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Often in practice when a large number of hypotheses are simultaneously
tested, one is willing to allow a few false rejections, say at most k−1, for
some fixed k > 1. In such a case, the ability of a procedure controlling
an error rate measuring at least one false rejection can potentially be
improved in terms of its ability to detect false null hypotheses by gen-
eralizing this error rate to one that measures at least k false rejections
and using procedures that control it. The k-FDR which is the expected
proportion of k or more false rejections and a natural generalization of
the false discovery rate (FDR) is such a generalized notion of error rate
that has recently been introduced and procedures controlling it have
been proposed. Many of these procedures are stepup procedures. Some
stepdown procedures controlling the k-FDR are presented in this article.

1.1. Introduction

For simultaneous testing of null hypotheses using tests that are available

for each of them, procedures have traditionally been developed exercising a

control over the familywise error rate (FWER), which is the probability of

rejecting at least one true null hypothesis [Hochberg and Tamhane (1987)],

until it is realized that this notion of error rate is too stringent while test-

∗The research of Wenge Guo is supported by NSF Grants DMS-1006021 and DMS-
1309162 and the research of Sanat Sarkar is supported by NSF Grant DMS-1006344 and
DMS-1309273.

1



September 12, 2013 11:41 World Scientific Review Volume - 9in x 6in kFDR˙stepdown*procedures˙revision

2 W. Guo and S. K. Sarkar

ing a large number of hypotheses, as it happens in many modern scientific

investigations, allowing little chance to detect many false null hypotheses.

Therefore, researchers have focused in the last decade or so on defining al-

ternative less stringent error rates and developing multiple testing methods

that control them.

The false discovery rate (FDR), which is the expected proportion of

falsely rejected among all rejected null hypotheses, introduced by Ben-

jamini and Hochberg (1995), is the first of these alternative error rates that

has received the most attention [Benjamini, Krieger and Yekutieli (2006),

Benjamini and Yekutieli (2001, 2005), Finner, Dickhaus and Roters (2007,

2009), Gavrilov, Benjmaini and Sarkar (2009), Genovese and Wasserman

(2002, 2004), Sarkar (2002, 2004, 2006, 2008a), Storey (2002, 2003) and

Storey, Taylor and Siegmund (2004)]. Recently, the ideas of controlling

the probabilities of falsely rejecting at least k null hypotheses, which is the

k-FWER, and the false discovery proportion (FDP) exceeding a certain

threshold γ ∈ [0, 1) have been introduced as alternatives to the FWER

and methods controlling these new error rates have been suggested [Du-

doit, van der Laan and Pollard (2004), Guo and Rao (2010), Guo and

Romano (2007), Hommel and Hoffmann (1987), Lehmann and Romano

(2005), Korn, Troendle, McShane and Simon (2004), Romano and Shaikh

(2006a, b) and Romano and Wolf (2005, 2007), Sarkar (2007, 2008b) and

van der Laan, Dudoit and Pollard (2004)].

Sarkar (2007) has advocated using the expected ratio of k or more false

rejections to the total number of rejections, the k-FDR, which is a less

conservative notion of error rate than the k-FWER. Several procedures

controlling the k-FDR have been developed under different dependence as-

sumptions on the p-values. Sarkar (2007) has utilized the kth order joint

distributions of the null p-values and developed procedures under the MTP2

positive dependence [due to Karlin and Rinott (1980)] and arbitrary de-

pendence conditions on the p-values. Sarkar and Guo (2009) considered a

mixture model involving independent p-values and provided a simple and

intuitive upper bound to the k-FDR through which they developed newer

procedures controlling the k-FDR. Sarkar and Guo (2010) relaxed the re-

quirement of using the kth order joint distributions of the null p-values

and also the MTP2 condition used in Sarkar (2007). They utilized only

the bivariate distributions of the null p-values and developed different k-

FDR procedures, assuming a positive dependence condition that is weaker

than the MTP2, the same one under which the procedure of Benjmaini and

Hochberg (1995) controls the FDR [Benjamini and Yekutieli (2001) and
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Sarkar (2002)], and also an arbitrary dependence condition on the p-values.

