Proc. 4.2 Proc. 4.3 Proc. 4.4 Yekutieli’s Proc.

Independence, ρ = 0

Figure 2: FDR (top row) and average power (bottom row) of Procedures 1 (solid line), 2 (dashed),
3 (dotted), 4 (dot dash), and Yekutieli’s procedure (long dash) under independence for the shallow
hierarchy (left column) and the deep hierarchy (right column) where the proportion of true null
leaf hypotheses varies from 0.2 to 1.

procedure in the deep hierarchy. In the deep hierarchy, Procedure 4 and Yekutieli’s procedure

are comparable in terms of power. Not surprisingly, Procedure 2, which controls the FDR under

arbitrary dependence, performs the worst.

Figures 3 and 4 display the FDR and average power under common correlation with ρ = 0.25

and ρ = 0.75, respectively, as π0 varies from 0.2 to 1. The FDRs of all the procedures are controlled

at level 0.05 under both weak and strong correlation. It should be noted that assumption 2 (block

dependence) does not hold under this dependence configuration but Procedures 3 and 4 still control

the FDR suggesting that both procedures are fairly robust to departures from this assumption. In

terms of power, these figures show a similar pattern to Figure 2 where Procedure 3 is the most

powerful and Procedure 2 is the least powerful. The remaining three procedures fall somewhere in

the middle depending on the setting.
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Figure 3: FDR (top row) and average power (bottom row) of Procedures 1 (solid line), 2 (dashed),
3 (dotted), 4 (dot dash), and Yekutieli’s procedure (long dash) under common correlation with
ρ = 0.25 for the shallow hierarchy (left column) and the deep hierarchy (right column) where the
proportion of true null leaf hypotheses varies from 0.2 to 1.

6. REAL DATA ANALYSIS

We applied our proposed procedures as well as Yekutieli’s procedure to a real data set. We

used the data set of Caporaso et al. (2011), available in the phyoseq Bioconductor package at

www.bioconductor.org, which provides the abundances of individual microbes in different ecolog-

ical environments as well as their phylogenetic relationships. The data can be naturally organized

into a hierarchy consisting of taxonomic units according to their phylogenetic relationships. The

question of interest is whether there is an association between a taxonomic unit and ecological en-

vironment. Specifically, we tested the null hypothesis that the mean abundance for the taxonomic

unit is the same across environments versus the alternative hypotheses that the mean abundance

for the taxonomic unit is different across environments. The p-value for each hypothesis was de-

termined by using an F-test where the abundance for a taxonomic unit in a given environment was
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Figure 4: FDR (top row) and average power (bottom row) of Procedures 1 (solid line), 2 (dashed),
3 (dotted), 4 (dot dash), and Yekutieli’s procedure (long dash) under common correlation with
ρ = 0.75 for the shallow hierarchy (left column) and the deep hierarchy (right column) where the
proportion of true null leaf hypotheses varies from 0.2 to 1.

determined based on the total abundance of each microbe within the taxonomic unit for the given

environment (for more information see Sankaran and Holmes (2014)).

We restricted our analysis to the microbes in the Actinobacteria phylum which had 1631 in-

dividual microbes. The taxonomic hierarchy in the Actinobacteria phylum consisted of 3261 tax-

onomic units so that the total number of hypotheses is 3261 across 39 families. We tested the

hypotheses at various significance levels and the number of rejections for each procedure are dis-

played in Table 5. All of the procedures are seen to make a substantial number of discoveries, even

when α = 0.01. In terms of the number of rejections, one can easily see that Procedure 3 is by

far the best, significantly outperforming the other procedures. Procedure 4 outperforms Yekutieli’s

procedure when α is moderate to large but Yekutieli’s procedure outperforms Procedure 4 when α

is small. Procedure 2 is, not surprisingly, the worst since it is the only procedure that controls the
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FDR under arbitrary dependence.

