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On Generalized Fixed Sequence Procedures for
Controlling the FWER

Zhiying Qiu,a Wenge Guob∗ and Gavin Lynchc

Testing a sequence of pre-ordered hypotheses to decide which of these can be rejected or accepted while controlling
the familywise error rate (FWER) is of importance in many scientific studies such as clinical trials. In this paper,
we first introduce a generalized fixed sequence procedure whose critical values are defined by using a function
of the numbers of rejections and acceptances, and which allows follow-up hypotheses to be tested even if some
earlier hypotheses are not rejected. We then construct the least favorable configuration for this generalized fixed
sequence procedure and present a sufficient condition for the FWER control under arbitrary dependence. Based on
the condition, we develop three new generalized fixed sequence procedures controlling the FWER under arbitrary
dependence. We also prove that each generalized fixed sequence procedure can be described as a specific closed
testing procedure. Through simulation studies and a clinical trial example, we compare the power performance of
these proposed procedures with those of the existing FWER controlling procedures. Finally, when the pairwise joint
distributions of the true null p-values are known, we further improve these procedures by incorporating pairwise
correlation information while maintaining the control of the FWER. Copyright c© 0000 John Wiley & Sons, Ltd.

Keywords: Critical values; Fallback procedure; Familywise error rate; Fixed sequence procedure;
Multiple testing; Power.

1. Introduction

In applications of clinical trials, the hypotheses to be tested are often hierarchically ordered based on their importance,
clinical relevance, or dose concentration, etc., and thus are tested in a pre-defined sequential order. Although the problem of
fixed sequence multiple testing has received much attention and several popular familywise error rate (FWER) controlling
procedures, such as the conventional fixed sequence procedure and fallback procedure, have been introduced, further
progress is still needed for advancing its theory and methods (Dmitrienko et al. [2, 3]).

In this paper, we focus on developing new multiple testing procedures to deal with the situation in which the hypotheses
are pre-ordered based on prior knowledge and tested based on the p-values. Throughout the whole paper, methods which
operate on such fixed sequence multiple testing problems are called fixed sequence procedures. Fixed sequence procedures
are unlike stepwise methods, such as the Holm procedure [4] and Hochberg procedure [5], where the ordering and testing
of the hypotheses are both based on the corresponding p-values. In the literature, Maurer, Hothorn and Lehmacher [6]
introduced the first fixed sequence multiple testing procedure, which we will refer to as the conventional fixed sequence
procedure. In this procedure, each hypothesis is tested at pre-specified level α as long as all of the previous hypotheses
have been rejected. It is proved that the procedure strongly controls the FWER at level α under no dependence assumptions
on the p-values. However, the main issue with this procedure is that it does not allow any acceptances. Once a hypothesis
is not rejected, the remaining hypotheses will have no chance to be tested and thus accepted. Therefore, the procedure will
perform poorly if one of the early hypotheses is insignificant. To deal with this issue, Wiens [7] and Wiens and Dmitrienko
[8] introduced another popular fixed sequence procedure – the fallback procedure, in which the remaining hypotheses have
a chance to be tested, even if an acceptance occurs. And later, several authors have proposed various extensions of the
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fallback procedure in order to improve its power including Li and Mehrotra [9] and Huque and Alosh [10]. Recently,
Bretz et al. [1] introduced a general graphical approach, by which the conventional fixed sequence procedure and fallback
procedure can be visualized.

Compared to the conventional fixed sequence procedure, the fallback procedure is more flexible in the sense that every
hypothesis has a chance to be tested, even some previous hypotheses have been accepted. However, Hommel and Bretz
[11] showed that in certain situations, the fallback procedure might violate the inherent hierarchical relationships among
the hypotheses. For any two hypotheses, the earlier important hypothesis may have less chance to be rejected than the
later one, even if their p-values are the same. This is not desired for a good multiple testing procedure. Subsequent
works on developing more desirable and more powerful procedures for addressing the problem of fixed sequence multiple
testing have been done by many authors, including Bretz et al. [1], Rosenbaum [12], Millen and Dmitrienko [13], etc. In
addition, Hommel and Kropf [14] introduced a specific fixed sequence procedure, which allows a pre-specified number k
of acceptances and has the same critical value α/k. For a detailed review of recent developments in this area of research,
see Dmitrienko et al. [3] and Wiens and Dmitrienko [15], and for applications of fixed sequence multiple testing procedures
in different fields, see Alosh and Huque [16, 17] and Tu et al. [18].

In this paper, a main goal is to develop new theory and methods for addressing the problem of fixed sequence multiple
testing. We firstly introduce a more general procedure, termed as the generalized fixed sequence procedure, whose critical
values are defined by using a function of the numbers of rejections and acceptances, and which allows each hypothesis
to be tested even if earlier hypotheses are not rejected. We then discuss a configuration, which we call the Dirac-Ordered
configuration, under which the FWER of the procedure attains the maximum among all the configurations having the
same joint distribution for the true null p-values. Based on this configuration, we present a sufficient condition for the
FWER control of a generalized fixed sequence procedure for any dependence of the p-values. Based on the condition,
we develop three new fixed sequence procedures controlling the FWER. To better evaluate the proposed procedure, we
illustrate generalized fixed sequence procedures as closed testing procedures.

The rest of the paper is organized as follows. We present some basic notations and generalize the conventional fixed
sequence procedure in Section 2. We construct the least favorable configuration for the aforementioned procedure and
present a sufficient condition for the FWER control of such a procedure in Section 3. In Section 4, we introduce three
new fixed sequence procedures based on this condition. In Section 5, we illustrate our proposed procedures as closed
testing procedures. Simulation studies and a real data analysis are respectively performed in Section 6 and 7 to evaluate the
performance of the proposed procedures. In Section 8, we further improve the aforementioned procedures by incorporating
pairwise correlation information of the true null p-values. Some concluding remarks are made in Section 9 and proofs of
some results are given in the Appendix.