Suppose that H1, . . . , Hn are the null hypotheses that we want to si-

multaneously test using their respective p-values p1, . . . , pn. Let p(1) ≤
· · · ≤ p(n) be the ordered p-values and H(1), . . . , H(n) the associated

null hypotheses. Then, given a non-decreasing set of critical constants

0 ≤ α1 ≤ · · · ≤ αn ≤ 1, a stepup multiple testing procedure rejects

the set of null hypotheses {H(i), i ≤ i∗SU} and accepts the rest, where

i∗SU = max{i : p(i) ≤ αi}, if the maximum exists, otherwise accepts all

the null hypotheses. A stepdown procedure, on the other hand, rejects

the set of null hypotheses {H(i), i ≤ i∗SD} and accepts the rest, where

i∗SD = max{i : p(j) ≤ αj ∀ j ≤ i}, if the maximum exists, otherwise accepts

all the null hypotheses. The critical constants are determined subject to the

control at a pre-specified level α of a suitable error rate which, in this case,

is the k-FDR defined as follows. Let R be the total number of rejected

null hypotheses, among which V are falsely rejected and S are correctly

rejected. Then, the k-FDR is defined as

k-FDR = E(k-FDP), where k-FDP =
V I(V ≥ k)

R ∨ 1
, (1.1)

with R ∨ 1 = max{R, 1}, which reduces to the original FDR when k = 1.

Most of the procedures developed so far for controlling the k-FDR are

stepup procedures, except a few developed in Sarkar and Guo (2010) that

are stepdown procedures developed for independent as well as dependent

p-values. In this article, we will focus mainly on developing some more

stepdown procedures controlling the k-FDR under the independence as

well as some forms of dependence conditions on the p-values.

1.2. Preliminaries

In this section, we will present two lemmas related to a general stepdown

procedure which will be useful in developing stepdown procedures control-

ling the k-FDR in the next section.

Let n0 and n1(= n − n0) be respectively the numbers of true and

false null hypotheses. Define q̂1, · · · , q̂n0
and r̂1, · · · , r̂n1

to be the p-values

corresponding to the true and false null hypotheses respectively and let

q̂(1) ≤ · · · ≤ q̂(n0) and r̂(1) ≤ · · · ≤ r̂(n1) be their ordered values.

First, we have the following lemma.

Lemma 1.1. Consider a stepdown procedure with critical constants 0 ≤
α1 ≤ · · · ≤ αn ≤ 1. Let R be the total number of rejections, of which V are
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false and S are correct. For a fixed k > 0, let J be the (random) largest

index such that r̂(1) ≤ αk+1, · · · , r̂(J) ≤ αk+J (with J = 0 if r̂(1) > αk).

Then, given J = j, V ≥ k implies that (i) S ≥ j and (ii) q̂(k) ≤ αk+j.

Proof. If j = 0, the lemma (i) obviously holds. If R = n, then the lemma

(i) also holds. Now suppose j > 0 and R < n. Then, p(R+1) > αR+1. Let us

assume R < k+ j, then R−k+1 ≤ j. Thus r̂(R−k+1) ≤ αR+1. Noting that

V ≥ k, then q̂(k) ≤ αR. Therefore, p(R+1) ≤ max{q̂(k), r̂(R−k+1)} ≤ αR+1.

It leads to a contradiction. Thus R ≥ k+j. Observe that r̂(j) ≤ αk+j ≤ αR,

then S ≥ j. Thus, the lemma (i) follows.

To prove the lemma (ii), we use reverse proof. Assume q̂(k) > αk+j .

Noting that r̂(j) ≤ αk+j and r̂(j+1) > αk+j+1 when j < n1, thus R < k + j

and then V < k. Therefore, if V ≥ k, then q̂(k) ≤ αk+j . The lemma (ii) is

proved. �
The following second lemma is taken from Sarkar and Guo (2010).