Table 5: The number of rejections out of 3261 hypotheses by Procedures 1, 2, 3, 4, and Yekutieli’s
procedure at various significance levels for the microbe abundance data set of Caporaso et al.
(2011) restricted to the Actinobacteria phylum.

α Procedure 1 Procedure 2 Procedure 3 Procedure 4 Yekutieli’s Procedure
0.01 75 68 144 107 123
0.025 88 75 574 148 165
0.05 118 92 1156 353 230
0.1 138 108 1497 813 253

7. CONCLUSION

In this paper, we have developed several FDR controlling procedures for testing hierarchically

ordered hypotheses. To our knowledge, we have, for the first time, presented hierarchical test-

ing methods with proven FDR control under dependence. Furthermore, we have developed a

method which controls the FDR under block positive dependence and in our simulation study, it

was shown to be more powerful than Yekutieli’s hierarchical testing procedure and other proposed

procedures. A particularly interesting aspect of this work is that we have connected two contrasting

testing methods in the proposed hierarchical testing methods: fixed sequence procedures, which

assume the hypotheses have a fixed pre-defined testing order, and stepwise procedures, which do

not assume the hypotheses having any pre-defined testing order.

We believe in this paper we have made a significant step in terms of multiple testing with

structured hypotheses. The techniques developed in this paper can be used to develop procedures

to test hypotheses with more complex hierarchical structures where hypotheses are not restricted to

only one parent. Such procedures would have applications towards testing interaction hypotheses,

for example in gene expression data, where main effects are tested first and pairwise interactions

are tested only if the two main effects making up the interaction are significant.

8. APPENDIX

Let us first state and prove the following lemmas which are used in the proofs of Theorems 1, 2, 3,

and 4.

Lemma 1. Under Assumption 1, if Γ(P1, . . . , Pm) is a discrete coordinatewise non-increasing

function of the p-values taking on values γ1 < · · · < γn and t(·) is a non-decreasing function on

23



{γ1, . . . , γn}, then for each true null Hj ,

n∑
i=1

Pr (Γ = γi | Pj ≤ t(γi)) ≤ Pr (Γ ≥ γ1 | Pj ≤ t(γ1)) .

Proof of Lemma 1.

n∑
i=1

Pr (Γ = γi | Pj ≤ t(γi))

=
n∑

i=1

Pr (Γ ≥ γi | Pj ≤ t(γi))−
n−1∑
i=1

Pr (Γ ≥ γi+1 | Pj ≤ t(γi))

= Pr (Γ ≥ γ1 | Pj ≤ t(γ1))−
n∑

i=2

[Pr (Γ ≥ γi | Pj ≤ t(γi−1))− Pr (Γ ≥ γi | Pj ≤ t(γi))]

≤ Pr (Γ ≥ γi | Pj ≤ t(γ1)) .

The inequality follows by Assumption 1.

Lemma 2. Under arbitrary dependence of the p-values, if Γ(P1, . . . , Pm) is a discrete function

of the p-values taking on values γ1 < · · · < γn and t(·) is a positive non-decreasing function on

{γ1, . . . , γn} with the convention that t(γ0) = 0, then for each true null Hj ,

n∑
i=1

1

t(γi)
Pr (Γ = γi, Pj ≤ t(γi)) ≤

n∑
i=1

t(γi)− t(γi−1)
t(γi)

.

Proof of Lemma 2. Using the convention that 0/0 = 0, we have

n∑
i=1

1

t(γi)
Pr (Γ = γi, Pj ≤ t(γi))

=
n∑

i=1

[
1

t(γi)
Pr (Γ ≥ γi, Pj ≤ t(γi))−

1

t(γi−1)
Pr (Γ ≥ γi, Pj ≤ t(γi−1))

]
≤

n∑
i=1

1

t(γi)
Pr (Γ ≥ γi, t(γi−1) < Pj ≤ t(γi))

≤
n∑

i=1

1

t(γi)
Pr (t(γi−1) < Pj ≤ t(γi))

=
n−1∑
i=1

(
1

t(γi)
− 1

t(γi+1)

)
Pr (Pj ≤ t(γi)) +

1

t(γn)
Pr (Pj ≤ t(γn))
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≤
n∑

i=1

t(γi)− t(γi−1)
t(γi)

.