2. Preliminary

In this section we present some basic notations and generalize the concept of the conventional fixed sequence procedure.
Suppose Hi, i = 1, · · · , n, are n null hypotheses which are pre-ordered based on prior knowledge and are to be tested
based on their respective p-values Pi, i = 1, . . . , n. Among these n hypotheses, let n0 of them be true null hypotheses and
n1 be false. For notational convenience, let Ĥi denote the ith true null hypothesis and P̂i denote the corresponding p-value.
Likewise, let H̃i denote the ith false null hypothesis and P̃i denote the corresponding p-value. Define the FWER as the
probability of incorrectly rejecting at least one true null hypothesis. In this paper, we assume that marginally, the true null
p-values are stochastically greater than or equal to uniform distribution on [0,1], i.e., for u ∈ [0, 1],

Pr{P̂i ≤ u} ≤ u, i = 1, . . . , n0, (1)

and jointly, the p-values are arbitrarily dependent, i.e., the p-values do not have any type of known dependence structure.
Note that for the conventional fixed sequence procedure, a main drawback is that it does not allow any acceptance. In

the following, we generalize the concept of the conventional fixed sequence multiple testing procedure so that even though
some acceptances occur, the remaining hypotheses still have a chance to be tested.

Definition 1 [Generalized Fixed Sequence Procedure] Given a function α(s, t) defined on s = 0, · · · , n− 1 and t =
0, · · · , n− 1, consider testingHi, i = 1, . . . , n.Hi is rejected iff Pi ≤ α(si−1, ti−1), where si−1 and ti−1 are, respectively,
the numbers of rejected and accepted hypotheses when testing H1, . . . ,Hi−1, with s0 = t0 = 0.

The function α(s, t) is termed the critical value function throughout the manuscript.

Remark 1 It is easy to see that when α(s, t) = α if t = 0 and α(s, t) = 0 if t > 0, the generalized fixed sequence
procedure reduces to the conventional fixed sequence procedure in Maurer et al. [6]. Besides, when the critical value
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function is given in the form of

α(s, t) =

{
α
k , if t = 0, · · · , k − 1,

0, if t = k, · · · , n− 1,

where k is a pre-specified integer with 0 < k < n, the corresponding procedure reduces to the specific fixed sequence
procedure introduced by Hommel and Kropf [14], which allows a pre-specified number k of acceptances. For the fallback
procedure in Wiens and Dmitrienko [8], since the critical value for each hypothesis depends on the specific profile of
previously tested hypotheses rather than the number of rejections or acceptances among the previous hypotheses, we
cannot use a critical value function to define the critical values of the fallback procedure. That is, the fallback procedure
is not a special case of the generalized fixed sequence procedure.

3. Main theoretical results

We will introduce in this section a sufficient condition on the critical value function for which the generalized fixed
sequence procedure strongly controls the FWER at level α under arbitrary dependence. Before presenting the condition,
for any configuration P of the tested hypotheses (H1, . . . ,Hn) and the corresponding p-values (P1, . . . , Pn), we introduce
a corresponding configuration described as follows: (i) the true null p-values P̂i, i = 1, . . . , n0, have the same joint
distribution as in the configuration P , (ii) the false null p-values P̃i = 0, i = 1, . . . , n1, with probability 1, (iii) the
order of the hypotheses to be tested, H1, . . . ,Hn, is rearranged such that the false null hypotheses are tested before
the true null hypotheses so that the order is H̃1, · · · , H̃n1

, Ĥ1, · · · , Ĥn0
. This configuration is termed as a Dirac-Ordered

(DOP ) configuration of P throughout the paper and the FWER under this configuration is denoted by FWERDOP
. The

following proposition shows that the FWER of the generalized fixed sequence procedure is larger under the Dirac-Ordered
configuration DOP than the original configuration P . Thus, in order to prove the FWER control of the generalized fixed
sequence procedure, it is enough to show its FWER control under the Dirac-Ordered configuration.

Proposition 1 Consider a generalized fixed sequence procedure with a critical value function α(s, t), s = 0, · · · , n−
1, t = 0, · · · , n− 1. If α(s, t) is increasing in s and decreasing in t, then the FWER of this procedure under any
configuration P , FWERP , satisfies the following inequality:

FWERP ≤ FWERDOP
. (2)

For the proof of Proposition 1, see Appendix.

Remark 2 The aforementioned Dirac-Ordered configuration is similar to the Dirac-Uniform configuration introduced
in Finner and Roters [19]. The Dirac-Uniform configuration assumes independent p-values where the true null p-values
are U(0, 1) and the false null p-values are zero with probability 1. However, in the Dirac-Ordered configuration, no
independence assumption is made on the p-values but instead the order of hypotheses are taken into account.

Based on the Dirac-Ordered configuration, we now present a sufficient condition of a given generalized fixed sequence
procedure to strongly control the FWER under arbitrary dependence.

Theorem 1 Consider a generalized fixed sequence procedure with the critical value function α(s, t), where α(s, t) is
increasing in s and decreasing in t.
(i) The generalized fixed sequence procedure strongly controls the FWER at level α under arbitrary dependence if

n−s−1∑
t=0

α(s, t) ≤ α for s = 0, · · · , n− 1. (3)

(ii) If (3) becomes an equality for a given value s∗ of s, then the FWER control is sharp in the sense that there exists a
joint distribution for (P1, · · · , Pn) for which the FWER of this procedure is exactly α.
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Proof. By Proposition 1, it is enough to show that for any configuration P , FWERDOP
≤ α. With the probabilities evaluated

under the Dirac-Ordered configuration DOP of P , we have

FWERDOP
= Pr{P̂1 ≤ α(n1, 0)}

+

n0−1∑
t=1

Pr{P̂1 > α(n1, 0), · · · , P̂t > α(n1, t− 1), P̂t+1 ≤ α(n1, t)}

≤
n0−1∑
t=0

Pr{P̂t+1 ≤ α(n1, t)}

≤
n0−1∑
t=0

α(n1, t) =

n−n1−1∑
t=0

α(n1, t) ≤ α. (4)

The second inequality follows from (1) and the last one follows from (3).
For the proof of (ii), see Appendix. �

4. Procedures under arbitrary dependence

Theorem 1 provides a general approach for constructing FWER controlling fixed sequence procedures under arbitrary
dependence. We can develop different kinds of fixed sequence procedures by choosing various kinds of critical value
functions satisfying (3). In the following, we propose three special fixed sequence procedures based on three different
types of critical value functions.

