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a b s t r a c t

The idea of modifying, and potentially improving, classical multiple testing methods

controlling the familywise error rate (FWER) via an estimate of the unknown number of

true null hypotheses has been around for a long time without a formal answer to the

question whether or not such adaptive methods ultimately maintain the strong control

of FWER, until Finner and Gontscharuk (2009) and Guo (2009) have offered some

answers. A class of adaptive Bonferroni and S̆id�ak methods larger than considered in

those papers is introduced, with the FWER control now proved under a weaker

distributional setup. Numerical results show that there are versions of adaptive

Bonferroni and S̆id�ak methods that can perform better under certain positive depen-

dence situations than those previously considered. A different adaptive Holm method

and its stepup analog, referred to as an adaptive Hochberg method, are also introduced,

and their FWER control is proved asymptotically, as in those papers. These adaptive

Holm and Hochberg methods are numerically seen to often outperform the previously

considered adaptive Holm method.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The familywise error rate (FWER), which is the probability of at least one false rejection, is frequently chosen as an
overall measure of Type I error to control while testing multiple hypotheses. Several multiple testing methods controlling
(strongly) the FWER are available in the literature, such as the Bonferroni, Holm (1979), and Hochberg (1988) methods
(see, Hochberg and Tamhane, 1987; Hsu, 1996). Among these, the Bonferroni is one of the most popular, since its FWER
control is guaranteed without any requirement for dependence structure of the p-values due to the Bonferroni inequality.
It is a single-step method. The Holm is a stepdown method that sequentially applies the Bonferroni method. The Hochberg
is the stepup version of the Holm method; that is, it is the stepup method with the same set of critical values as Holm’s,
although its FWER control is validated by the Simes inequality, not the Bonferroni inequality, of course requiring certain
types of dependence structure of the p-values (Simes, 1986; Sarkar, 1998, 2008a; Sarkar and Chang, 1997).

Let Hi, i¼ 1, . . . ,n, be the n null hypotheses to be tested based on their respective p-values Pi, i¼ 1, . . . ,n. Then, the
Bonferroni method rejects Hi if Pira=n. However, if n0, the number of true null hypotheses, were known, one would have
considered the cut-off point a=n0, instead of a=n. This would provide a more powerful method of controlling the FWER
than the original Bonferroni method. Since n0 is typically unknown, a suitable estimate of it could be used in a=n0, and thus
the cut-off point of the Bonferroni method could be modified. This is the general idea towards developing a potentially
ll rights reserved.
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improved version of the Bonferroni method, which was initially presented by Schweder and Spjøtvoll (1982). Hochberg
and Benjamini (1990) referred to such a modification of the Bonferroni method as an adaptive Bonferroni method when
the estimate of n0 is obtained from the existing set of p-values. They proposed an adaptive Bonferroni method using an
estimate of n0 that is different from Schweder and Spjøtvoll (1982). They also proposed an adaptive Holm method, which is
a stepdown implementation of their adaptive Bonferroni method, and an adaptive Hochberg method, which is the stepup
analog of the adaptive Holm method.

Whether or not these adaptive procedures ultimately control the FWER has long been an open problem until Finner and
Gontscharuk (2009) and Guo (2009) have recently offered some answers. With RðlÞ ¼

Pn
i ¼ 1 IðPirlÞ, the number of

p-values less than or equal to l, Finner and Gontscharuk (2009) have considered the following estimate of n0:

n̂0 ¼
n�RðlÞþk

1�l
, ð1Þ

with l 2 ð0,1Þ and k 2 R satisfying some restrictions depending on a and l, and referred to the resulting modification of
the Bonferroni method as a Bonferroni plug-in (BPI) test. Assuming that the p-values are independent and identically
distributed (iid) as U(0,1) when the corresponding null hypotheses are true, they theoretically established the strong FWER
control of BPI for kZ1 and numerically investigated this control for ko1. They eventually concentrated on the BPI
corresponding to

n̂0 ¼
n�RðlÞþ1

1�l
, ð2Þ

where l 2 ð0,1Þ, having checked numerically that the least conservative BPI that exists for a k slightly less than 1 is not
appreciably different from the BPI with k¼ 1. They also presented an appropriate stepdown implementation of the BPI,
a stepdown method based on the (random) critical values ĉ i ¼ a=minfn̂0,n�iþ1g, i¼ 1, . . . ,n, with n̂0 in (1). They
numerically noted that there are values of k41 for which this stepdown method can control the FWER, but such methods
may not have much power compared to just BPI, and proved that this stepdown method controls the FWER as n0-1

when k¼ 1.
Like Hochberg and Benjamini (1990), Guo (2009) referred to a modification of the Bonferroni method using an estimate

of n0 obtained from the existing data as an adaptive Bonferroni method. He considered only the estimates of n0 as in (2),
and a specific dependence model for the p-values that implies the iid U(0,1) distributional structure for the p-values when
the corresponding null hypotheses are true. For this adaptive Bonferroni method, he proved using an argument different
from Finner and Gontscharuk (2009) that the FWER is strongly controlled. He also presented a stepdown implementation
of this adaptive Bonferroni method, referring to it as an adaptive Holm method, which is slightly different from that of
Finner and Gontscharuk (2009), and a proof of its strong FWER control asymptotically as n0-1. His simulation studies
comparing the performances of adaptive Bonferroni method with adaptive Holm method and non-adaptive Bonferroni and
Holm methods provide similar conclusions as obtained by Finner and Gontscharuk (2009); that is, an adaptive Bonferroni
method performs better than its non-adaptive version, and even the usual Holm method, but its stepdown implementation
does not result in any significant power improvement.

The rationale behind adapting the Bonferroni method to data through an estimate of n0 is akin to that in modifying, and
hopefully improving, the false discovery rate (FDR) controlling method of Benjamini and Hochberg (1995), the so called BH
method. Several different estimates of n0, including (2), have been considered while constructing adaptive BH methods
(Benjamini et al., 2006; Blanchard and Roquain, 2009; Gavrilov et al., 2009; Sarkar, 2006, 2008b; Storey et al., 2004). These
adaptive BH methods have been shown to ultimately control the FDR under independence of the p-values. However, there
is numerical evidence that the method of Storey et al. (2004) that is based on (2) may often fail to provide a control of the
FDR under dependence (Benjamini et al., 2006; Romano et al., 2008). Interestingly, the same disturbing feature of the
estimate (2) holds when it is used to construct an adaptive Bonferroni method controlling the FWER, as noted by Finner
and Gontscharuk (2009, Fig. 6) with l¼ 0:5. On the other hand, there is numerical evidence that the adaptive BH method of
Benjamini et al. (2006) that is based on an estimate of n0 obtained by applying the BH method at an appropriate level can
control the FDR under positive dependence, at least under equicorrelated normal distributional setting (Benjamini et al.,
2006; Romano et al., 2008). This motivates our present work, to look into adaptive Bonferroni methods with FWER control
based on estimates other than (1) or (2), and including the one in Benjamini et al. (2006).

