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Abstract: Procedures controlling error rates measuring at least k false rejections, instead of

at least one, are often desired while testing a large number of hypotheses. The k-FWER,

probability of at least k false rejections, is such an error rate that has been introduced, and

procedures controlling it have been proposed. Recently, Sarkar (2007) introduced an alterna-

tive, less conservative notion of error rate, the k-FDR, generalizing the usual notion of false

discovery rate (FDR), and proposed a procedure controlling it based on the k-dimensional

joint distributions of the null p-values and assuming MTP2 (multivariate totally positive of

order two) positive dependence among all the p-values. In this article, we assume a less re-

strictive form of positive dependence than MTP2, and develop alternative procedures based

only on the bivariate distributions of the null p-values.

Key words and phrases: Arbitrary dependence, average power, clumpy dependence, gener-

alized FDR, multiple hypothesis testing, positive regression dependence on subset, stepwise

procedure.

1 Introduction

Often in practice when a large number of null hypotheses are being simultaneously tested,

one is willing to tolerate a few false rejections but wants not to have too many of them,

say k or more. The k-FWER, probability of falsely rejecting at least k null hypotheses,

is an appropriate error rate in this context. A number of procedures controlling it have

been proposed in the literature; see, for example, Sarkar (2008) for references. Sarkar

(2007) recently proposed using the k-FDR, the expected ratio of k or more false rejections

to the total number of rejections, which generalizes the false discovery rate (FDR) of
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Benjamini and Hochberg (BH, 1995). He developed two k-FDR procedures utilizing the

kth order joint null distributions of the p-values, one under independence or the MTP2

positive dependence (Karlin and Rinott (1980)), generalizing the BH FDR procedure,

and the other under any form of dependence among the p-values, generalizing the FDR

procedure of Benjamini and Yekutieli (BY, 2001). Sarkar and Guo (2009) also considered

a mixture model involving independent p-values. They provided a simple, intuitive upper

bound to the k-FDR, based on which they introduced conservative point estimates of the

k-FDR and through them, newer stepup k-FDR procedures. The k-FDR control of these

procedures was proved for independent test statistics.

Here we go back to the work of Sarkar (2007) and develop alternative k-FDR proce-

dures relaxing both the MTP2 condition and the use of the k-dimensional joint distribu-

tions of the null p-values. More specifically, we assume the positive dependence condition,

a weaker version of the MTP2, under which a stepwise procedure, stepdown or stepup,

with the critical values of the BH procedure (to be simply referred to as the BH step-

wise procedure) known to control the FDR (Benjamini and Yekutieli (2001) and Sarkar

(2002)), and generalize this BH stepwise procedure to a k-FDR stepwise procedure based

only on the bivariate distributions of the null p-values. The positive dependence condi-

tion assumed is slightly weaker than considered originally in the above two papers. We

offer two such generalizations in the positive dependence case, one more conservative than

the other but easier to implement, both reducing to the same procedure under indepen-

dence. Often in practice, as in microarray analyses or fMRI studies, the p-values tend to

be clumpy dependent in the sense that they are more positively dependent within small

groups, strongly or weakly, but are independent between these groups. Two alternative

stepwise procedures controlling the k-FDR are presented in this case.

We numerically compare each of our proposed k-FDR stepwise procedures with the

corresponding BH stepwise procedure, knowing that an FDR procedure can also serve as a

k-FDR procedure, albeit more conservatively, and that the minimum we expect of a k-FDR
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procedure is to perform better than the corresponding FDR procedure. For appropriately

chosen values of k, the proposed k-FDR stepwise procedures are seen to be uniformly more

powerful than the corresponding BH stepwise procedure under independence or a weak

positive dependence among the p-values. With increasing positive dependence among the

p-values, our k-FDR stepwise procedures unfortunately lose their edges over the corre-

sponding FDR procedure. However, in case of clumpy dependence among the p-values,

the proposed k-FDR procedures are seen to improve their performances, maintaining their

power dominance over the corresponding BH stepwise procedure even under high positive

dependence among the p-values.

An alternative stepdown k-FDR procedure is proposed that performs better than the

stepdown part of the above stepwise procedure under independence. Finally, we develop

a generalized BY procedure that uniformly outperforms the original BY procedure as a

k-FDR procedure under any form of dependence.

The paper is organized as follows. With some background information and result given

in Section 2, we present the developments of our k-FDR procedures under positive depen-

dence, clumpy dependence, and independence situations in Section 3. The findings from

some numerical studies on the performances of our procedures are given in Section 4. Sec-

tion 5 deals with the proposed k-FDR procedure under arbitrary dependence. Most of the

technical details and a graph showing the power performance of the above alternative step-

down procedure are placed as a Web Appendix in http://www.stat.sinica.edu.tw/statistica.