First, we consider the case where the critical value function α(s, t) increases with s but stays constant with respect to
t. Thus, the procedure rewards the successful rejection of a hypothesis by increasing the critical values for the remaining
hypotheses to be tested. But once the hypothesis fails to be rejected, no penalty towards those critical values is made.

PROCEDURE A1. Test the hypotheses according to the generalized fixed sequence procedure with the critical value
function

α(s, t) =
α

n− s
for 0 ≤ s, t ≤ n− 1. (5)

Remark 3 It is easy to see that Procedure A1 is similar to the Holm procedure in the sense that they have similar critical
value functions. However, the Holm procedure does not require a pre-specified order of the null hypotheses and stops on
the first accepted hypothesis; whereas, Procedure A1 requires the tested hypotheses to be pre-ordered but continues to test
all the remaining hypotheses even if a hypothesis fails to be rejected.

Second, we consider the case where the critical value function α(s, t) is constant in s but decreasing in t. Specifically,
we let α(s, t) decrease in t at a constant rate β. Thus, in contrast to Procedure A1, this procedure punishes the failure to
reject a hypothesis by decreasing the critical values for the remaining hypotheses to be tested, but no reward is made for
successful rejections.

PROCEDURE A2. Test the hypotheses according to the generalized fixed sequence procedure with critical value function

α(s, t) =
1− β
1− βn

βtα for 0 ≤ s, t ≤ n− 1, (6)

where β is a pre-specified constant satisfying 0 ≤ β < 1.

Remark 4 In Procedure A2, when β = 0, its critical values are always equal to α for t = 0, the critical value of the
conventional fixed sequence procedure. On the other hand, as β approaches to 1, its critical values approach to α/n, the
critical value of the Bonferoni procedure.

Finally, we develop a fixed sequence procedure which combines the ideas of Procedures A1 and A2 so that this
procedure rewards rejections and punishes acceptances. To construct its critical value function α(s, t), we start by assuming
α(s, t) decreases by a constant c for each extra acceptance such that α(s, t− 1)− α(s, t) = c for 1 ≤ t ≤ n− 1. Thus,
α(s, t) = α(s, 0)− tc. In order to satisfy (3), it must be the case that

α(s, 0) ≤ α

n− s
+
n− s− 1

2
c. (7)
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Furthermore, by taking the derivative of (7) with respect to s, one can see that α(s, 0), and hence α(s, t), is increasing in
s if and only if c ≤ 2α/(n− s)2. By taking c = 2α/n2, we obtain the following procedure.

PROCEDURE A3. Test the hypotheses according to the generalized fixed sequence procedure with critical value function

α(s, t) =

(
1

n− s
+
n− s− 1

n2
− 2t

n2

)
α for 0 ≤ s, t ≤ n− 1. (8)

Remark 5 In Procedure A3, when a hypothesis is accepted, the critical values for the remaining hypotheses are reduced
by constant 2α/n2. On the other hand, when a hypothesis is rejected, the critical values increase by α

(n−s+1)(n−s) −
α
n2 ,

which depends on the corresponding number of rejections s.

It is easy to see that α(s, t) defined in (5), (6) and (8) are all increasing in s, decreasing in t, and satisfy (3) with equality
for all values of s. Thus, we have the following result.

Proposition 2 Procedure A1, A2, and A3 all strongly control the FWER at level α under arbitrary dependence and their
FWER controls are sharp in the sense that for each of these procedures, there exists a joint distribution for (P1, · · · , Pn)
for which its FWER is exactly equal to α.

Remark 6 Although Bretz et al. [1] proposed a general graphical approach for developing new multiple testing
procedures, in which the pre-specified transition coefficients are used to determine the allocation of the critical values to
other hypotheses once a hypothesis is rejected, all of our proposed procedures cannot be described by using the graphical
approach. For example, consider using Procedure A2 for testing two pre-ordered hypotheses,H1 andH2. IfH1 is rejected,
then there is no critical value transferred from H1 to H2, which implies the transition coefficient from H1 to H2 is equal
to zero. However, if H1 is accepted, Procedure A2 implies that the critical value for H2 will decrease. Obviously, the
transition coefficient of zero from H1 to H2 cannot describe such outcome. Therefore, the graphical approach, although it
is pretty general, cannot define Procedure A2. Similarly, for Procedure A1 and A3, neither of them can be described as a
special case of the general graphical approach, since their critical values are also the functions of the numbers of rejections
and acceptances.

5. Generalized fixed sequence procedure as a closed test

Suppose the critical value function α(s, t) is given. The generalized fixed sequence procedure with the critical value
function α(s, t) can be illustrated as a closed testing procedure defined as follows. For any non-empty index set
I ⊆ {1, · · · , n}, consider an intersection hypothesis defined as HI =

⋂
i∈I Hi and a local test based on the p-values for

testing HI : HI is rejected if Pj ≤ α(s∗j−1, t
∗
j−1) for at least one j ∈ I , where

s∗j−1 =

j−1∑
k=1

I(k /∈ I),

t∗j−1 =

j−1∑
k=1

I(k ∈ I),

and I(·) is indicator function. Here, α(s∗j−1, t
∗
j−1) is termed as the local critical values of the above local test. Based on

such local tests, we can define a closed testing procedure by using the closure principle (Marcus et al. [23]). For these two
procedures, we have the following theorem.

Theorem 2 The generalized fixed sequence procedure is equivalent to the aforementioned closed testing procedure for an
arbitrary number of hypotheses.

For the proof of Theorem 2, see Appendix.

To better evaluate the performance of the aforementioned three proposed procedures A1-A3, we illustrate them as
closed testing procedures and compare their local critical values of testing intersection hypotheses with those of three
commonly used multiple testing procedures, Holm’s procedure, the conventional fixed sequence procedure, and the
fallback procedure, which can also be illustrated as closed testing procedures. Table 1 lists the local critical values of
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Table 1. Local critical values for any intersection hypotheses of three hypotheses using Procedure A1-A3 (PA1-PA3),
conventional fixed sequence procedure (FS), fallback procedure (FB) and Holm’s procedure (HM). For PA2, β = 0.5. For

FB, initial weights are equal.