So, we consider in this paper a larger class of estimates of n0 than (1) by characterizing this class by a property shared
not only by (1), and hence (2), but also estimates close to that in Benjamini et al. (2006) and some other. We establish the
strong FWER control of adaptive Bonferroni methods corresponding to this larger class of n0 estimates under a
distributional setting that is slightly weaker than in Finner and Gontscharuk (2009) and Guo (2009), and thus generalize
the work in those papers on adaptive Bonferroni methods. More importantly, our numerical investigations show that
newer versions of adaptive Bonferroni methods proposed here do indeed perform better than the one based on (2) under
positive dependence.

Finner and Gontscharuk (2009) have also considered the S̆id�ak single-step method rejecting an Hi if Pir1�ð1�aÞ1=n,
and proved that an adaptive version of it obtained by replacing n by an estimate of n0 in (1), which they referred to as a
variant of BPI, strongly controls the FWER if the null p-values are iid as U(0,1). We also strengthen this result by proving
strong FWER control for the larger class of adaptive S̆id�ak methods that correspond to the present class of n0 estimates
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under our distributional setup weaker than in Finner and Gontscharuk (2009). As seen numerically, this class of adaptive
S̆id�ak methods is practically not much different in terms of FWER control and power from its Bonferroni counterparts.
Thus, like the Bonferroni method, we now have other versions of adaptive S̆id�ak method often performing better than the
one considered by Finner and Gontscharuk (2009) under positive dependence. We also strengthen the work of both Finner
and Gontscharuk (2009) and Guo (2009) related to adaptive Holm method. We consider an estimate of n0 other than (2)
and establish the strong FWER control when n0-1 not only for the corresponding adaptive version of the Holm method
but also for its stepup counterpart, calling it an adaptive Hochberg method. Our numerical calculations show that these
newer adaptive Holm and Hochberg methods often have better performance.

The rest of the paper is organized in the following seven sections, including an Appendix. Section 2 presents some
preliminaries; Section 3 gives the present class of n0 estimates; Sections 4 and 5 contain the proposed adaptive FWER
methods; Section 6 has the results of simulation studies; Section 7 provides some concluding remarks; and proofs of some
supporting lemmas are put in Appendix.

2. Preliminaries

In this section we present some background results. First, let us recall the definitions of stepdown and stepup methods.
Let Pð1Þr � � �rPðnÞ be the ordered versions of all the p-values, with Hð1Þ, . . . ,HðnÞ being their corresponding null hypotheses.
Then, given a non-decreasing set of constants 0oc1r � � �rcno1, a stepdown method with these constants as critical
values rejects the set of null hypotheses fHðiÞ,ir inSDg, where inSD ¼maxf1r irn : PðjÞrcj8jr ig, if the maximum exists,
otherwise accepts all the null hypotheses. A stepup method rejects the set of null hypotheses fHðiÞ,ir inSUg, where
inSU ¼maxf1r irn : PðiÞrcig, if the maximum exists, otherwise accepts all the null hypotheses. A stepdown or stepup
method with a common critical constant is referred to as a single-step method.

Since FWER¼0, and hence trivially controlled, if n0 ¼ 0, we will assume that n0Z1, and for notational convenience, the
p-values corresponding to the true null hypotheses will often be identified by ~Pi, i¼ 1, . . . ,n0, and their ordered versions by
~P ð1Þr � � �r ~P ðn0Þ. The adaptive methods in this paper are like the aforementioned stepwise methods with critical constants
replaced by some random quantities. For a single-step method with a common random rejection threshold ĉ for each
p-value, the FWER¼ prð ~P ð1Þr ĉÞ. For a stepwise method with random critical values 0o ĉ1r � � �r ĉno1, the FWER
satisfies, under any distributional setup, the inequality given in the following lemma.

Lemma 1. For stepdown method:

FWERrprð ~P ð1Þr ĉn�n0þ1Þ,

For stepup method:

FWERrpr
[n0

i ¼ 1

f ~P ðiÞr ĉn�n0þ ig

 !
:

Proof. Let VSD and VSU denote, respectively, the number of false rejections in the stepdown and stepup methods. Then, this
lemma follows easily by noting that

fVSD ¼ 0g+f ~P ð1Þ4 ĉn�n0þ1g,

fVSU ¼ 0g+
\n0

i ¼ 1

f ~P ðiÞ4 ĉn�n0þ ig: &

The only distributional assumption we make about the p-values in this paper is that they are independently distributed
when the corresponding null hypotheses are true, with each of these null p-values having a stochastically larger than
uniform distribution on [0,1]. In other words, we make the following assumption:

Assumption 1. ~Pi, i¼ 1, . . . ,n0, are independently distributed with prð ~PiruÞru for u 2 ½0,1� and i¼ 1, . . . ,n0.
This assumption is slightly less restrictive than the condition on the p-values in Finner and Gontscharuk (2009). They

considered exactly a uniform distribution on [0,1] for each of the independent null p-values. Also, ours is a more general
assumption than the conditional independence model assumed by Guo (2009).

The following proposition provides a foundation for constructing FWER controlling adaptive versions of single-step and
stepwise methods that will be discussed in the following sections.