2 Preliminaries

Let H1, . . . ,Hn be the null hypotheses being simultaneously tested using the correspond-

ing p-values P1, . . . Pn, respectively. Let P(1) ≤ · · · ≤ P(n) be the ordered p-values and

H(1), . . . ,H(n) the associated null hypotheses. Then, given a non-decreasing set of critical

constants 0 < α1 ≤ · · · ≤ αn < 1, a stepdown multiple testing procedure rejects the

set of null hypotheses {H(i), i ≤ i∗SD} and accepts the rest, where i∗SD = max{i : P(j) ≤
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αj ∀ j ≤ i} if the maximum exists, otherwise it accepts all the null hypotheses. A stepup

procedure, on the other hand, rejects the set {H(i), i ≤ i∗SU} and accepts the rest, where

i∗SU = max{i : P(i) ≤ αi} if the maximum exists, otherwise it accepts all the null hypothe-

ses. A stepwise (stepdown or stepup) procedure with the same constant is referred to as

a single-step procedure.

The constants in a stepwise procedure are determined subject to the control at a

pre-specified level α of a suitable error rate. With R and V denoting, respectively, the

total numbers of rejected and falsely rejected null hypotheses, the k-FDR is defined as

k-FDR = E (k-FDP) , where k-FDP = V/R if V ≥ k, and = 0 otherwise (Sarkar

(2007)). The k-FDR is the expected ratio of k or more false rejections to the total number

of rejections, reducing to the original FDR when k = 1. It is a less conservative notion

of error rate than the FDR, as k-FDR ≤ FDR. Using it when one is willing to control at

least k false rejections, rather than at least one, is a natural generalization of the idea of

using the k-FWER = P{V ≥ k} instead of the FWER = P{V ≥ 1}.
The following lemma, with proof given in the Web Appendix, is key to developing

the k-FDR procedures. We assume that n0 is the number of true null hypotheses and

P̂1, . . . , P̂n0 are the corresponding p-values.

Lemma 2.1 Given a stepwise procedure involving P1, . . . , Pn and the critical values 0 <

α1 ≤ · · · ≤ αn < 1, consider the corresponding stepwise procedure in terms of the null

p-values P̂1, . . . , P̂n0 and the critical values αn−n0+1 ≤ · · · ≤ αn. Let Vn be the number

of false rejections in the stepwise procedure and R̂n0 be the number of rejections in the

stepwise procedure involving the null p-values. Then, {Vn ≥ k} ⊆
{

R̂n0 ≥ k
}

for any

fixed k ≤ n0 ≤ n.

Remark 2.1 With Lemma 2.1, construction of a stepwise procedure providing a control

of the k-FWER at α basically reduces to that of finding the constants in that procedure

guaranteeing the inequality P{R̂n0 ≥ k} ≤ α for all k ≤ n0 ≤ n. It unifies the arguments

used separately towards constructing stepdown k-FWER and stepup k-FWER procedures
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in Lehmann and Romano (2005) and Romano and Shaikh (2006).

We assume that each Pi ∼ U(0, 1) when the corresponding Hi is true and, jointly, the

p-values are positively dependent in the sense that

E
{

φ(P1, . . . , Pn) | P̂i ≤ u
}

↑ u ∈ (0, 1), (1)

for each P̂i and any increasing (coordinatewise) function φ. This is slightly weaker than

E
{

φ(P1, . . . , Pn) | P̂i = u
}
↑ u ∈ (0, 1), the positive regression dependence on subset

(PRDS) condition considered in Benjamini and Yekutieli (2001) and Sarkar (2002). A

proof of the k-FDR control of our proposed procedure becomes easier when the present

form of positive dependence is applied directly, even though relaxing the PRDS condition

to the present form may not be of much importance from a practical standpoint. This

condition is satisfied by the p-values arising in a number of multiple testing situations. In

particular, it is satisfied by the p-values corresponding to multivariate normal test statistics

with a common non-negative correlation as is considered in our numerical calculations.

We assume that k is pre-fixed, though it is important to note that a determination

of it statistically when it is not given is an important issue; see Sarkar and Guo (2008)

for a discussion. Since the k-FDR is 0, and hence trivially controlled, for any procedure

if n0 < k, we assume throughout this paper that k ≤ n0 ≤ n.

3 k-FDR procedures under positive dependence or indepen-

dence

In this section, we develop stepwise procedures that control the k-FDR for k ≥ 2 using

bivariate distributions of the null p-values, assumed known. To this end, we have the

following theorem whose proof is in the Web Appendix.