Hypothesis PA1 PA2 PA3 FS FB HM
H1 ∩H2 ∩H3

α
3 ,

α
3 ,

α
3

4α
7 ,

2α
7 ,

α
7

5α
9 ,

α
3 ,

α
9 α, 0, 0 α

3 ,
α
3 ,

α
3

α
3 ,

α
3 ,

α
3

H1 ∩H2
α
3 ,

α
3

4α
7 ,

2α
7

5α
9 ,

α
3 α, 0 α

3 ,
α
3

α
2 ,

α
2

H1 ∩H3
α
3 ,

α
2

4α
7 ,

2α
7

5α
9 ,

7α
18 α, 0 α

3 ,
2α
3

α
2 ,

α
2

H2 ∩H3
α
2 ,

α
2

4α
7 ,

2α
7

11α
18 ,

7α
18 α, 0 2α

3 ,
α
3

α
2 ,

α
2

H1
α
3

4α
7

5α
9 α α

3 α
H2

α
2

4α
7

11α
18 α 2α

3 α
H3 α 4α

7 α α α α

the aforementioned six procedures in the case of three hypotheses. For the fallback procedure, the weights are set to be
equal and for Procedure A2, β is set 0.5. It is easy to see from Table 1 that there is no procedure which is uniformly
more powerful than others. For Procedure A1, its local critical values are smaller than those of Holm’s procedure but are
comparable with those of fallback procedure. For Procedure A2 and A3, their local critical values are generally larger in
the most cases for higher-rank hypotheses and smaller for lower-rank hypotheses compared with the fallback procedure
and Procedure A1. Thus, contrary to those two procedures, the local critical values for higher-rank hypotheses are always
larger than the lower-rank hypotheses. Of course, it can also be seen from Table 1 that the proposed procedures are not
α-exhaustive, i.e., not all intersection hypotheses are tested at the full α level. It implies a potential improvement upon the
proposed procedures is possible.

6. Numerical findings

In this section, simulation studies were performed to investigate the power performance of the proposed Procedures A1-
A3 compared to the existing Holm, conventional fixed-sequence and fallback procedures with respect to the correlation ρ
among test statistics, the proportion π0 of true null hypotheses among all tested hypotheses. For fixed sequence procedures,
we consider a pre-specified testing order for which early hypotheses are a mixture of n1 false null hypotheses and a fixed
m true null hypotheses. When m = 0, it implies an ideal order for fixed sequence procedures in which all the false null
hypotheses are ordered in front of true null hypotheses. When m > 0, it implies m true null hypotheses are mistakenly
ordered compared to the aforementioned ideal order and we say there are m ordering mistakes in the testing order.

To simulate the values of average power (Westfall and Krishen [22]), which is the expected proportion of rejected
false nulls among all false null hypotheses, for each of the aforementioned procedures, we first generated n dependent
normal random variables Ti ∼ N(µi, 1), i = 1, . . . , n, with n0 (= π0n) of the µi’s being equal to 0 and the rest being
equal to d =

√
10, and an equicorrelation matrix with correlation ρ. We then applied each aforementioned procedure to

the generated data to test Hi : µi = 0 against Ki : µi 6= 0 simultaneously for i = 1, . . . , n, at level α = 0.05. The above
steps were repeated for 100,000 times.

In the simulation, the p-value Pi corresponding to the hypothesisHi was calculated by Pi = 2(1− Φ(Ti)), i = 1, · · · , n,
where Φ(·) is the cdf of N(0, 1). For those fixed sequence procedures, the order of the tested hypotheses was specified
as follows: let the first n1 hypotheses be false nulls, randomly insert m true null hypotheses among the n1 false nulls
indicating m ordering mistakes, and let the last n0 −m hypotheses be true nulls. Specifically, for the fallback procedure,
the pre-specified weights wi, i = 1, . . . , n, for the n hypotheses are chosen to be an equally decreasing geometric sequence
with a decreasing rate γ and a sum equal to one, that is, wi = γi−1(1−γ)

1−γn . Note that when γ approaches to 1, the hypotheses
are equally weighted and when γ = 0, the fallback procedure reduces to the conventional fixed sequence procedure.
Finally, for notational convenience, the proposed Procedures A1-A3 are labeled PA1, PA2, and PA3, and the existing
Holm, conventional fixed-sequence and fallback procedures are labeled HM, FS and FB, respectively.

In the simulation, we set n = 8, π0 = 0.25, 0.5 or 0.75, andm = 0, 1 or 2 for all aforementioned procedures. Specifically,
we set β = 0.5 for Procedure A2 and γ = 0.5 for the fallback procedure.

Figures 1-3 present a comparison of the simulated average powers of the aforementioned 6 procedures. When m = 0,
as seen from Figure 1, the power of conventional fixed sequence procedures is increasing in ρ and other 5 procedures
perform steadily for different ρ. Among these 6 procedures, both Procedure A2 and the fallback procedure are comparably
powerful; however, when ρ is large, they are slightly less powerful than the conventional fixed-sequence procedure. When
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Figure 1. Simulated average powers of 6 procedures (PA1 - · · ·; PA2 - −−−; PA3 - −�− ; FB - −×−; FS - ; HM -−N−) under equal correlation ρ for
n = 8, d =

√
10,m = 0, α = 0.05, β = 0.5, γ = 0.5.
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Figure 2. Simulated average powers of 6 procedures (PA1 - · · ·; PA2 - −−−; PA3 - −�− ; FB - −×−; FS - ; HM -−N−) under equal correlation ρ for
n = 8, d =

√
10,m = 1, α = 0.05, β = 0.5, γ = 0.5.

m > 0, as seen from Figure 2 and 3, the proposed Procedures A1-A3 perform very well for different values of π0 and
ρ. Among Procedures A1-A3, Procedure A2 or A3 are always slightly more powerful than Procedure A1 under different
scenarios and Procedure A2 and A3 are comparable.

Summarizing the above observations, there is not an uniformly powerful procedure among the aforementioned six
procedures, and except for the fixed sequence procedure, all other procedures are almost unaffected by the level of
correlation of the test statistics. Compared to the conventional Holm’s procedure with equal weights, Procedure A1 is
slightly less powerful, but with unequal weights, their power relation may change. Also, in almost all scenarios, Procedure
A2 is more powerful than Procedure 3 (except in the case of a relatively large number of ordering mistakes where the two
procedures are comparable).