Proposition 1. Consider a stepwise method with critical values 0o ĉ1r � � �r ĉno1 that are non-increasing functions of the p-
values. Then, under Assumption 1, the FWER of this methods satisfies the following inequality:

FWERrFWERDUðn0Þ,

where FWERDUðn0Þ is the FWER of this method under the Dirac-uniform configuration, that is, when the p-values corresponding to

the false null hypotheses are set to 0 and the remaining ones are iid uniforms on [0,1].
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Proof. Replace each of the p-values corresponding to the false null hypotheses in ĉ i by 0 and denote the resulting critical
value by ~ci. Then, since ĉ i is non-increasing in each p-value, ĉ ir ~ci for each i, and hence we have from Lemma 1 that

fVSD ¼ 0g+f ~P ð1Þ4 ~cn�n0 þ1g,

fVSU ¼ 0g+
\n0

i ¼ 1

f ~P ðiÞ4 ~cn�n0þ ig: ð3Þ

Now, since the events in the right-hand side of (3) are non-decreasing in ~Pi, i¼ 1, . . . ,n0, we can apply the following results
(see, for example, Tong, 1980, p. 121) to see that 1�FWERZ1�FWERDUðn0Þ, for both stepdown and stepup methods, thus
completing the proof. &

Result 1. Let Xi � Fi, i¼ 1, . . . ,m, be independent random variables, and Xi under Fi be stochastically larger than under Gi in the

sense that prFi
ðXiZxÞZprGi

ðXiZxÞ for every x. Then, for any function fðX1, . . . ,XmÞ that is non-decreasing in each Xi, we have

EðF1 ,...,FmÞffðX1, . . . ,XmÞgZEðG1 ,...,GmÞffðX1, . . . ,XmÞg:

Remark 1. Proposition 1 generalizes what Finner and Gontscharuk (2009) obtained for some special plug-in tests. It
basically says that the Dirac-uniform is the least favorable configuration under Assumption 1 for the FWER of a stepwise
method with critical values that are non-increasing in the p-values. In other words, to prove the (strong) FWER control of
such a method, it would be enough to establish the (weak) FWER control of the method under this configuration.

Remark 2. It is easy to see that Proportion 1 is actually true for any procedure such that the rejection set grows as the p-values
decrease, because setting the false p-values to 0 will only increase the rejection set. Some examples of such procedures include
Hommel procedure, fixed-sequence procedure, fallback procedure, and gatekeeping strategies for clinical trials (Dmitrienko
et al., 2009). By using Proportion 1, the proofs of the FWER control can be greatly simplified for these procedures.

3. Estimates of n0

We will introduce in this section a class of estimates of n0 satisfying certain common conditions before developing our
proposed adaptive methods with the FWER control in the following sections. Let us denote the vector ðP1, . . . ,PnÞ by ðPð�iÞ,PiÞ.
Also let Hi ¼ 0 or 1 according to it is true or false. We consider the class of estimates n̂0ðP

ð�iÞ,PiÞ of n0 that satisfy the following:

Property 1. n̂0ðP
ð�iÞ,PiÞ is non-decreasing in each Pi and, for any 1rn0rn:

Xn

i ¼ 1

IðHi ¼ 0ÞEDUðn0Þ

1

n̂0ðP
ð�iÞ,0Þ

( )
r1, ð4Þ

where EDUðn0Þ is the expectation under the Dirac-uniform configuration of the p-values.

Remark 3. Property 1 is introduced to ensure n̂0 to be a relatively conservative estimate of n0 such that approximately,
Eðn0=n̂0Þr1, which plays an important role in establishing the FWER control of adaptive multiple testing methods. This
condition is similar to condition (16) given by Finner and Gontscharuk (2009). However, this condition (16) is given in the
asymptotic settings, whereas, Property 1 is defined in the finite sample case. In the asymptotic settings, the condition (16)
generally implies Property 1.

We will now give a class of estimates of n0 containing (2) that satisfy Property 1.

Example 1. Consider the estimate

n̂0 ¼
n�kþ1

1�PðkÞ
ð5Þ

for any fixed 1rkrn. It satisfies Property 1, since it is clearly non-decreasing in each Pi, and, as seen in the following, it
also satisfies condition (4).

Let Uk�nþn0�1:n0�1 be the ðk�nþn0�1Þth ordered statistic based on a random sample of size n0�1 from U(0,1). Then, for
this estimate

Xn

i ¼ 1

IðHi ¼ 0ÞEDUðn0Þ

1

n̂0ðP
ð�iÞ,0Þ

( )
¼

n0

n�kþ1
for krn�n0þ1

n0

n�kþ1
Ef1�Uk�nþn0�1:n0�1g for k4n�n0þ1,

8>><
>>: ¼

n0

n�kþ1
for krn�n0þ1

1 for k4n�n0þ1,

8<
:

which is less than or equal to one.
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Example 2. Let Rn,SUðl1, . . . ,lnÞ be the number of rejections observed while testing the n null hypotheses using a stepup
method with any set of critical constants 0rl1r � � �rlnr1. Consider the estimate

n̂0 ¼
n�Rn,SUðl1, . . . ,lnÞþ1

1�ln
: ð6Þ

It satisfies Property 1, since it is non-decreasing, as Rnðl1, . . . ,lnÞ is non-increasing, in each Pi. It also satisfies condition (4),
as explained in the following.

For this estimate, the following holds

Xn

i ¼ 1

IðHi ¼ 0ÞEDUðn0Þ

1

n̂0ðP
ð�iÞ,0Þ

( )
¼ n0E

1�ln

n0�
~Rn0�1,SUðln�n0þ2, . . . ,lnÞ

( )
, ð7Þ

where ~Rn0�1,SUðln�n0þ2, . . . ,lnÞ is the number of significant p-values observed when a stepup test with the critical values

ln�n0þ2r � � �rln is applied to n0�1 p-values and the expectation is taken assuming that these p-values are iid U(0,1). Let

~Rn0�1ðlnÞ be the value of ~Rn0�1,SUðln�n0þ2, . . . ,lnÞ when ln�n0þ2 ¼ � � � ¼ ln. Since ~Rn0�1,SUðln�n0þ2, . . . ,lnÞ!
st

~Rn0�1ðlnÞ � Binðn0�1,lnÞ, the expression in (7) is less than or equal to

n0E
1�ln

n0�X

����X � Binðn0�1,lnÞ

� �
¼ 1�ln0

n r1,

as desired.

Example 3. Let Rn,SDðl1, . . . ,lnÞ be the number of rejections in testing the n null hypotheses using a stepdown method with
the critical values li ¼ iln=n, i¼ 1, . . . ,n, for any 0olnrn=ðnþ2Þ. With a lnþ1 such that lnrlnþ1r ð1þlnÞ=2, consider the
estimate

n̂0 ¼
n�Rn,SDðl1, . . . ,lnÞþ1

1�lRn,SDðl1 ,...,lnÞþ1
: ð8Þ

Since Rn,SDðl1, . . . ,lnÞ is non-increasing in each Pi, and as a function of R� Rn,SDðl1, . . . ,lnÞ,

n̂0 ¼

nðn�Rþ1Þ

n�ðRþ1Þln
if R¼ 0,1, . . . ,n�1,

1

1�lnþ1
if R¼ n

8>>><
>>>:

is non-increasing under the assumed restrictions on ln and lnþ1, the estimate in (8) is non-decreasing in each Pi. It also
satisfies condition (4), as explained in the following.