Lemma 1.2. Given a stepdown procedure with critical constants 0 ≤ α1 ≤
· · · ≤ αn ≤ 1, consider the corresponding stepdown procedure in terms of

the null p-values q̂1, . . . , q̂n0
and the critical values αn1+1 ≤ · · · ≤ αn. Let

Vn denote the number of false rejections in the original stepdown procedure

and R̂n0 denote the number of rejections in the stepdown procedure involving

the null p-values. Then, we have for any fixed k ≤ n0 ≤ n,

{Vn ≥ k} ⊆
{
R̂n0 ≥ k

}
. (1.2)

1.3. Stepdown k-FDR Procedures

We will develop some new stepdown procedures in this section that control

the k-FDR. Before we do that, we want to emphasize a few important

points.

First, while seeking to control k or more false rejections, we are toler-

ating at most k − 1 of the null hypotheses to be falsely rejected. In other

words, we can allow the first k − 1 critical values to be arbitrarily chosen

to be as high as possible, even all equal to one. However, it is not only

counterintuitive to have a stepwise procedure with critical values that are

not monotonically non-decreasing but also it is unrealistic to allow the first

k − 1 most significant null hypotheses to be rejected without having any

control over them. So, the best option is to keep these critical values at the

same level as the kth one; see also Lehmann and Romano (2005) and Sarkar

(2007, 2008b). The stepdown procedures that we are going to develop next
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will have their first k critical values same. Second, the k-FDR procedures

developed here are all generalized versions of some stepdown FDR proce-

dures available in the literature. So, by developing these procedures we

are actually providing some general results related to FDR methodologies.

Third, although an FDR procedure also controls the k-FDR, the k-FDR

procedures that we develop here are all more powerful than the correspond-

ing FDR procedures.

Theorem 1.1. Assume that the p-values satisfy the following condition:

Pr
{
q̂i ≤ u

∣∣r̂1, · · · , r̂n1

}
≤ Pr {q̂i ≤ u} ≤ u, u ∈ (0, 1), (1.3)

for any i = 1, · · · , n0. Then, the stepdown procedure with the critical con-

stants

αi =

{
kα
n if i = 1, . . . , k

min
{

knα
(n−i+k)2 , 1

}
if i = k + 1, . . . , n

(1.4)

controls the k-FDR at α.

Proof. When n0 < k, there is nothing to prove, as in this case the

k-FDR = 0 and hence trivially controlled. So, we will assume k ≤ n0 ≤ n

while proving this theorem.

Using Lemma 1.1 and noting V ≤ n0, we have

E
(
k-FDP

∣∣J = j
)
= E

(
V

V + S
· I(V ≥ k)

∣∣J = j

)
≤ n0

n0 + j
Pr

(
V ≥ k

∣∣J = j
)

≤ n0

n0 + j
Pr

(
q̂(k) ≤ αj+k

∣∣J = j
)
, (1.5)

for any fixed j = 0, 1, . . . , n1. Let N be the number of p-values correspond-

ing to true null hypotheses that are less than or equal to constant αj+k.

Then, using Markov’s inequality and condition (1.3), we have

Pr
(
q̂(k) ≤ αj+k

∣∣J = j
)
= Pr

{
N ≥ k

∣∣J = j
}
≤

E(N
∣∣J = j)

k

=
1

k

n0∑
i=1

Pr
(
q̂i ≤ αj+k

∣∣J = j
)
≤ n0αj+k

k
. (1.6)

Thus, from (1.4), (1.5) and (1.6), we have

E
(
k-FDP

∣∣J = j
)
≤ n2

0nα

(n0 + j)(n− j)2
, (1.7)
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which is less than or equal to α, since n0 ≤ n − j and (n0 + j)(n − j) =

n0n+ j(n− n0 − j) ≥ n0n. This proves the theorem. �

Remark 1.1. Note that the critical constants in (1.4) satisfy the following

inequality:

αi ≥ α∗
i =

{
kα
n if i = 1, . . . , k
kα

n−i+k if i = k + 1, . . . , n,
(1.8)

where α∗
i ’s are the critical constants of the stepdown k-FWER procedure

in Lehmann and Romano (2005). In other words, the k-FDR procedure in

Theorem 1.1 is more powerful than the k-FWER procedure in Lehmann and

Romano (2005), as one would expect, although the latter does not require

any particular assumption on the dependence structure of the p-values.

Romano and Sheikh (2006b) gave a stepdown FDR procedure under

the same condition as in (1.3). This procedure is generalized in Theorem

1.1 to a k-FDR procedure. Condition (1.3) is slightly weaker than the

independence assumption between the sets of true and false p-values. No

other assumptions are made here regarding the dependence structure within

each of these sets. If, however, the null p-values are independent among

themselves with each being distributed as U(0, 1), this procedure can be

improved to the one given in the following theorem.

Theorem 1.2. Let

Gk,s(u) = P
{
U(k) ≤ u

}
=

s∑
j=k

(
s

j

)
uj(1− u)s−j , (1.9)

the cdf of the kth order statistic based on s iid U(0, 1). The stepdown

procedure with the following critical constants

αi =

{
G−1

k,n(α) if i = 1, . . . , k

G−1
k,n−i+k

(
nα

n−i+k

)
if i = k + 1, . . . , n

(1.10)

controls the k-FDR at α if the q̂i’s are iid U(0, 1) and independent of

(r̂1, . . . , r̂n1).
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Proof. For any fixed j = 0, 1, . . . , n1, we have from (1.5) and (1.10)

E
(
k-FDP

∣∣J = j
)
≤ n0

n0 + j
Gk,n0(αj+k)

=
n0

n0 + j
Gk,n0

(
G−1

k,n−j

(
nα

n− j

))
≤ n0

n0 + j
Gk,n−j

(
G−1

k,n−j

(
nα

n− j

))
≤ n0nα

(n0 + j)(n− j)
≤ α. (1.11)

The second inequality follows from the fact that n0 ≤ n − j and the cdf

Gk,s is increasing in s. This proves the theorem. �

Remark 1.2. Benjamini and Liu (1999) obtained a stepdown procedure

assuming complete independence of all the p-values. We generalize this

procedure in Theorem 1.2 from an FDR to a k-FDR procedure, but under

a slightly weaker assumption allowing the false p-values to have an arbitrary

dependence structure.

We now go back to Sarkar and Guo (2010) and generalize a stepdown

k-FDR procedure given there assuming independence of the p-values. More

specifically, we have the following theorem.

Theorem 1.3. The stepdown procedure with critical constants α1 = · · · =
αk ≤ · · · ≤ αn, where αi/i is decreasing in i and

iαk

k
Gk−1,i−1(αn−i+k) ≤ α for all k ≤ i ≤ n, (1.12)

controls the k-FDR at α when the p-values are positively dependent in the

sense that E {ϕ(p1, . . . , pn) | q̂i ≤ u} is nondecreasing in u for every q̂i and

any nondecreasing (coordinatewise) function ϕ, and the q̂i’s are iid U(0, 1).
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Proof.

k-FDR = E

{
V

R
· I (V ≥ k)

}
= E

{
n∑

r=k

1

r

n0∑
i=1

I (q̂i ≤ αr, V ≥ k,R = r)

}

=

n0∑
i=1

n∑
r=k

1

r
P
{
p(k) ≤ αk, · · · , p(r) ≤ αr, p(r+1) > αr+1, q̂i ≤ αr, V ≥ k

}
=

n0∑
i=1

1

k
P
{
p(k) ≤ αk, q̂i ≤ αk, V ≥ k

}
+

n0∑
i=1

n∑
r=k+1

E
[
P
{
p(k) ≤ αk, · · · ,

p(r) ≤ αr, V ≥ k
∣∣q̂i}{I(q̂i ≤ αr)

r
− I(q̂i ≤ αr−1)

r − 1

}]
(1.13)