8.1 Proof of Proposition 1

Assume k > ψ(k). Then, step 2(a) of Algorithm 3.1 is repeated until for some ` ≥ 2, r` ≤ ψ(r`).

For t = 1, . . . , `− 1, we have rt > ψ(rt) implying rt > rt+1. Thus, r` < r1 = k. For any integer

r from 0 to k − 1 such that r ≤ ψ(r), we will show that r` ≥ r. To prove it, we show using

induction that rt ≥ r, t = 1, . . . , `. Since r1 = k > r, by induction assume rt−1 ≥ r. Then,

rt = ψ(rt−1) ≥ ψ(r) ≥ r. Since r` ≤ ψ(r`), r` < k, and r` ≥ r, we have R = r` = max{0 ≤ r ≤
k − 1 : r ≤ ψ(r)}.

Conversely, assume k ≤ ψ(k). Then, step 2(b) is repeated until for some ` ≥ 2, r` > ψ(r`).

For t = 1, . . . , ` − 1, we have rt ≤ ψ(rt) implying rt < ψ(rt) + 1 = rt+1. Thus, r` > r1 = k.

For any integer r from k + 1 to m + 1 such that r > ψ(r), we will show that r` ≤ r. To prove

it, we show using induction that rt ≤ r, t = 1, . . . , `. Since r1 = k < r, by induction assume

rt−1 ≤ r. Then, rt = ψ(rt−1) + 1 ≤ ψ(r) + 1 ≤ r. Since r` > ψ(r`), r` > k, and r` ≤ r, we have

R = r` − 1 = min{k + 1 ≤ r ≤ m+ 1 : r > ψ(r)} − 1.

8.2 Proof of Theorem 1

In this proof and the remaining proofs, we will use the convention that 0/0 = 0. For convenience

of notation, define Gd =
⋃d

j=1Fj and R(Gd) is the number of rejections in the first d families,

Fj, j = 1, . . . , d. Let |Gd| be the cardinality of Gd.

We will show that

E

(
V (Mi)

R

)
≤ `iα

`
, i = 1, . . . ,m. (12)

Proof of (12). The event {Hi is rejected} implies all ancestors of Hi are rejected so there must

be at least di rejections in the first di families. Therefore, the event {Hi is rejected} implies the

following two inequalities:

di ≤ R(Gdi) ≤ |Gdi |, (13)

R(Gdi)− 1 ≤ R−R(Mi). (14)

The second inequality follows from the fact that Gdi/{Hi} ⊆ M/Mi so that R(Gdi/{Hi}) ≤
R(M/Mi).
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If Hi is true,

E

(
V (Mi)

R

)
≤ E

(
V (Mi)

V (Mi) +R−R(Mi)

)
≤ E

(
mi

mi +R−R(Mi)
I{Hi is rejected}

)
≤ E

(
mi

mi +R(Gdi)− 1
I{Hi is rejected}

)

=

|Gdi |∑
r=di

E

(
mi

mi + r − 1
I{R(Gdi) = r,Hi is rejected}

)

≤
|Gdi |∑
r=di

mi

mi + r − 1
Pr (R(Gdi) = r, Pi ≤ αi(r))

≤
|Gdi |∑
r=di

miαi(r)

mi + r − 1
Pr (R(Gdi) = r | Pi ≤ αi(r))

=
`iα

`

|Gdi |∑
r=di

Pr (R(Gdi) = r | Pi ≤ αi(r)) . (15)

The second inequality follows from the fact that V (Mi) ≤ mi and V (Mi)/(V (Mi)+R−R(Mi))

is an increasing function of V (Mi). The third inequality follows from (14) and the first equality

follows from (13). The fourth inequality follows by the fact that the event {Hi is rejected} =

{HT (i) is rejected, Pi ≤ αi(R(Gdi))}.
Since the number of rejections by the generalized stepup procedure is a coordinatewise non-

increasing function of the p-values, it follows that R(Gdi) is also a coordinatewise non-increasing

function of the p-values. Therefore, by Lemma 1,

|Gdi |∑
r=di

Pr (R(Gdi) = r | Pi ≤ αi(r)) ≤ Pr (R(Gdi) ≥ di | Pi ≤ αi(di)) ≤ 1. (16)

From (16), we have that (15) is less than `iα/`. Thus, (12) holds when Hi is true.