As in Example 2, we see that for this estimate

Xn

i ¼ 1

IðHi ¼ 0ÞEDUðn0Þ

1

n̂0ðP
ð�iÞ,0Þ

( )
¼ n0E

1�l ~Rn0�1,SDðln�n0 þ 2 ,...,lnÞþ1

n0�
~Rn0�1,SDðln�n0þ2, . . . ,lnÞ

( )
,

where ~Rn0�1,SDðln�n0þ2, . . . ,lnÞ is the number of significant p-values in a stepdown test with the critical values
ln�n0þ2r � � �rln applied to n0�1 p-values and the expectation is taken assuming that these p-values are iid U(0,1).
The expectation in this last expression is seen to be less than or equal to 1=n0 by setting m¼ n0�1 and
gi ¼ ln�n0þ1þ i,i¼ 1, . . . ,n0�1, in the following lemma to be proved in Appendix. Thus, the desired condition is satisfied.

Lemma 2. Let Rm,SDðg1, . . . ,gmÞ be the number of rejections observed while testing m null hypotheses based on their p-values

and using a stepdown test with critical values 0og1r � � �rgmo1. Then,

E
1�lRm,SDðg1 ,...,gmÞþ1

m�Rm,SDðg1, . . . ,gmÞþ

� �
r

1

mþ1
,

when the underlying p-values are iid U(0,1).

Remark 4. It is easy to see that the estimate (2) is a special case of that in Example 2 or 3.

Remark 5. The estimates defined in (2), (5), (6) and (8) have been, respectively, proved to satisfy Property 1 by Benjamini
et al. (2006), Blanchard and Roquain (2009), and Liu and Sarkar (2011), see Blanchard and Roquain’s Corollary 13 and Liu
and Sarkar’s Lemma 5.2 for instance. In this paper, alternative proofs are provided for such results.

4. Adaptive Bonferroni and S̆id �ak methods

An adaptive Bonferroni method rejects Hi if Pira=n̂0, while an adaptive S̆id�ak method rejects Hi if Pir1�ð1�aÞ1=n̂0 ,
with a suitable estimate n̂0 of n0 obtained from the available p-values; see, for instance, Finner and Gontscharuk (2009).
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We now propose our classes of adaptive Bonferroni and adaptive S̆id�ak methods based on the class of n0 estimates
introduced in the above section.

Definition 1 (Level a adaptive Bonferroni method).
1.
 Define an estimate n̂0ðP
ð�iÞ,PiÞ satisfying Property 1.
2.
 Reject Hi if Pira=n̂0ðP
ð�iÞ,PiÞ.
Theorem 1. Under Assumption 1, the FWER of an adaptive Bonferroni method is strongly controlled at a.

Proof. As said in Remark 1, we will prove that FWERDUðn0Þra. With the probabilities evaluated under the Dirac-uniform
configuration, we have

FWERDUðn0Þ ¼ pr ~P ð1Þr
a

n̂0ðP
ð�iÞ,Pi

( )
r
Xn

i ¼ 1

IðHi ¼ 0Þpr Pir
a

n̂0ðP
ð�iÞ,PiÞ

( )
r
Xn

i ¼ 1

IðHi ¼ 0Þpr Pir
a

n̂0ðP
ð�iÞ,0Þ

( )

¼ a
Xn

i ¼ 1

IðHi ¼ 0ÞEDUðn0Þ

1

n̂0ðP
ð�iÞ,0Þ

( )
ra, ð9Þ

In (9), the first inequality follows from the Bonferroni inequality, the second follows from the non-decreasing property of
n̂0, and the third follows from condition (4) satisfied by n̂0. Thus, the desired result is proved. &

Remark 6. It is easy to see that there is an interesting connection between adaptive FWER control and adaptive FDR
control. Specifically, considering (9) of the paper and Theorem 11 of Blanchard and Roquain (2009) (which essentially
already appeared in Benjamini et al. (2006)), the FWER bound for an adaptive Bonferroni procedure is the same as the FDR
bound for an adaptive BH procedure with the same estimate of n0. Therefore, for a given estimate n̂0 of n0, the condition
providing that n̂0 can be plugged into the BH procedure is the same as the condition providing that it can be plugged into
Bonferroni procedure to control the FWER. This corresponds to Property 1 in our paper.

Definition 2 (Level a adaptive S̆id�ak method).
1.
 Define an estimate n̂0ðP
ð�iÞ,PiÞ satisfying Property 1.

ð�iÞ
2.
 Reject Hi if Pir1�ð1�aÞ1=n̂0ðP ,PiÞ.
Theorem 2. Under Assumption 1, the FWER of an adaptive S̆id�ak method is strongly controlled at a.

The following result related to the positive association property of independent random variables (see, for instance,
Esary et al., 1967) is an important tool towards proving this theorem.

Result 2. Let X1, . . . ,Xm be independent random variables. Then, for any non-negative functions gjðX1, . . . ,XmÞ, j¼ 1, . . . ,k, which

are either all non-decreasing or non-increasing in each Xi, we have

E
Yk

j ¼ 1

fgjðX1, . . . ,XmÞgZ
Yk

j ¼ 1

EfgjðX1, . . . ,XmÞg:

Proof of Theorem. As in Theorem 1, we will prove that FWERDUðn0Þra. First, we note that

1�FWERDUðn0Þ ¼ prDUðn0Þ
~P ð1Þ41�ð1�aÞ1=n̂0ðP

ð�iÞ ,PiÞ
n o

: ð10Þ

The right-hand side probability in (10) is equal to

EDUðn0Þ

Yn0

i ¼ 1

Ið ~Pi41�½1�a�IðHi ¼ 0Þ=n̂0ðP
ð�iÞ ,PiÞÞ

( )

ZEDUðn0Þ

Yn0

i ¼ 1

Ið ~Pi41�½1�a�IðHi ¼ 0Þ=n̂0ðP
ð�iÞ ,0ÞÞ

( )