=

n0∑
i=1

1

k
P {q̂i ≤ αk, V ≥ k}+

n0∑
i=1

n∑
r=k+1

1

r
P
{
p(k) ≤ αk, · · · , p(r) ≤ αr,

αr−1 < q̂i ≤ αr, V ≥ k} −
n0∑
i=1

n∑
r=k+1

1

r(r − 1)
P
{
p(k) ≤ αk, · · · ,

p(r) ≤ αr, q̂i ≤ αr−1, V ≥ k
}

(with p(n+1) = 1 and αn+1 = 1).

Let R
(−i)
n−1 and V

(−i)
n−1 denote respectively the total numbers of rejections

and false rejections in the stepdown procedure based on the ordered values

p
(−i)
(1) ≤ · · · ≤ p

(−i)
(n−1) of {p1, . . . , pn} \ {pi} and the n − 1 critical values

α2 ≤ · · · ≤ αn. Note that

P {q̂i ≤ αk, V ≥ k} = P
{
q̂i ≤ αk, V

(−i)
n−1 ≥ k − 1

}
, (1.14)

P
{
P(k) ≤ αk, · · · , P(r) ≤ αr, αr−1 < q̂i ≤ αr, V ≥ k

}
= P

{
P

(−i)
(k) ≤ αk, · · · , P (−i)

(r−1) ≤ αr−1, αr−1 < q̂i ≤ αr, V
(−i)
n−1 ≥ k − 1

}
= P

{
R

(−i)
n−1 ≥ r − 1, αr−1 < q̂i ≤ αr, V

(−i)
n−1 ≥ k − 1

}
= P

{
R

(−i)
n−1 ≥ r − 1, V

(−i)
n−1 ≥ k − 1 | q̂i ≤ αr

}
αr

− P
{
R

(−i)
n−1 ≥ r − 1, V

(−i)
n−1 ≥ k − 1 | q̂i ≤ αr−1

}
αr−1

≤ P
{
R

(−i)
n−1 ≥ r − 1, V

(−i)
n−1 ≥ k − 1 | q̂i ≤ αr

}
(αr − αr−1) , (1.15)

with the last inequality following from the positive dependence

assumption made in the theorem and the fact that the set
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{
R

(−i)
n−1 ≥ r − 1, V

(−i)
n−1 ≥ k − 1

}
is a decreasing set in the p-values, and

P
{
P(k) ≤ αk, · · · , P(r) ≤ αr, q̂i ≤ αr−1, V ≥ k

}
≥ P

{
P

(−i)
(k) ≤ αk, · · · , P (−i)

(r−1) ≤ αr−1, q̂i ≤ αr−1, V
(−i) ≥ k − 1

}
= P

{
R

(−i)
n−1 ≥ r − 1, q̂i ≤ αr−1, V

(−i)
n−1 ≥ k − 1

}
= P

{
R

(−i)
n−1 ≥ r − 1, V

(−i)
n−1 ≥ k − 1 | q̂i ≤ αr−1

}
αr−1, (1.16)

for k + 1 ≤ r ≤ m. Therefore, using (1.14)-(1.16) in (1.13), we have

k-FDR ≤
n0∑
i=1

1

k
P
{
q̂i ≤ αk, V

(−i)
n−1 ≥ k − 1

}
(1.17)

+

n0∑
i=1

n∑
r=k+1

P
{
R

(−i)
n−1 ≥ r − 1, V

(−i)
n−1 ≥ k − 1 | q̂i ≤ αr

}{
αr

r
− αr−1

r − 1

}

≤
n0∑
i=1

1

k
P{q̂i ≤ αk, V

(−i)
n−1 ≥ k − 1} ≤

n0∑
i=1

αk

k
P{R̂(−i)

n0−1 ≥ k − 1}

≤
n0∑
i=1

αk

k
P{q̂(−i)