Theorem 3.1 Consider a stepwise procedure with the critical values given by αi = {i ∨
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k}αk/k, i = 1, . . . , n, for some fixed 2 ≤ k ≤ n and 0 < αk < 1. Then for p-values

satisfying (1) we have

k-FDR ≤ max
k≤n0≤n





1
k(k − 1)

n0∑

i=1

n0∑

j(6=i)=1

Hij

(
αk,

(n− n0 + k)αk

k

)

 , (2)

where Hij(u, v) = P{P̂i ≤ u, P̂j ≤ v}, i 6= j, are the bivariate cdf’s of the null p-values.

We can apply the inequality P{P̂i ≤ u | P̂j ≤ v′} ≤ {P̂i ≤ u | P̂j ≤ v}, any v ≤ v′,

that characterizes the positive dependence property shared by every pair (P̂i, P̂j), to the

right-hand side in (2) to obtain a more relaxed, but easier to utilize, upper bound to the

k-FDR than the one in Theorem 3.1.

Corollary 3.1 For the stepwise procedure in Theorem 3.1, and under the same conditions,

for k ≥ 2,

k-FDR ≤ max
k≤n0≤n





n− n0 + k

k2(k − 1)

n0∑

i=1

n0∑

j(6=i)=1

Hij (αk, αk)



 . (3)

The k-FDR of the stepwise procedure in Theorem 3.1 can be controlled at α by

equating the upper bound in (2) or (3) to α and solving the resulting equation for αk.

Of course one needs to know the bivariate distributions of all pairs of null p-values. For

instance, when the null p-values are exchangeable with H as the common and known

bivariate cdf, the αk can be obtained from

max
k≤n0≤n

{
n0(n0 − 1)
k(k − 1)

H

(
αk,

(n− n0 + k)αk

k

)}
= α (4)

or, can be obtained more conservatively by solving

D(k, n)H (αk, αk)
k2(k − 1)

= α , with D(k, n) = max
k≤n0≤n

{n0(n0 − 1)(n− n0 + k)} . (5)
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Often in practice, as in microarray analysis and fMRI studies, the p-values tend to be

clumpy dependent in the sense that they are more (positively) dependent within groups

than between groups. Suppose that there are g independent groups and, for each i =

1, · · · , n0, Ji is the set of indices of null hypotheses in the group containing the P̂i. Clearly,

Ji ≡ Jj if i and j belong to the same group. The upper bounds in Theorem 3.1 and

Corollary 3.1 can be expressed, respectively, in this case as

k-FDR ≤ max
k≤n0≤n





n− n0 + k

k2(k − 1)

n0∑

i=1

∑

j(6=i)∈Ji[
k

n− n0 + k
Hij

(
αk,

(n− n0 + k)αk

k

)
+ (n0 − |Ji|)α2

k

]}
, (6)

k-FDR ≤ max
k≤n0≤n





n− n0 + k

k2(k − 1)

n0∑

i=1

∑

j(6=i)∈Ji

[
Hij (αk, αk) + (n0 − |Ji|)α2

k

]


 , (7)

where |Ji| is the cardinality of Ji. Stepwise procedures controlling the k-FDR in case of

clumpy dependence can then be constructed by equating the upper bound in (6) or (7) to

α and solving for αk.

When the p-values are independent, we have the following.

Proposition 3.1 A stepwise procedure with the critical values αi = (i ∨ k)β/n, i =

1, . . . , n, with β = n
√

(k − 1)α/D(k, n), controls the k-FDR at α when the p-values are

independent.

In fact, an alternative to the stepdown part of the procedure in Proposition 3.1 can

be obtained under independence. Consider a stepdown procedure with critical values

αi = {i ∨ k}β/n, i = 1, . . . , n, for a fixed 0 < β < 1. For this procedure, we have

k-FDR ≤ n0β

n
P {Rn0−1 ≥ k − 1} , (8)

7



as shown in the Web Appendix, where Rn0−1 is the number of rejections in the stepdown

procedure based on P̂(1):n0−1 ≤ · · · ≤ P̂(n0−1):n0−1, the ordered versions of any n0 − 1 of

the n0 null p-values, and the corresponding critical values αn−n0+2 ≤ · · · ≤ αn. Let

Gk,n(u) = P
{
U(k) ≤ u

}
=

n∑

j=k




n

j


uj(1− u)n−j ,

the cdf of the kth order statistic based on n iid U(0, 1). Then, since

P {Rn0−1 ≥ k − 1} = P
{

P̂1:n0−1 ≤ αn−n0+2, . . . , P̂(k−1):n0−1 ≤ αn−n0+k

}

≤ Gk−1,n0−1 (αn−n0+k) ,

we have the following.