7. A clinical trial example

We revisited a hypertension trial example analyzed in Dmitrienko et al. [20]. The purpose of this clinical trial was to
test the efficacy and safety of four doses of an investigational drug versus placebo. The four doses, from the lowest to
highest doses, were respectively labeled D1, D2, D3, and D4, and the placebo was labeled P. The primary endpoint was
the reduction in diastolic blood pressure (measured in mm Hg). There are 8 two-sided hypotheses including four dose-
placebo contrasts and four pairwise contrasts. Since high doses were expected to be more efficacious than low doses, high
dose-placebo contrasts (D4 vs. P, D3 vs. P) were tested before testing low dose-placebo contrasts (D2 vs. P, D1 vs. P).

Statist. Med. 0000, 00 1–15 Copyright c© 0000 John Wiley & Sons, Ltd. www.sim.org 7
Prepared using simauth.cls



Statistics
in Medicine Z. QIU, W. GUO AND G. LYNCH

● ● ● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

rho

po
w

er

(a) π0 = 0.25

● ● ● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
rho

po
w

er

(b) π0 = 0.5

● ● ● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

rho

po
w

er

(c) π0 = 0.75

Figure 3. Simulated average powers of 6 procedures (PA1 - · · ·; PA2 - −−−; PA3 - −�− ; FB - −×−; FS - ; HM -−N−) under equal correlation ρ for
n = 8, d =

√
10,m = 2, α = 0.05, β = 0.5, γ = 0.5.

Table 2. Comparison results of 6 procedures in the hypertension trial example (P = Placebo and D1-D4 denote four doses
of the investigational drug). PA1 = proposed Procedure A1, PA21 - PA23 = proposed Procedure A2 with β = 0.1, 0.5 and
0.9, PA3 = proposed Procedure A3, HM = Holm procedure, FS = conventional fixed sequence procedure, FB1 - FB3 =
fallback procedure with γ = 0.1, 0.5 and 0.9. For FB1 - FB3, γ denotes the equally decreasing rate of weights assigned to

8 hypotheses. The overall Type I error rate is α = 0.05.

Raw PA1 PA21 PA22 PA23 PA3 HM FS FB1 FB2 FB3

p-value
D4-P 0.0008 R R R R R R R R R R
D3-P 0.0135 NR R R NR R NR R R R NR
D2-P 0.0197 NR R R NR NR NR R R R NR
D1-P 0.7237 NR NR NR NR NR NR NR NR NR NR

D4-D1 0.0003 R R R R R R NR NR R R
D4-D2 0.2779 NR NR NR NR NR NR NR NR NR NR
D3-D1 0.0054 R NR R R NR R NR NR NR R
D3-D2 0.8473 NR NR NR NR NR NR NR NR NR NR
Rejection number 3 4 5 3 3 3 3 3 4 3

After testing these four dose-placebo comparisons, four pairwise comparisons were tested in an order of D4 vs D1, D4 vs.
D2, D3 vs. D1, and D3 vs. D2. We pre-specified α = 0.05 and applied the three newly proposed Procedures A1-A3 and
three existing procedures Holm, conventional fixed sequence and fallback procedures to this example. Same as in Section
6, the pre-specified weights for fallback procedure are chosen to be a decreasing sequence with equally decreasing rate γ
and γ is set to 0.1, 0.5 or 0.9, respectively. For Procedure A2, β is also set to 0.1, 0.5 or 0.9, respectively. Table 2 lists the
raw p-values of the 8 hypotheses and the test results using the aforementioned six procedures.

As seen from Table 2, Procedure A2 with β = 0.5 performs the best rejecting 5 null hypotheses at level 0.05. But when
β = 0.1 and 0.9, it rejects 4 and 3 hypotheses, respectively. In contrast, the conventional fixed sequence procedure, Holm
procedure, Procedure A1, and Procedure A3 only reject 3 null hypotheses. For the fallback procedure, its testing results
depend on the pre-specified weights. When the equally decreasing rate γ of weights is set to 0.1, 0.5 or 0.9, it rejects 3, 4
or 3 hypotheses, respectively.

8. Further improvement

In the preceding sections, only the marginal distributions of the null p-values are used when developing the newly
introduced Procedures A1-A3. However, in practice, the null p-values often have a known common pairwise joint
distribution, and it would be worthwhile to consider further improving the aforementioned procedures by explicitly
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utilizing such additional dependence information, which could potentially produce more powerful FWER controlling
procedures than Procedures A1-A3. So, with that in mind, we present some improved results here under the following
assumption.

Assumption 1 The null p-values P̂1, . . . , P̂n0
have a known common pairwise joint distribution function F (u, v) =

Pr
(
P̂i ≤ u, P̂j ≤ v

)
.

Under Assumption 1, Theorem 1 can be further strengthened as follows.

Theorem 3 Under Assumption 1, the generalized fixed sequence procedure with critical value function α(s, t) strongly
controls the FWER at level α if for any 0 ≤ s, t ≤ n− 1,

n−s−1∑
t=0

α(s, t)−
n−s−1∑
t=1

F (α(s, t− 1), α(s, t)) ≤ α, (9)

where α(s, t) is increasing in s and decreasing in t.

For proof of Theorem 3, see Appendix.

Remark 7 The amount of improvement of the critical values of the aforementioned procedure depends on the
pairwise joint cdf F (u, v). Assume P̂i ∼ U(0, 1), i = 1, . . . , n0, then under perfect positive correlation where F (α(s, t−
1), α(s, t)) = α(s, t), (9) reduces to α(s, t) ≤ α, which is a remarkable improvement on (3). On the other hand, under
independence where F (α(s, t− 1), α(s, t)) = α(s, t− 1)α(s, t), there is only a limited improvement.

Based on Theorem 3, we can respectively develop improved versions of Procedures A1-A3 as follows.