(k−1) ≤ αn1+k} =
n0αk

k
Gk−1,n0−1(αn1+k),

which is controlled at level α if the αi’s are chosen subject to (1.12). The

third inequality in (1.17) follows from Lemma 1.2. Thus the theorem is

proved. �

Remark 1.3. A variety of stepdown procedures can be obtained using crit-

ical values satisfying the conditions in Theorem 1.3 once the distributional

assumptions in the theorem hold. For instance, one may choose the critical

constants αi = (i ∨ k)β/n with the β determined subject to

β

n
max

k≤n0≤n

{
n0Gk−1,n0−1

(
(n− n0 + k)β

n

)}
= α. (1.18)

This is what Sarkar and Guo (2010) proposed under the independence of

the p-values. Similarly, we can consider the critical constants αi =
(
i
n

)γ
β

or αi =
i+d
n+dβ, for some pre-specified constants 0 < γ < 1 and d > 0, with

the β chosen as large as possible subject to Condition (1.12).

Recently, Gavrilov, Benjamini and Sarkar (2009) obtained a stepdown

procedure controlling the FDR with independent p-values. We now derive

a generalized version of this procedure providing a control of the k-FDR in

the following theorem.



September 12, 2013 11:41 World Scientific Review Volume - 9in x 6in kFDR˙stepdown*procedures˙revision

10 W. Guo and S. K. Sarkar

Theorem 1.4. The step-down procedure with the critical values α1 = · · · =
αk ≤ · · · ≤ αn satisfying αi/(1−αi) ≤ iβ/(n− i+1), i = 1, . . . , n, controls

the k-FDR at level α for any fixed β satisfying

βGk−1,i(αn+k−i−1) ≤ α for all k ≤ i ≤ n, (1.19)

if the p-values are independent and q̂i ∼ U(0, 1).

Proof. From the proof of Theorem 1.3, we notice that for independent

p-values

k-FDR ≤
n0∑
i=1

αk

k
P
{
V

(−i)
n−1 ≥ k − 1

}
+

n0∑
i=1

n∑
r=k+1

P
{
P

(−i)
(k) ≤ αk, · · · ,

P
(−i)
(r−1) ≤ αr−1, V

(−i)
n−1 ≥ k − 1

}{
αr

r
− αr−1

r − 1

}
=

n0∑
i=1

n∑
r=k

αr

r
P
{
P

(−i)
(k) ≤ αk, · · · , P (−i)

(r−1) ≤ αr−1, P
(−i)
(r) > αr,

V
(−i)
n−1 ≥ k − 1

}
≤ β

n0∑
i=1

n∑
r=k

1− αr

n− r + 1
P
{
P

(−i)
(k) ≤ αk, · · · , P (−i)

(r−1) ≤ αr−1, P
(−i)
(r) > αr,

V
(−i)
n−1 ≥ k − 1

}
= β

n0∑
i=1

n∑
r=k

1

n− r + 1
P
{
P

(−i)
(k) ≤ αk, · · · , P (−i)

(r−1) ≤ αr−1, P
(−i)
(r) > αr,

q̂i > αr, V
(−i)
n−1 ≥ k − 1

}
= β

n0∑
i=1

n∑
r=k

1

n− r + 1
P
{
P(k) ≤ αk, · · · , P(r−1) ≤ αr−1, P(r) > αr,

q̂i > αr, V ≥ k − 1} . (1.20)

With A and U denoting, respectively, the total numbers of accepted and

correctly accepted null hypotheses, we note that the last expression in (1.3)

is βE{UI(V ≥ k − 1)/A ∨ 1}, which is less than or equal to

βP {V ≥ k − 1} ≤ βP{R̂n0
≥ k − 1} (from Lemma 1.2)