Proposition 3.2 Consider a stepdown procedure with the critical values αi = (i∨ k)β/n,

i = 1, . . . , n, where

β

n
max

k≤n0≤n

{
n0Gk−1,n0−1

(
(n− n0 + k)β

n

)}
= α . (9)

The k-FDR is controlled at α when the p-values are independent.

We show numerically in the next section that the stepdown procedure in Proposi-

tion 3.2 indeed performs better than the stepdown procedure in Proposition 3.1 under

independence.

Remark 3.1 In a stepwise procedure providing a control of the k-FDR, the first k − 1

critical values can be chosen arbitrarily without affecting the k-FDR, as in the case of

a k-FWER stepwise procedure (Lehmann and Romano (2005) and Sarkar (2007, 2008)).

Nevertheless, as argued in those papers, keeping these critical values constant at the

kth critical value would be the best option. This is what we do in this paper. Thus,

even though one can use the stepwise BH procedure with the critical values αi = iα/n,
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i = 1, . . . , n, as a k-FDR procedure, one may consider improving it by modifying its critical

values to αi = (i ∨ k)α/n, i = 1, . . . , n; we call this the k-FDR version of the stepwise

BH procedure. Of course, this k-FDR BH procedure does not take full advantage of the

notion of k-FDR in that its critical values are determined directly using a formula for the

the FDR, not the k-FDR, and hence can potentially be improved. It is this k-FDR version

of stepwise BH procedure against which we numerically investigate the performances of

our proposed k-FDR procedures in the next section.

4 Simulations

We present in this section the results of simulation studies we conducted to investigate

the performances of our k-FDR procedures developed under different types of dependence

among the p-values – positive dependence, clumpy dependence, and independence. These

studies were geared toward comparing our procedures with the k-FDR version of the

BH stepwise procedure in terms of the average power, the expected proportion of false

null hypotheses that are rejected. For the positive dependence case, our procedures are

the ones that are based on αk determined from the upper bound in Theorem 3.1, or its

corollary. For the clumpy dependence case, these are based on the αk in (6) or (7). In the

independence case, we focused on the stepdown procedure in Proposition 3.2 to see how

it actually performs in such a case as an alternative to the one in Proposition 3.1.

In all these studies, we chose n = 200 and k = 8, and generated the p-values from

multivariate normal test statistics. These statistics have a common non-negative correla-

tion ρ in the case of positive dependence, and are broken up into g independent groups

with a common non-negative correlation ρ within each group in the case of clumpy depen-

dence. For the positive and clumpy dependence cases, we decided to present the power

comparisons for different degrees of dependence. However, since we had to numerically

compute the critical values of our procedures for this (n, k) before proceeding to simulate

their average powers, we also decided to present these critical values along with those for
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a variety of other choices of both n and k. This provides us a more direct comparisons

between our procedures and the k-FDR version of the BH stepwise procedure. In the

independence case, however, we consider only the average power for comparison.

We computed β, where αk = kβ/n, from the upper bounds in Theorem 3.1 and

its corollary, with the p-values assumed to be generated from multivariate normal test

statistics with a common non-negative correlation ρ. Values of β for some (n, k, ρ) and

α = 0.05 are presented in Table 1, where β ≡ β1 = nαk/k with αk in (2) and β ≡ β2 =

nαk/k with αk in (3). Comparing the values of both β1 and β2 directly with α = 0.05,

we notice that when the p-values are independent or weakly but positively dependent

our proposed k-FDR stepwise procedures are based on quite large critical values, and

hence quite powerful relative to the k-FDR version of the corresponding stepwise BH

procedure. However, as the p-values become more and more positively dependent, our

procedures lose their edge over this k-FDR version of stepwise BH procedure. To see the

extent of power improvement our k-FDR procedures offer over the k-FDR version of the

BH procedure in case of weakly but positively dependent p-values, we carried out further

numerical investigations in terms of the average power, but this time considering only

stepup procedures.

Figure 1 presents a comparison of the simulated average powers of the stepup proce-

dures corresponding to β1 and β2, labelled k-FDR SU 1 and k-FDR SU 2, respectively,

and the k-FDR version of the BH procedure, labelled k-FDR BH. The simulated average

power for each procedure was obtained by (i) generating n = 200 dependent normal ran-

dom variables N(µi, 1), i = 1, · · · , n, with a common correlation ρ = 0.05, 0.1, 0.15 or 0.2,

and with n1 of the 200 µi’s being equal to d = 2 and the rest 0, (ii) applying the corre-

sponding stepup procedure with k = 8 to the generated data to test Hi : µi = 0 against

Ki : µi 6= 0 simultaneously for i = 1, . . . , 200 at α = 0.05, and (iii) repeating steps (i) and

(ii) 1,000 times before observing the proportion of the n1 false Hi’s that were correctly

declared significant. The values of β1 and β2 for (n, k) = (200, 8) and ρ = 0.05, 0.1, 0.15
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Table 1: Values of β1 and β2 for different (n, k) and non-negative ρ with α = 0.05.