We will use induction to show (12) also holds when Hi is false. When Hi is a false null

leaf hypothesis, then (12) is true trivially. Otherwise, assume (12) is true for every false child

hypothesis ofHi. Thus, (12) is true for all children ofHi. We note that whenHi is false, V (Mi) =
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∑
j:T (j)=i V (Mj) and

E

(
V (Mi)

R

)
=

∑
j:T (j)=i

E

(
V (Mj)

R

)
≤

∑
j:T (j)=i

`jα

`
=
`iα

`
.

Thus, (12) holds for all true and false null hypotheses.

Proof of Theorem 1. By (12), we have

FDR =
∑

i:T (i)=0

E

(
V (Mi)

R

)
≤

∑
i:T (i)=0

`iα

`
= α.

8.3 Proof of Theorem 2

We will show that (12) holds under arbitrary dependence for the procedure introduced in Theorem

2.

Proof of (12). When Hi is true, by the fourth inequality of (15), we have

E

(
V (Mi)

R

)
≤
|Gdi |∑
r=di

mi

mi + r − 1
Pr (R(Gdi) = r, Pi ≤ αi(r))

=
`iα

`

1

ci

|Gdi |∑
r=di

1

αi(r)
Pr (R(Gdi) = r, Pi ≤ αi(r))

≤ `iα

`

1

ci

1 +

|Gdi |∑
r=di+1

αi(r)− αi(r − 1)

αi(r)


=

`iα

`
.

The second inequality follows by Lemma 2. Thus, (12) holds when Hi is true. When Hi is false,

(12) also holds by the same argument used in the proof of Theorem 1. Hence, (12) holds for all

hypotheses.

Proof of Theorem 2. Since (12) holds for each i = 1, . . . ,m, FDR control follows by the same

argument used in the proof of Theorem 1.
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8.4 Proof of Theorem 3

Recursively define the random variables A1, . . . , Am as follows:

Ai =


1 T (i) = 0,

AT (i) T (i) 6= 0 and HT (i) is false,

AT (i)(1− (1/R(GdT (i)
))I
{
HT (i) is rejected

}
T (i) 6= 0 and HT (i) is true.

Notice thatAi is a function of the p-values corresponding to the hypotheses in familiesF1, . . . ,Fdi−1

so that Pi and Ai are independent due to Assumption 2.

When Hi is a true null hypothesis, we have the following useful inequality

E

(
Ai
I{Hi is rejected}
αi(R(Gdi))

)
≤ E (Ai) . (17)

Proof of (17). With the convention R(G0) = 0, we have

E

(
Ai
I{Hi is rejected}
αi(R(Gdi))

)
= E

(
Ai

I
{
HT (i) is rejected, Pi ≤ αi(R(Gdi))

}
αi(R(Gdi))

)

= E

(
Ai

I
{
HT (i) is rejected, Pi ≤ αi(R(Gdi−1 +R(Fdi))

}
αi(R(Gdi−1) +R(Fdi))

)

≤ E

Ai

|Fdi
|∑

r=1

E

(
I{Pi ≤ αi(R(Gdi−1) + r), R(Fdi) = r}

αi(R(Gdi−1) + r)

∣∣∣∣ R(Gdi−1), Ai

)
≤ E

Ai

|Fdi
|∑

r=1

Pr (R(Fdi) = r | Pi ≤ αi(R(Gdi−1) + r), R(Gdi−1), Ai)


≤ E (AiPr (R(Fdi) ≥ 1 | Pi ≤ αi(R(Gdi−1) + 1), R(Gdi−1), Ai))

≤ E (Ai) .