≤ βP{q̂(k−1) ≤ αn1+k−1}
= βGk−1,n0(αn1+k−1)

This is controlled at α for any β satisfying (1.19). Thus, the theorem is

proved. �
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Remark 1.4. Specifically, if we consider the critical constants αi = iβ/(n−
i+1+iβ), i = k, · · · , n, as in Gavrilov, Benjamini and Sarkar (2009), where

the constant β is determined subject to

max
k≤n0≤n

{
βGk−1,n0

(
β(n− n0 + k − 1)

n0 − k + 2 + β(n− n0 + k − 1)

)}
= α, (1.21)

the corresponding stepdown procedure will provide a control of the k-FDR

at level α.

1.4. Numerical studies

In this section, we present the results of a numerical study comparing the

four different stepdown k-FDR procedures developed in Theorems 1.1-1.4

in terms of their critical values to gain an insight into their relative per-

formance with respect to the number of discoveries. Let us denote the

four sets of critical constants as α
(j)
i , i = k, · · · , n, with j referring to

the jth procedure. For the first two procedures, the critical constants are

defined in (1.4) and (1.10), respectively, and for the last two, the critical

constants are α
(3)
i = (i ∨ k)β/n and α

(4)
i = iβ/(n − i + 1 + iβ), where β

is determined subject to (1.18) and (1.21), respectively. As the baseline

method for comparison, we choose the stepdown procedure with the criti-

cal constants γi = iα/n, i = 1, · · · , n. This is the stepdown analog of the

Benjamini-Hochberg (BH) stepup FDR procedure that, as Sarkar (2002)

has shown, controls the FDR and hence the k-FDR under the conditions

considered in Theorems 1.2-1.4, and would have been used by researchers

without the knowledge of other stepdown k-FDR procedures. Considering

ζ
(j)
i = log10

(
α
(j)
i /γi

)
, i = 1, · · · , n, for j = 1, · · · , 4, we plot in Figure 1.1

the four sequences ζ
(j)
i , j = 1, · · · , 4, with n = 500, k = 8, and α = 0.05.

As seen from Figure 1.1, the critical constants of the procedure in Theo-

rem 1.1 (labeled RS) are all much less than those of the stepdown analog of

the BH procedure (referred to as the stepdown BH in this article). For the

procedure in Theorem 1.2 (labeled BL), the first few of its critical values

are seen to be larger than those of the stepdown BH (labeled BH). The crit-

ical constants of the procedures in Theorems 1.3 and 1.4 (labeled SG and

GBS respectively) are all uniformly larger than the corresponding critical

values of the BH. Thus, there is a numerical evidence that the procedures

in Theorems 1.3 and 1.4 are both more powerful than the stepdown BH,

but the procedure in Theorem 1.1 is not. Since for a stepdown procedure,

the power is mostly determined by some of its first critical values, the pro-
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cedure in Theorem 1.2 may sometimes be more powerful than the stepdown

BH procedure.
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Fig. 1.1. The logarithms with base 10 of ratios of critical constants of four stepdown
k-FDR procedures with respect to that of the BH procedure for n = 500, k = 8, and α =

0.05.

We also compared the four stepdown k-FDR procedures with the step-

down BH procedure in terms of their power. We simulated the average

power, the expected proportion of false null hypotheses that are rejected,

for each of these procedures. Figure 1.2 presents this power comparison.

Each simulated power was obtained by (i) generating n = 200 independent

normal random variables N(µi, 1), i = 1, · · · , n with n1 of the 200 µi’s be-

ing equal to d = 2 and the rest 0, (ii) applying the stepdown BH procedure

and the four stepdown k-FDR procedures with k = 4 to the generated data

to test Hi : µi = 0 against Ki : µi > 0 simultaneously for i = 1, . . . , 200 at

α = 0.05, and (iii) repeating steps (i) and (ii) 1,000 times before observing

the proportion of the n1 false Hi’s that are correctly declared significant.