PROCEDURE B1. Test the hypotheses according to the generalized fixed sequence procedure with critical value function
α(s, t) = α(s, 0) for s, t = 0, . . . , n− 1 and α(s, 0) satisfies the following equation for s = 0, . . . , n− 1,

(n− s)α(s, 0)− (n− s− 1)F (α(s, 0), α(s, 0)) = α. (10)

PROCEDURE B2. Test the hypotheses according to the generalized fixed sequence procedure with critical value function
α(s, t) = α(0, 0)βt for s, t = 0, . . . , n− 1 and α(0, 0) satisfies the following equation,

1− βn

1− β
α(0, 0)−

n−1∑
t=0

F
(
α(0, 0)βt−1, α(0, 0)βt

)
= α, (11)

where β is a pre-specified constant satisfying 0 ≤ β < 1.
PROCEDURE B3. Test the hypotheses according to the generalized fixed sequence procedure with critical value function

α(s, t) = α(s, 0)− 2tα/n2 for s, t = 0, . . . , n− 1 and α(s, 0) satisfies the following equation for s = 0, . . . , n− 1,

(n− s)
(
α(s, 0)− (n− s− 1)α

n2

)
−
n−s−1∑
t=1

F

(
α(s, 0)− 2(t− 1)α

n2
, α(s, 0)− 2tα

n2

)
= α. (12)

It is easy to see that the critical value functions for Procedures B1-B3 are all decreasing in t. And, it can be shown that
(10)-(12) all have solutions for any cdf F (u, v), and even have unique solutions if F (u, v) is assumed to satisfy certain
conditions, for example, F (u, v) is the cdf of a bivariate normal distribution. There is no guarantee that a solution for
α(s, 0) in (9) and (11) is increasing in s. If it is not, a minor adjustment of α(s, 0) can always be made to force α(s, 0)
to be increasing, although the resulting α(s, t) becomes a little smaller. For simplicity, in the following discussions, we
assume that (10)-(12) all have unique solutions and the resulting critical value functions α(s, t) of Procedures B1-B3 are
increasing in s and decreasing in t. Finally, we need to point out that it is typically not possible to obtain closed form
solutions for (10)-(12). Instead, these solutions can be approximated numerically by using the bisection method [21].

Remark 8 The critical value functions in Procedures B1-B3 maintain the same monotonicity properties as their
corresponding Procedures A1-A3, respectively. For example, the critical value function in Procedure B1 is increasing
in s and constant in t, and the critical value function in Procedure B2, like Procedure A2, decreases by the constant rate
β for every unit increase in t. Also, for Procedures B1-B3, all of their critical value functions α(s, t) satisfy (9). Thus, by
Theorem 3, we have the following result holds.
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Table 3. Critical values (percentage change) of Procedure A1 and Procedure B1 with n = 8.

s Procedure A1 Procedure B1
ρ = 0.2 ρ = 0.5 ρ = 0.8

0 0.006250 0.006336 (1.4%) 0.006756 (8.1%) 0.008794 (40.7%)
1 0.007143 0.007250 (1.5%) 0.007813 (9.4%) 0.010052 (40.7%)
2 0.008333 0.008469 (1.6%) 0.009055 (8.7%) 0.011719 (40.6%)
3 0.01 0.010178 (1.8%) 0.010894 (9.0%) 0.013978 (39.8%)
4 0.0125 0.012746 (2.0%) 0.013643 (9.1%) 0.017266 (38.1%)
5 0.016666 0.017027 (2.2%) 0.018178 (9.1%) 0.0224 (34.4%)
6 0.025 0.025546 (2.2%) 0.026958 (7.8%) 0.031362 (25.5%)
7 0.05 0.05 (0.0%) 0.05 (0.0%) 0.05 (0.0%)

Table 4. Critical values (percentage change) of Procedure A2 and Procedure B2 with n = 8 and β = 0.5.

t Procedure A2 Procedure B2
ρ = 0.2 ρ = 0.5 ρ = 0.8

0 0.025098 0.025631 (2.1%) 0.027171 (8.3%) 0.033173 (32.2%)
1 0.012549 0.012815 (2.1%) 0.013586 (8.3%) 0.016586 (32.2%)
2 0.006275 0.006408 (2.1%) 0.006793 (8.3%) 0.008293 (32.2%)
3 0.003137 0.003204 (2.1%) 0.003396 (8.3%) 0.004147 (32.2%)
4 0.001569 0.001602 (2.1%) 0.001698 (8.3%) 0.002073 (32.2%)
5 0.000784 0.000801 (2.1%) 0.000849 (8.3%) 0.001037 (32.2%)
6 0.000392 0.000400 (2.1%) 0.0004252 (8.3%) 0.000518 (32.2%)
7 0.000196 0.000200 (2.1%) 0.000212 (8.3%) 0.000259 (32.2%)

Proposition 3 Under Assumption 1, Procedures B1-B3 strongly control the FWER at α.

In order to show the improvements of critical values of Procedures B1-B3 over Procedures A1-A3, we performed some
numerical calculations to illustrate the gains of critical values of Procedures B1-B3 over Procedures A1-A3, respectively.
We consider n two-sided hypothesis tests and assume that any pair of test statistics associated with true null hypotheses
follows bivariate normal distribution with common pairwise correlation ρ. We set the parameter β in Procedure A2 and
B2 to be β = 0.5. Table 3 summarizes the numerical results of calculating the critical values of Procedure A1 and B1 for
n = 8, ρ = 0.2, 0.5, 0.8 and the improvement percentage of the critical values of Procedure B1 over A1. Table 4 and 5
show the similar comparison results for Procedure A2 vs B2 with the same values of n and ρ as in Table 3, and Procedure
A3 vs B3 with n = 5, ρ = 0.5 and 0.8. As seen from these three tables, when ρ is small, the percentages of improvement
of critical values are pretty small and are generally no more than 2%. However, when ρ is large, the improvements are
remarkable and some are even over 30%.

9. Conclusion

The main focus of this paper has been to advance the theory and methods of fixed sequence multiple testing for controlling
the FWER. We have introduced a generalized fixed sequence procedure and given sufficient conditions for its FWER
control under arbitrary dependence. We have proposed several new fixed sequence procedures by considering different
critical value functions. Through simulation studies, it has been shown that some advantages of our proposed generalized
fixed sequence procedures over the existing FWER controlling procedures in some situations can be achieved. When the
pairwise joint distributions of the true null p-values are known, we have improved the aforementioned procedures by
incorporating the distributional information into the construction of these procedures while maintaining the control of the
FWER. Specifically, in the case of bivariate normal distribution with common correlation, we have numerically shown
improvements of the critical values of the improved procedures over the aforementioned procedures.