The first equality follows by the fact that the event {Hi is rejected} is equivalent to the event

{HT (i) is rejected, Pi ≤ αi(R(Gdi))}. The second inequality follows by the fact that Pi is indepen-

dent of R(Gdi−1) and Ai due to Assumption 2 so that (4) still holds. Finally, the third inequality is

due to Lemma 1.

Now, we will show that

E

(
Ai
V (Mi)

R

)
≤ `iα

`
E (Ai) . (18)
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Proof of (18). If Hi is a false null leaf hypothesis, then the left hand side of (18) is 0. If Hi is a true

null leaf hypothesis, then

E

(
Ai
V (Mi)

R

)
≤ E

(
Ai
I{Hi is rejected}

R(Gdi)

)
=

`iα

`
E

(
Ai
I{Hi is rejected}
αi(R(Gdi))

)
≤ `iα

`
E (Ai) .

The first inequality follows by the fact that R(Gdi) ≤ R and V (Mi) = I{Hi is rejected} when

Hi is a true null leaf hypothesis. The equality follows by αi(r) = rα/` and `i = 1. The second

inequality follows by (17). Thus, (18) holds when Hi is a leaf hypothesis.

Now, we will show that (18) holds when Hi is a non-leaf hypothesis. By induction assume

(18) holds for all children of Hi. If Hi is false, then we note that V (Mi) =
∑

j:T (j)=i V (Mj) and

Ai = Aj for each j such that T (j) = i. Thus,

E

(
Ai
V (Mi)

R

)
= E

 ∑
j:T (j)=i

Aj
V (Mj)

R


≤

∑
j:T (j)=i

`jα

`
E (Aj) =

`iα

`
E (Ai) .

The inequality follows by induction.

Now, assume Hi is true. We will use the following inequality,

1

R
=

1

R(Gdi)
− R−R(Gdi)

RR(Gdi)

≤ 1

R(Gdi)
−

∑
j:T (j)=i

R(Mj)

RR(Gdi)

≤ 1

R(Gdi)
−

∑
j:T (j)=i

V (Mj)

RR(Gdi)
. (19)

The equality follows by simple algebra and the first inequality follows by the fact that Mj ⊆
M/Gdi for each j with T (j) = i so that

∑
j:T (j)=iR(Mj) ≤ R − R(Gdi). The second inequality

follows by the fact that R(Mj) ≥ V (Mj) for each j. It should also be noted that V (Mi) =

(1 +
∑

j:T (j)=i V (Mj))I{Hi is rejected}. Thus,

E

(
Ai
V (Mi)

R

)
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= E

Ai

 1

R
+

∑
j:T (j)=i

V (Mj)

R

 I{Hi is rejected}


≤ E

Ai

 1

R(Gdi)
−

∑
j:T (j)=i

V (Mj)

RR(Gdi)
+

∑
j:T (j)=i

V (Mj)

R

 I{Hi is rejected}


= E

Ai

 1

R(Gdi)
+

(
1− 1

R(Gdi)

) ∑
j:T (j)=i

V (Mj)

R

 I{Hi is rejected}


= E

Ai
I{Hi is rejected}

R(Gdi)
+

∑
j:T (j)=i

Aj
V (Mj)

R


≤ E

Ai
I{Hi is rejected}

R(Gdi)
+

∑
j:T (j)=i

`jα

`
Aj


= E

(
Ai

(
1

R(Gdi)
+

(
1− 1

R(Gdi)

)
`iα

`

)
I{Hi is rejected}

)
=

`iα

`
E

(
Ai
I{Hi is rejected}
αi(R(Gdi))

)
≤ `iα

`
E (Ai) .