ρ = 0.0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

n k β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

50 2 0.079 0.079 0.066 0.062 0.055 0.050 0.046 0.039 0.038 0.031

200 8 0.103 0.103 0.087 0.083 0.074 0.066 0.063 0.053 0.053 0.043

1000 40 0.108 0.0108 0.092 0.087 0.078 0.070 0.066 0.056 0.056 0.045

5000 200 0.109 0.109 0.093 0.088 0.079 0.071 0.067 0.057 0.057 0.046

10000 400 0.109 0.109 0.093 0.088 0.079 0.071 0.067 0.057 0.057 0.046

and 0.2 were taken from Table 1. As seen from this figure, our proposed k-FDR stepup

procedures are uniformly more powerful than the BH stepup procedure under weak de-

pendence, with the power difference getting significantly higher with increasing numbers

of false null hypotheses.

We did similar kind of calculations for the clumpy dependence case. Table 2 presents

the values of β1 = nαk/k with αk in (6) and β2 = nαk/k with αk in (7) for some values

of (n, k, g, ρ) and α = 0.05. This time, our stepwise procedures are seen to uniformly

dominate the corresponding stepwise BH procedure even for positive correlations as large

as 0.5. For correlation larger than 0.5, while the procedure corresponding to β1 continues

to uniformly dominate the corresponding stepwise BH procedure, the procedure corre-

sponding to β2 works well only when the number of null hypotheses is large. A further

comparison in terms of the average power is presented in Figure 2, having simulated these

powers for (n, k, g) = (200, 8, 20), ρ = 0, 0.2, 0.5 and 0.8, and α = 0.05. In this graph, the

stepup procedures corresponding to β1 and β2 and the k-FDR version of the BH procedure

are labelled k-FDR SU 1, k-FDR SU 2, and k-FDR BH, respectively. Figure 2 reinforces

our previous observations regarding the relative performances of these procedures made
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Table 2: Values of β1 and β2 for different (n, k, g) and non-negative ρ under clumpy

dependence with α = 0.05.

ρ = 0.0 ρ = 0.2 ρ = 0.5 ρ = 0.8

n k g β1 β2 β1 β2 β1 β2 β1 β2

200 8 20 0.103 0.103 0.096 0.092 0.079 0.058 0.054 0.022

500 20 25 0.107 0.107 0.101 0.098 0.086 0.065 0.063 0.026

1000 40 40 0.108 0.108 0.105 0.102 0.094 0.078 0.076 0.038

5000 200 100 0.109 0.109 0.108 0.107 0.103 0.095 0.095 0.066

10000 400 100 0.109 0.109 0.108 0.107 0.103 0.095 0.095 0.066

from Table 2.

Lastly, we repeated our simulation for the independence case. The average powers

were simulated for the procedures in Propositions 3.2 and 3.1, and the k-FDR version of the

stepdown BH procedure, with (n, k, ρ) = (200, 5, 0) and α = 0.05. These are presented

in Web Figure 1, having labelled these procedures k-FDR SD 1, k-FDR SD 2, and k-

FDR BH, respectively. We notice that the stepdown procedure in Proposition 3.2 indeed

performs much better than the other two stepdown procedures under independence.

5 k-FDR procedure under arbitrary dependence

We now consider developing a stepup procedure, with a control of the k-FDR under any

form of dependence of the p-values, that will uniformly dominate the BY procedure with

the critical values αi = iα/n
∑n

j=1
1
j , i = 1, . . . , n, or its modification obtained by keeping

the first k − 1 critical values the same as the kth one. To that end, we have the following

theorem, proved in the Web Appendix.
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Theorem 5.1 A stepup procedure with the critical values

αi =
(i ∨ k)α

n
{

1 +
∑n

j=k+1
1
j

} , i = 1, . . . , n,

controls the k-FDR at α.
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Figure 1: Power of two k-FDR stepup procedures in the case of positive dependence with
parameters n = 200, k = 8, d = 2 and α = 0.05.
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Figure 2: Power of two k-FDR stepup procedures in the case of clumpy dependence with
parameters n = 200, g = 20, k = 8, d = 2 and α = 0.05.
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