To use the fixed sequence methods, prior knowledge of the ordering of the tested hypotheses is required. When the
ordering is completely correct, i.e., the false null hypotheses are ordered ahead of the true null hypotheses, even the
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Table 5. Critical values (percentage change) of Procedure A3 and Procedure B3 with n = 5.

Procedure A3
HHH

HHs
t 0 1 2 3 4

0 0.018 0.014 0.01 0.006 0.002
1 0.0185 0.0145 0.0105 0.0065 -
2 0.0207 0.0167 0.0127 - -
3 0.027 0.023 - - -
4 0.05 - - - -

Procedure B3 with ρ = 0.5
H
HHHHs

t 0 1 2 3 4

0 0.02 0.016 0.012 0.008 0.004
(11.1%) (14.3%) (20%) (33.3%) (100%)

1 0.02 0.016 0.012 0.008 -
(8.1%) (10.3%) (14.3%) (23.1%)

2 0.0222 0.0182 0.0142 - -
(7.2%) (9.00%) (11.8%)

3 0.0289 0.0249 - - -
(7.0%) (8.3%)

4 0.05 - - - -
(0.0%)

Procedure B3 with ρ = 0.8
HH

HHHs
t 0 1 2 3 4

0 0.0219 0.0179 0.0139 0.0099 0.0059
(21.7%) (27.9%) (39.0%) (65.0%) (195.0%)

1 0.0232 0.0192 0.0152 0.0112 -
(25.4%) (32.4%) (44.8%) (72.3%)

2 0.0264 0.0223 0.0184 - -
(27.5%) (33.5%) (44.9%)

3 0.0333 0.0293 - - -
(23.3%) (27.4%)

4 0.05 - - - -
(0.0%)

conventional fixed sequence procedure, which does not allow any acceptance, has a natural advantage over the existing
p-value based stepwise FWER controlling procedures such as the Holm and Hochberg procedures. However, when the
ordering is not completely correct, the conventional fixed sequence procedure usually loses its edge over those stepwise
procedures, whereas our proposed fixed sequence procedures can still perform well. Of course, when the ordering
information is completely incorrect, our proposed fixed sequence procedures no longer have the advantage over those
p-value based stepwise procedures. Therefore, a natural extension might be to use a combination of the a-priori ordering
information and the p-values to order the hypotheses to be tested and then develop FWER controlling procedures based
on such ordering. Moreover, it was pointed out in Section 5 that the proposed procedures are not α-exhaustive, and thus it
is possible to develop newer procedures that are more powerful than the proposed procedures.
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Appendix

A.1 Proof of Proposition 1

For any configuration P , let E1 and E2 respectively denote the events of no false rejection under configurations P and
DOP for a generalized fixed sequence procedure.E1 andE2 both can be expressed as set functions in terms of the p-values,

E1(P1, · · · , Pn) =

n0⋂
j=1

{
P̂j > α(ŝj−1, t̂j−1)

}
(13)

and

E2(P1, · · · , Pn) =

n0⋂
j=1

{
P̂j > α(s̃j−1, t̃j−1)

}
, (14)

where ŝj (or s̃j) and t̂j (or t̃j) are the total numbers of rejections and acceptances after testing Ĥj under configuration P
(or DOP ), respectively.

It is easy to see that when event E2 occurs, s̃j = n1 and t̃j = j for any j = 1, . . . , n0. Thus, if both events E1 and E2

occur, we have ŝj ≤ n1 and t̂j ≥ j and hence α(ŝj−1, t̂j−1) ≤ α(s̃j−1, t̃j−1) by using the fact that α(s, t) is increasing in
s and decreasing in t.

Thus, we have

E2(P1, · · · , Pn) ⊆ E1(P1, · · · , Pn) (15)

and hence

FWERP ≤ 1− Pr {E1(P1, · · · , Pn)} ≤ 1− Pr {E2(P1, · · · , Pn)} = FWERDOP
, (16)

the desired result is proved. �

A.2 Proof of Theorem 1.(ii)

Considering a Dirac-Ordered configuration where the number of false null hypotheses is n1 = s∗, the false null p-values
P̃i = 0 with probability 1 for i = 1, . . . , n1, and the order of the hypotheses is H̃1, · · · , H̃n1

, Ĥ1, · · · , Ĥn0
. Thus,

n0∑
j=1

α(n1, j − 1) =

n−s∗−1∑
j=0

α(s∗, j) = α. (17)

In the following, we will specify the joint distribution of the true null p-values, P̂1, . . . , P̂n0
, such that P̂i ∼ U(0, 1) and

the FWER of the generalized fixed sequence procedure under the aforementioned Dirac-Ordered configuration is exactly
α. Let P̂1 ∼ U(0, 1) and for j = 2, . . . , n0, let

P̂j ∼

U
(

0, 1−
∑j−1

i=1 α(n1, i− 1)
)
, if P̂i > α(n1, i− 1) for i = 1, . . . , j,

U
(

1−
∑j−1

i=1 α(n1, i− 1), 1
)
, otherwise.

(18)

Note that by (3), we have α(n1, j − 1) ≤ 1−
∑j−1

i=1 α(n1, i− 1) for j = 1, . . . , n0. Thus, when event {P̂j ≤ α(n1, j − 1)}
occurs, event

⋂j−1
i=1{P̂i > α(n1, i− 1)} occurs with probability 1. Hence, we have

Pr
{
P̂1 > α(n1, 0), . . . , P̂j−1 > α(n1, j − 2), P̂j ≤ α(n1, j − 1)

}
= Pr

{
P̂j ≤ α(n1, j − 1)

}
. (19)
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In the following, we use mathematical induction to show that P̂j ∼ U(0, 1) for j = 1, . . . , n0. Trivially, P̂1 ∼ U(0, 1).
Assume P̂i ∼ U(0, 1) for i = 1, . . . , j − 1. Thus,

Pr

{
j−1⋂
i=1

{
P̂i > α(n1, i− 1)

}}
= 1− Pr

{
j−1⋃
i=1

{
P̂i ≤ α(n1, i− 1)

}}

= 1−
j−1∑
i=1

Pr
{
P̂1 > α(n1, 0), . . . , P̂i−1 > α(n1, i− 2), P̂i ≤ α(n1, i− 1)

}
= 1−

j−1∑
i=1

Pr
{
P̂i ≤ α(n1, i− 1)