Z

Yn0

i ¼ 1

EDUðn0ÞfIð
~Pi41�½1�a�IðHi ¼ 0Þ=n̂0ðP

ð�iÞ ,0ÞÞg

¼
Yn0

i ¼ 1

EDUðn0Þf½1�a�
IðHi ¼ 0Þ=n̂0ðP

ð�iÞ ,0Þg

Z

Yn0

i ¼ 1

ð1�aÞEDUðn0 Þ
fIðHi ¼ 0Þ=n̂0ðP

ð�iÞ ,0Þg

¼ ð1�aÞ
Pn

i ¼ 1
EDUðn0 Þ

fIðHi ¼ 0Þ=n̂0ðP
ð�iÞ ,0Þg

Z1�a: ð11Þ
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In (11), the first inequality follows from the non-decreasing property of n̂0, the second follows from Result 2, since, for each
i¼ 1, . . . ,n, Ið ~Pi41�½1�a�IðHi ¼ 0Þ=n̂0ðP

ð�iÞ ,0ÞÞ is a non-decreasing function of ðPð�iÞ,PiÞ, the third follows from Jensen’s inequal-
ity, and the final inequality follows from condition (4) satisfied by n̂0. Thus, the desired result is proved. &

Remark 7. The estimates in Example 1 are of the form (2) with some data-dependent choices for l, since l¼ PðkÞ, for any
1rkrn, so we now have a proof of FWER control of adaptive Bonferroni method for such an estimate, which has not been
available yet as noted in Finner and Gontscharuk (2009) in their concluding remarks. The choice of estimates in Examples 2
and 3 has been motivated by our attempt to generalize (2) from using the number of significant p-values based on a single-step
test with a critical constant l to that based on a stepup or stepdown test with a sequence of critical constants
0rl1r � � �rlnr1. It should be noted that fn�Rn,SUðl1, . . . ,lnÞþ1g=f1�lRn,SU ðl1 ,...,lnÞ

g and fn�Rn,SDðl1, . . . ,lnÞþ 1g=
f1�lRn,SDðl1 ,...,lnÞþ1g are, respectively, direct stepup and stepdown generalizations of (2), but we have not been able to show
that they satisfy the desired Property 1, unless we make some adjustments or choose the li’s appropriately, which we have done
in these examples. Also, we should point out that in Example 2, choosing ln ¼ l will not result in an improvement of the
corresponding adaptive Bonferroni or S̆id�ak method over that based on (2), since the estimate (2) in this case is going to be
smaller, making the corresponding adaptive Bonferroni or S̆id�ak method less conservative. Adaptive BH methods based on these
classes of estimates of n0 control the FDR under independence of the p-values (Sarkar, 2008b; Liu and Sarkar, 2011).

Theorems 1 and 2 extend the classes of adaptive Bonferroni methods given by Finner and Gontscharuk (2009) and
Guo (2009) and adaptive S̆id�ak methods given by Finner and Gontscharuk (2009) with theoretically proven strong FWER
control. We could consider þk, where k 2 R, as in Finner and Gontscharuk (2009), instead of þ1 in the numerators of the
estimates in Examples 1– 3. For each of these examples, such estimates are increasing in k, and so it is easy to see that if kZ1
the corresponding larger class of adaptive Bonferroni and Sidak methods would continue to strongly control the FWER.

5. Adaptive Holm and Hochberg methods

The Holm method at level a is the stepdown method with critical constants ci ¼ a=ðn�iþ1Þ, i¼ 1, . . . ,n; whereas, the
Hochberg method at the same level is the stepup method with these same critical values. If n0 were known, an ideal, more
powerful version of the Holm method would be the stepdown method with the critical values ci ¼ a=minfn0,n�iþ1g,
i¼ 1, . . . ,n, as can be seen from Lemma 1. So, with unknown n0, an appropriate adaptive Holm method is the stepdown
method with the (random) critical values ĉ i ¼ a=minfn̂0,n�iþ1g, i¼ 1, . . . ,n, for some suitable estimate n̂0 of n0 obtained
from the available data. Finner and Gontscharuk (2009) and Guo (2009) have both considered such an adaptive Holm
method using the estimate (2). We propose a different version of adaptive Holm method in this section using the estimate
in Example 1. The stepup analog of this adaptive Holm method is our adaptive Hochberg method. As in Finner and
Gontscharuk (2009) and Guo (2009), we establish the strong FWER control of these adaptive methods asymptotically as
n0-1, using different arguments.

Definition 3 (Level a adaptive Holm method).
1.
 Define

n̂0ðkÞ ¼
n�kþ1

1�PðkÞ
for any fixed 1rkrn:
2.
 Reject Hi if PirPðr̂ Þ, where

r̂ ¼max i : PðjÞr
a

minfn̂0ðkÞ,n�jþ1g
for all jr i

� �
:

Definition 4 (Level a adaptive Hochberg method).
1.
 Define n̂0ðkÞ as in Definition 3.

2.
 Reject Hi if PirPðŝÞ, where

ŝ ¼max i : PðiÞr
a

minfn̂0ðkÞ,n�iþ1g

� �
:

The following result holds for these adaptive Holm and Hochberg methods.
Theorem 3. Let n0=n-p0 and k=n-g, as n-1, for some fixed p0,g 2 ð0,1Þ. Then, under Assumption 1, the FWERs of these

adaptive Holm and Hochberg methods are strongly controlled at a asymptotically as n-1.