The first inequality follows by (19). The third and forth equality follow by the fact thatAj = Ai(1−
(1/R(Gdi))I{Hi is rejected} for j such that T (j) = i, since Hi is true. The second inequality

follows by induction. The last equality follows by αi(r) = `irα/(` + `i(r − 1)α) and the last

inequality follows by (17).

Proof of Theorem 3. Finally, by (18),

FDR = E

(
V

R

)
=

∑
i:T (i)=0

E

(
V (Mi)

R

)

=
∑

i:T (i)=0

E

(
Ai
V (Mi)

R

)
≤

∑
i:T (i)=0

`iα

`
= α.
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8.5 Proof of Theorem 4

In the proof, we will use the same notations as in the proof of Theorem 3. To prove Theorem 4,

we show that the following inequality holds when Hi is true

E

(
Ai
I{Hi is rejected}
αi(R(Gdi))

)
≤ ciE (Ai) . (20)

Proof of (20). It can be easily shown through simple algebra that for any leaf or non-leaf

hypothesis Hi, the constant ci can be expressed as

ci = 1 +

|Fdi
|∑

r=2

αi(r + di − 1)− αi(r + di − 2)

αi(r + di − 1)
. (21)

Assume Hi is true. Then,

E

(
Ai
I{Hi is rejected}
αi(R(Gdi))

)
= E

(
Ai

I
{
Pi ≤ αi(R(Gdi)), HT (i) is rejected

}
αi(R(Gdi))

)

= E

(
Ai

I
{
Pi ≤ αi(R(Gdi−1) +R(Fdi)), HT (i) is rejected

}
αi(R(Gdi−1) +R(Fdi))

)

= E

(
AiI
{
HT (i) is rejected

}
×

E

|Fdi
|∑

r=1

I{Pi ≤ αi(R(Gdi−1) + r), R(Fdi) = r}
αi(R(Gdi−1) + r)

∣∣∣∣∣∣ Pdi−1


= E

(
AiI
{
HT (i) is rejected

}
×

|Fdi
|∑

r=1

Pr (Pi ≤ αi(R(Gdi−1) + r), R(Fdi) = r | Pdi−1)

αi(R(Gdi−1) + r)


≤ E

AiI
{
HT (i) is rejected

}1 +

|Fdi
|∑

r=2

αi(R(Gdi−1) + r)− αi(R(Gdi−1) + r − 1)

αi(R(Gdi−1) + r)


≤ E

AiI{R(Gdi−1) ≥ di − 1}

1 +

|Fdi
|∑

r=2

αi(R(Gdi−1) + r)− αi(R(Gdi−1) + r − 1)

αi(R(Gdi−1) + r)


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≤ E

Ai

1 +

|Fdi
|∑

r=2

αi(r + di − 1)− αi(r + di − 2)

αi(r + di − 1)


= ciE (Ai) .

Here, Pdi−1 denotes the p-value vector consisting of the p-values corresponding to the hypotheses

in the first di − 1 families, F1, . . . ,Fdi−1. The first equality follows by the fact that the event

{Hi is rejected} is equivalent to the event {HT (i) is rejected, Pi ≤ αi(R(Gdi))}. The first inequality

follows by Lemma 2 and the fact that Pi is independent of Pdi−1 due to Assumption 2 andR(Gdi−1)
is determined by Pdi−1. The second inequality follows by the fact that the event {HT (i) is rejected}
implies all ancestors of HT (i) are rejected, so there must be at least di − 1 rejections in the first

di−1 families, i.e., R(Gdi−1) ≥ di−1. The third inequality follows by the fact that [αi(R(Gdi−1)+

r)− αi(R(Gdi−1) + r − 1)]/αi(R(Gdi−1) + r) is a decreasing function of R(Gdi−1) for each given

r. The last equality follows from (21).

Proof of Theorem 4. By using the same argument for the proof of (18), we have that

E (AiV (Mi)/R) ≤ `iαE (Ai) /`.

Thus, the FDR control of this procedure follows by the same argument used in the proof of Theo-

rem 3.
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