}
= 1−

j−1∑
i=1

α(n1, i− 1). (20)

The third equality follows from (19) and the last one follows from the assumption of P̂i ∼ U(0, 1) for i = 1, . . . , j − 1.
For 0 ≤ u ≤ 1−

∑j−1
i=1 α(n1, j − 1), by (18) and (20), we have

Pr
{
P̂j ≤ u

}
= Pr

{
P̂j ≤ u

∣∣∣ j−1⋂
i=1

{
P̂i > α(n1, i− 1)

}}
Pr

{
j−1⋂
i=1

{
P̂i > α(n1, i− 1)

}}

=
u

1−
∑j−1

i=1 α(n1, i− 1)
Pr

{
j−1⋂
i=1

{
P̂i > α(n1, i− 1)

}}
= u. (21)

For 1−
∑j−1

i=1 α(n1, i− 1) < u ≤ 1, similarly, by (18) and (20), we have

Pr
{
P̂j ≤ u

}
= Pr

{
P̂j ≤ u

∣∣∣ j−1⋂
i=1

{
P̂i > α(n1, i− 1)

}}
Pr

{
j−1⋂
i=1

{
P̂i > α(n1, i− 1)

}}

+Pr

{
P̂j ≤ u

∣∣∣ j−1⋃
i=1

{
P̂i ≤ α(n1, i− 1)

}}(
1− Pr

{
j−1⋂
i=1

{
P̂i > α(n1, i− 1)

}})

= Pr

{
j−1⋂
i=1

{
P̂i > α(n1, i− 1)

}}

+
u− (1−

∑j−1
i=1 α(n1, i− 1))∑j−1

i=1 α(n1, i− 1)

(
1− Pr

{
j−1⋂
i=1

{
P̂i > α(n1, i− 1)

}})
= u. (22)

Combining (21) and (22), we have that P̂j ∼ U(0, 1) for j = 1, . . . , n0.
Finally, under the aforementioned Dirac-Ordered configuration specified as above, we have

FWER =

n0∑
j=1

Pr
{
P̂1 > α(n1, 0), . . . , P̂j−1 > α(n1, j − 2), P̂j ≤ α(n1, j − 1)

}
=

n0∑
j=1

Pr
{
P̂j ≤ α(n1, j − 1)

}
=

n0∑
j=1

α(n1, j − 1) = α.

The second equality follows from (19), the third follows from P̂j ∼ U(0, 1), and the last one follows from (17). �

A.3 Proof of Theorem 2

To prove these two procedures are equivalent, we only need to prove the following two results for any individual hypothesis
Hi, i = 1, . . . , n:
Result 1. If Hi is accepted by the generalized fixed sequence procedure, then it is also accepted by the closed testing
procedure.
Result 2. If Hi is accepted by the closed testing procedure, then it is also accepted by the generalized fixed sequence
procedure.
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Proof of Result 1. Let I = {j : Pj > α(sj−1, tj−1)} and consider H̃i =
⋂
j∈I Hj . Since Hi is accepted by the generalized

fixed sequence procedure, Pi > α(si−1, ti−1) and thus Hi is contained in H̃i. Note that

si−1 =

i−1∑
j=1

I{Pj ≤ α(sj−1, tj−1)} =

i−1∑
j=1

I{j /∈ I} = s∗i−1.

Similarly, we have t∗i−1 = ti−1. Thus, α(s∗i−1, t
∗
i−1) = α(si−1, ti−1) and Pi > α(s∗i−1, t

∗
i−1). Therefore, H̃i is not rejected

by the local test and thus Hi is accepted by the closed testing procedure.
Proof of Result 2. Since Hi is accepted by the closed testing procedure, thus there exists an index set I with i ∈ I such
that the intersection hypothesis,

⋂
j∈I Hj is not rejected by the corresponding local test. Thus, for any j ∈ I , we have

Pj > α(s∗j−1, t
∗
j−1). In the following, we use mathematical induction to prove that s∗j−1 ≥ sj−1 and t∗j−1 ≤ tj−1 for each

j = 1, . . . , n. It is easy to see that the result holds for j = 1. Assume that the result holds for j = k. We prove that the
result also holds for j = k + 1. Note that

s∗k =

k∑
j=1

I{j /∈ I} ≥
k∑
j=1

I{Pj ≤ α(s∗j−1, t
∗
j−1)} ≥

k∑
j=1

I{Pj ≤ α(sj−1, tj−1)} = sk.

The first inequality follows from the fact that Pj ≤ α(s∗j−1, t
∗
j−1) implies j /∈ I for each j = 1, . . . , n and the second

follows from the assumption of induction. Similarly, we can prove t∗k ≤ tk. Hence, this result holds by induction. Thus,
Pi > α(s∗i−1, t

∗
i−1) ≥ α(si−1, ti−1) follows due to monotonicity of the critical value function. Therefore, Hi is accepted

by the generalized fixed sequence procedure. �

A.4 Proof of Theorem 3

Based on Proposition 1, it is enough to show that for any configuration P , the FWER of the generalized fixed sequence
procedure under the corresponding Dirac-Ordered configuration is less than or equal to α. With the probabilities evaluated
under the Dirac-Ordered configuration, we have

FWERDOP
= Pr{P̂1 ≤ α(n1, 0)}

+

n0−1∑
t=1

Pr{P̂1 > α(n1, 0), · · · , P̂t > α(n1, t− 1), P̂t+1 ≤ α(n1, t)}

≤ Pr{P̂1 ≤ α(n1, 0)}+

n0−1∑
t=1

Pr{P̂t > α(n1, t− 1), P̂t+1 ≤ α(n1, t)}

=

n0−1∑
t=0

Pr{P̂t+1 ≤ α(n1, t)} −
n0−1∑
t=1

Pr{P̂t ≤ α(n1, t− 1), P̂t+1 ≤ α(n1, t)}

≤
n0−1∑
t=0

α(n1, t)−
n0−1∑
t=1

F (α(n1, t− 1), α(n1, t))

≤
n−n1−1∑
t=0

α(n1, t)−
n−n1−1∑
t=1

F (α(n1, t− 1), α(n1, t)) ≤ α. (23)

The second inequality follows from Assumption 1 and the last one follows from (9). �
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