Proof. We prove this result only for the adaptive Hochberg method, which will imply the same result for the adaptive
Holm method, since between stepdown and stepup methods with the same set of critical values, the FWER of the
stepdown method is less than or equal to that of the stepup method.
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As said in Remark 1, we will prove that lim supn0-1
FWERDUðn0Þra. Under the Dirac-uniform configuration, n̂0ðkÞ

reduces to ~n0ðkÞ, where ~n0ðkÞ ¼ n�kþ1 for krn�n0, and ~n0ðkÞ ¼ ðn�kþ1Þ=½1� ~P ðk�nþn0Þ
� for k4n�n0. Thus, we have,

FWERDUðn0Þ ¼ pr
[n0

i ¼ 1

~P ðiÞr
a

minf ~n0ðkÞ,n0�iþ1g

� � !
,

where ~Pi, i¼ 1, . . . ,n0, are iid U(0,1).
Consider the two different cases: (i) krn�n0 and (ii) k4n�n0. In case (i),

FWERDUðn0Þ ¼ pr
[n0

i ¼ 1

~P ðiÞr
a

n0�iþ1

� � !
rpr

[n0

i ¼ 1

~P ðiÞr
ia
n0

� � !
¼ a,

because of the Simes test (Simes, 1986; Sarkar, 1998, 2008a; Sarkar and Chang, 1997). In case (ii), since iðn0�iþ1ÞZn0 for
1r irn0, we have

FWERDUðn0Þrpr
[n0

i ¼ 1

~P ðiÞrmax
að1� ~P ðk�nþn0Þ

Þ

n�kþ1
,

ia
n0

" #( ) !
¼ pr

[n0

i ¼ 1

~P ðiÞrmax
að1� ~P ðjÞÞ
n0�jþ1

,
ia
n0

" #( ) !
, ð12Þ

with 1r j¼ k�nþn0rn0. Note that, as n-1, n0-1 and j=n0-Z¼ ðp0þg�1Þ=p0 2 ð0,1Þ. So, the FWER in (12) is less than
or equal to a asymptotically as n-1, which follows from the following lemma. This lemma will be proved in
Appendix. &

Lemma 3. Consider testing the intersection of m null hypotheses Hi, i¼ 1, . . . ,m, based on their respective p-values Pi,
i¼ 1, . . . ,m. Define mnðjÞ ¼ ðm�jþ1Þ=ð1�PðjÞÞ, for some fixed 1r jrm. Use the modified version of Simes’ test rejecting the

intersection null hypothesis if PðiÞr â i for at least one i¼ 1, . . . ,m, where â i ¼maxfa=mnðjÞ,ia=mg. Let j=m-Z, for some fixed

Z 2 ð0,1Þ, as m-1. The type I error rate is controlled at a asymptotically as m-1 when these p-values are iid U(0,1).

Remark 8. Through (B.2) in the proof of Lemma 3, it is easy to see that the upper bounds of the FWER for the above
adaptive Holm and Hochberg procedures are only slightly larger than the pre-specified level a as the number of true nulls
n0 is moderately large. Therefore, these two adaptive procedures are slightly liberal at the most for finite samples.

Remark 9. In Theorem 3, p0 is assumed to be positive. In fact, this theorem still holds when p0 ¼ 0. If p0 ¼ 0, then krn�n0

always holds for large n. Thus, we only need to consider case (i) in the proof of Theorem 3. In case (i),

FWERDUðn0Þ ¼ pr
[n0

i ¼ 1

~P ðiÞr
ia
n0

� � !
¼ a

holds because of the Simes test, no matter what value the p0 is equal to. Therefore, by Proportion 1, the FWER control of
the adaptive Holm and Hochberg procedures is still maintained as p0 ¼ 0.

Remark 10. We need to indicate that among all existing and newly suggested adaptive procedures controlling the FWER,
the adaptive single-step procedures including adaptive Bonferroni and S̆id�ak methods always work for fixed n0, whereas,
for the adaptive stepdown and stepup procedures including adaptive Holm and Hochberg procedures, they only work
as n0-1.

6. Numerical findings

We performed simulation studies to investigate the following questions:
Q1.
 How do the newly suggested adaptive Bonferroni and S̆id�ak methods perform in terms of the FWER control and power
for dependent p-values compared to the adaptive Bonferroni method in Finner and Gontscharuk (2009) and Guo
(2009) and the adaptive S̆id�ak method in Finner and Gontscharuk (2009)?
Q2.
 How well do the newly suggested adaptive Holm and Hochberg methods control the FWER compared to the original
adaptive Holm method in Finner and Gontscharuk (2009) and Guo (2009) for dependent p-values?
In the study related to Q1, two different settings for dependent p-values were simulated using multivariate normal test
statistics, one with a compound symmetric covariance matrix and the other with a block dependence covariance matrix.
The dependence setting in the study related to Q2 was based on multivariate normal test statistics with a compound
symmetric covariance matrix. The statistics have a common non-negative correlation r in case of compound symmetry
and are broken up into g independent groups with a common non-negative correlation r within each group in case of
block dependence.

The simulated FWER and (average) power, the expected proportion of false nulls that are rejected, were obtained for
each adaptive method by (i) generating 100 (¼n) dependent normal random variables Nðmi,1Þ,i¼ 1, . . . ,n, with 50 ¼(n0) of
the 100 mi’s being equal to 0 and the rest d¼

ffiffiffiffiffiffi
10
p

, (ii) applying the method to the generated data to test Hi : mi ¼ 0 against
Ki : mia0 simultaneously for i¼ 1, . . . ,100 at level a¼ 0:05, and (iii) by repeating steps (i) and (ii) 2000 times.
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We considered four different versions of estimate (2); they correspond to l¼ 0:2,0:4,0:6 and 0.8. For each of these, we
chose the estimate (5) with k¼ ½nl�, the largest integer contained in nl, because it is compatible with the estimate (2).

The li’s in the estimates (6) and (8), considered while answering Q1, were chosen as follows: li ¼ ib=n, i¼ 1, . . . ,n, in
both (6) and (8), and lnþ1 ¼ ln in (8). The b was fixed at a=ð1þaÞ, the same significance level Benjamini et al. (2006)
successfully used in estimating n0 using a BH type method while constructing an adaptive version of the BH method
controlling the FDR at a; see also Romano et al. (2008) and Sarkar and Heller (2008). The value of g was chosen to be 20.

The simulated FWERs and powers for adaptive S̆id�ak methods corresponding to all four estimates were noted to be
slightly larger than the corresponding values for adaptive Bonferroni methods. So, we decided not to ultimately include the
adaptive Bonferroni methods in our comparisons while answering Q1, keeping in mind that any conclusion we will reach
for an adaptive S̆id�ak method can also be made for the corresponding adaptive Bonferroni method.

Fig. 1 provides answer to Q1 for adaptive S̆id�ak methods. The four adaptive S̆id�ak methods based on (2), (5), (6) and (8)
are labeled adSid1–adSid4, respectively. Fig. 2 answers Q2, with the adaptive Holm method in Finner and Gontscharuk
(2009) and Guo (2009), and the two new adaptive Holm and Hochberg methods based on (5) being labeled adHol1, adHol2
and adHoch, respectively.

Fig. 1 reveals an interesting feature about the performance of the adaptive S̆id�ak method in Finner and Gontscharuk
(2009) with respect to the choice of l when the p-values are computed from equicorrelated normal test statistics. If l is
chosen to be small, this method does not seem to lose its control over the FWER, contrary to what Finner and Gontscharuk
(2009) observed when l¼ 0:5 and what we also see in the first two rows of panels in Fig. 1. In fact, for small values of l,
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Fig. 1. Simulated FWERs and average powers of four adaptive S̆id�ak methods (adSid1, solid; adSid2, dashes; adSid3, dots; adSid4, dot dashes) with 100

dependent p-values generated from normal test statistics with compound symmetry or block dependence structure.
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this version of adaptive S̆id�ak method appears to be the least conservative and more powerful, except when r is very close
to one. If l is not small, each of the three newly suggested adaptive S̆id�ak methods has better performance in terms of
controlling the FWER. The simulated FWER for each of these new methods decreases and remains controlled at a with
increasing r, whereas, for the adaptive method in Finner and Gontscharuk (2009), it increases with r, except for very large
values of r, exceeding a for most of the r values, which was also observed by Finner and Gontscharuk (2009). Considering
also the powers of these new adaptive methods it seems that among these methods, the one based on (6) works the best
for large r or small l, while the one based on (5) performs the best for small r and large l.

Fig. 1 also suggests that, when the p-values are locally dependent, the two adaptive S̆id�ak methods based on (6) and (8)
seem to control the FWER fairly well, whereas, other two adaptive S�idăk methods based on (2) and (5) seem to slightly lose
the FWER control for all values of l and some larger values of k. For larger values of ðl,kÞ, the method of Finner and
Gontscharuk (2009) and the new method based on (5) are very close to each other and more powerful than the other two;
whereas, for smaller values of ðl,kÞ, the new method based on (6) is slightly less powerful than the one in Finner and
Gontscharuk (2009) but more powerful than the other two.

From Fig. 2, we see that the adaptive Holm method in Finner and Gontscharuk (2009) and Guo (2009) seems to be the
least conservative if l is chosen to be small under a normal distributional setting with equal positive correlation for the
test statistics, like the adaptive S̆id�ak method. For larger values of l, however, the simulated FWER of this method
increases with r, except for very large values of r, often exceeding a by a significant margin; whereas, for each of the two
new methods proposed here, the FWER decreases and remains controlled at a with increasing r.

Finally, following one referee’s suggestions, we add some simulations to study the FWER control of the four adaptive
S̆id�ak methods under some other settings. First, we do some simulations for the worst case of n¼ n0 with 100 dependent
p-values generated from standard normal test statistics with compound symmetry structure. Second, we do some
simulations for n¼ n0 with 10 dependent p-values generated from standard normal test statistics with block dependence
structure. The 10 dependent p-values are grouped as five blocks and within each block, the p-values are negatively
dependent with common correlation coefficient ro0. The simulation studies are used to evaluate the effect of negative
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Fig. 3. Simulated FWERs of four adaptive S̆id�ak methods (adSid1, solid; adSid2, dashes; adSid3, dots; adSid4, dot-dashes) with 100 dependent p-values

generated from standard normal test statistics with compound symmetry structure.
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dependence on the FWER control of these adaptive methods. In these simulation scenarios, the simulated FWERs are
graphically displayed in Figs. 3 and 4, respectively.

From Fig. 3, we see that when the value of k is chosen to be relatively large, the adaptive S̆id�ak method based on (5)
loses the FWER control for slightly or moderately correlated p-values in the case of n¼ n0, whereas, the FWER control of
this adaptive method is still maintained in the case of n0 ¼ n=2, as seen from the first row of Fig. 1. From Fig. 4, we see that
under negative block dependence, the four adaptive S̆id�ak methods control the FWER fairly well, whereas, under positive
block dependence, the adaptive S̆id�ak methods based on (2) and (5) slightly lose the FWER control for some values of l and
k, as seen from the third row of Fig. 1.

7. Concluding remarks

The primary focus of this paper has been to advance the theory of adaptive FWER controlling methods from what is
recently known in the literature. We have given newer adaptive methods with proven FWER control under slightly weaker
distributional assumptions, with numerical evidence that they often have better performance under certain type of
dependent p-values. With regard to adaptive Bonferroni and S̆id�ak methods, we have given a unified theory of constructing
them. Our proofs are different and simpler, not requiring explicit formulas for FWER under the Dirac-uniform
configuration as in Finner and Gontscharuk (2009).

There is, however, a scope of doing further investigations, at least numerically, to see if our classes could be further
extended. For instance, with þk instead of þ1 in the numerators of the estimates in each of the classes of estimates in
Examples 1–3, we could consider solving the equation:

max
1rn0 rn

FWERDUðn0Þ ¼ a

for k, like what Finner and Gontscharuk (2009) did for BPI, having derived FWERDUðn0Þ explicitly using the distribution of
the order statistics of n0 iid U(0,1) (Finner and Roters, 2002). Obviously, such a k would be optimal within the
corresponding class of estimates in the sense of providing adaptive Bonferroni or S̆id�ak method with the least conservative
strong control of the FWER. Nevertheless, finding this k needs to be carried out numerically as in Finner and Gontscharuk
(2009), since doing so theoretically would be extremely difficult. For BPI, Finner and Gontscharuk (2009) noted that the
optimum k is slightly less than 1, but it does not offer an appreciable improvement of the corresponding BPI over the one
with k¼ 1. It would be interesting to see if that happens with our estimates too, though we are going to do that in a
different communication.

It is important to note that the expectation of

Xn

i ¼ 1

IðHi ¼ 0Þ
1

n̂0ðP
ð�iÞ,0Þ

( )

under the Dirac-uniform configuration provides information on how conservative an adaptive method based on the
estimate n̂0 is, at least in the present independence setup. The smaller (or larger) this expectation is compared to 1, the
more conservative (or liberal) the corresponding adaptive method is. For the estimate in (2), this expectation is 1�ln0 ;
whereas, for the estimate in (5), it is minf1,n0=ðn�kþ1Þg (as seen in Section 3.1). So, in the sparse case, for instance, where
a high proportion of null hypotheses are believed to be true, the estimate (5) with a moderately large k is going to provide
a less conservative adaptive method than the one based on any estimate in (2). However, care should be taken in choosing
k when there is dependence among the p-values. We simulated FWER’s of adaptive Bonferroni methods based on (5) with
different values of k in the least favorable setting of equicorrelated standardized normal test statistics. The graphs over
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different values of correlation are displayed in Fig. 5. As seen from this figure, a relatively high value of k might cause the
corresponding adaptive Bonferroni method to lose its control over the FWER when the dependence is not too high or
too low.
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Appendix A. Proof of Lemma 2

Consider testing mþ1 null hypotheses using their p-values Pi, i¼ 1, . . . ,mþ1, based on a stepdown method with the
critical values g1r � � �rgmrgmþ1, where gmþ1 is chosen satisfying gmrgmþ1o1. Let Rmþ1,SDðg1, . . . ,gmþ1Þ be the
number of significant p-values. Note that, we have for r¼ 0,1, . . . ,mþ1,

½mþ1�Rmþ1,SDðg1, . . . ,gmþ1Þ�IðRmþ1,SDðg1, . . . ,gmþ1Þ ¼ rÞ

¼
Xmþ1

i ¼ 1

IðPi4grþ1,Rmþ1,SDðg1, . . . ,gmþ1Þ ¼ rÞ

¼
Xmþ1

i ¼ 1

fPi4grþ1,Pð1Þrg1, . . . ,PðrÞrgr ,Pðrþ1Þ4grþ1g

¼
Xmþ1

i ¼ 1

fPi4grþ1,Pð�iÞ
ð1Þ rg1, . . . ,Pð�iÞ

ðrÞ rgr ,Pð�iÞ
ðrþ1Þ4grþ1g

¼
Xmþ1

i ¼ 1

fPi4grþ1,Rð�iÞ
m,SDðg1, . . . ,gmÞ ¼ rg,

where gmþ2 ¼ 1, Pð�iÞ
ð1Þ r � � �rPð�iÞ

ðmÞ are the ordered versions of the m p-values except the Pi, and Rð�iÞ
m,SDðg1, . . . ,gmÞ is the

number of significant p-values in the stepdown test with the critical values g1r � � �rgm based on these m p-values. So,

IðRmþ1,SDðg1, . . . ,gmþ1Þomþ1Þ ¼
mþ1�Rmþ1,SDðg1, . . . ,gmþ1Þ

mþ1�Rmþ1,SDðg1, . . . ,gmþ1Þ
IðRmþ1,SDðg1, . . . ,gmþ1Þomþ1Þ

¼
Xm

r ¼ 0

Xmþ1

i ¼ 1

IðPi4grþ1,Rmþ1,SDðg1, . . . ,gmþ1Þ ¼ rÞ

mþ1�r
¼
Xm

r ¼ 0

Xmþ1

i ¼ 1

IðPi4grþ1,Rð�iÞ
m,SDðg1, . . . ,gmÞ ¼ rÞ

mþ1�r
:



S.K. Sarkar et al. / Journal of Statistical Planning and Inference 142 (2012) 65–78 77
Now, if the p-values are iid U(0,1), taking expectations on both sides in the above equalities, we see that

Xmþ1

i ¼ 1

E
1�g

Rð�iÞ
m,SD
ðg1 ,...,gmÞþ1

mþ1�Rð�iÞ
m,SDðg1, . . . ,gmÞ

( )
rprðRmþ1,SDðg1, . . . ,gmþ1Þomþ1Þr1:

Thus, the lemma is proved.

Appendix B. Proof of Lemma 3

This result can be proved borrowing ideas from Sarkar (2008b) and using the following additional lemma:

Lemma 4 (Blanchard and Roquain, 2009). Given a random variable U satisfying prðUruÞru, u 2 ð0,1Þ, any positive valued

non-increasing function gð�Þ, and a fixed constant c, we have

E
IðUrcgðUÞÞ

gðUÞ

� �
rc:

Let Rð�iÞ
m�1 be the number of rejections in the stepup test based on the m�1 p-values fP1, . . . ,Pmg\fPig and the critical

values â i ¼maxfa=mnðjÞ,ia=mg, i¼ 2, . . . ,m. Then, from Sarkar (2008b), the type I error rate is equal to

Xm

i ¼ 1

E
IðPir â

Rð�iÞ
m�1
þ1
Þ

Rð�iÞ
m�1þ1

( )
, ðB:1Þ

where

â
Rð�iÞ

m�1
þ1
¼max

a
mnðjÞ

,
½Rð�iÞ

m�1þ1�a
m

( )
:

Since mnðjÞZðm�jþ1Þ=½1�Pð�iÞ
ðj�1Þ�, we have

â
Rð�iÞ

m�1
þ1

rmax
½1�Pð�iÞ

ðj�1Þ�a
m�jþ1

,
½Rð�iÞ

m�1þ1�a
m

( )
r ½Rð�iÞ

m�1þ1�
a
m

max
m½1�Pð�iÞ

ðj�1Þ�

m�jþ1
,1

( )
,

and so the expectation inside the summation in (B.1) is less than or equal to

E

I Pir ½R
ð�iÞ
m�1þ1�

a
m

max
m½1�Pð�iÞ

ðj�1Þ
�

m�jþ1 ,1

� �� �
Rð�iÞ

m�1þ1

8>><
>>:

9>>=
>>;:

Notice that, given fP1, . . . ,Pmg\fPig, ða=mÞmaxfm½1�Pð�iÞ
ðj�1Þ�=ðm�jþ1Þ,1g is constant; whereas, Rð�iÞ

m�1 is a non-increasing
function of Pi, since the critical values â i, i¼ 2, . . . ,m, are so. Thus, applying Lemma 4 to this expectation conditional on
fP1, . . . ,Pmg\fPig, we see that the expression in (B.1) is less than or equal to

aE max
mð1�Pð�iÞ

ðj�1ÞÞ

m�jþ1
,1

( ) !
¼ aE max

mð1�Uj�1:m�1Þ

m�jþ1
,1

� �� �
¼ a pr Uj�1:mr

j�1

m

� �
þpr Uj�1:m�1Z

j�1

m

� �� 	
-a:

ðB:2Þ

In (B.2), the convergence to a follows from the fact that as j=m-Z, for some fixed Z 2 ð0,1Þ, and m-1, we have

pr Uj:mr
j

m

� �
¼ pr Bin m,

j

m

� �
Z j

� �
� pr

1

m
Binðm,ZÞZZ

� �
-1=2,

from the central limit theorem applied to the binomial distribution.
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