As seen from Figure 1.2, the SG procedure in Theorem 1.3 is uniformly

more powerful than the stepdown BH, with the power difference getting
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Fig. 1.2. Power of four stepdown k-FDR procedures in the case of independence with
n = 200, k = 4, d = 2 and α = 0.05.

significantly higher with increasing number of false null hypotheses, while

the GBS procedure in Theorem 1.4 is marginally more powerful than the

stepdown BH, with the power difference getting significantly higher only

after the number of false null hypotheses becomes moderately large. The BL

procedure in Theorem 1.2 is the most powerful among these four stepdown

procedures when the proportion of false null hypotheses is small. Even

when the false proportion is moderately large, this is also more powerful

than the stepdown BH. However, it loses its advantage over the stepdown

BH when the proportion of false null hypotheses is very large. Finally, the

RS procedure in Theorem 1.1 is less powerful than the stepdown BH, as we

expected from Figure 1.1 showing the numerical comparisons of the critical

constants of these procedures.

1.5. An application to gene expression data

Hereditary breast cancer is known to be associated with mutations in

BRCA1 and BRCA2 proteins. Hedenfalk et al. (2001) report that a group
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Table 1.1. Numbers of differentially expressed genes for the data in
Hedenfalk et al. (2001) using four stepdown k-FDR procedures.

procedure level α k = 2 5 8 10 15 20 30

RS 0.03 2 5 8 8 12 18 22
0.05 3 8 11 16 20 24 32

0.07 5 11 18 19 24 29 47

BL 0.03 8 34 73 82 120 150 191
0.05 11 42 75 86 125 157 200
0.07 11 47 76 91 129 159 203

SG 0.03 8 8 11 20 21 24 73
0.05 74 75 76 76 76 82 94

0.07 103 110 123 124 129 131 139

GBS 0.03 3 5 8 8 12 18 22
0.05 73 73 73 73 73 73 73
0.07 96 96 96 96 96 96 96

of genes are differentially expressed between tumors with BRCA1 muta-

tions and tumors with BRCA2 mutations. The data, which are publicly

available from the web site http://research.nhgri.nih.gov/microarray/

NEJM Supplement/, consist of 22 breast cancer samples, among which 7

are BRCA1 mutants, 8 are BRCA2 mutants, and 7 are sporadic (not used

in this illustration). Expression levels in terms of florescent intensity ratios

of a tumor sample to a common reference sample, are measured for 3, 226

genes using cDNA microarrays. If any gene has one ratio exceeding 20,

then this gene is eliminated. Such preprocessing leaves n = 3, 170 genes.

We tested each gene for differential expression between these two tu-

mor types by using a two-sample t-test statistic. For each gene, the base

2 logarithmic transformation of the ratio was obtained before computing

the two-sample t-test statistic based on the transformed data. A permu-

tation method from Storey and Tibshirani (2003) with the permutation

number B = 2, 000 was then used to calculate the corresponding raw p-

value. Finally, we applied to these raw p-values the stepdown BH and the

four stepdown k-FDR procedures in Theorems 1.1-1.4.

At α = 0.03, 0.05 and 0.07, the stepdown BH results in 3, 33 and 95

significant genes respectively, while those numbers for the present methods

are presented in Table 1.1 for k = 2, 5, 8, 10, 15, 20 and 30, with the four

procedures in Theorems 1.1-1.4 labeled RS, BL, SG and GBS respectively.

As we can see from this table, the RS procedure in Theorem 1.1 generally
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detects less significant genes than the stepdown BH for moderate or large

values of α. The BL procedure in Theorem 1.2 always detects more differen-

tially expressed genes than the stepdown BH for slightly moderate values

of k and small or moderate values of α. The SG procedure in Theorem

1.3 is seen to always detect more significant genes than the stepdown BH,

while the GBS procedure in Theorem 1.4 detects almost the same number

of differentially expressed genes as the stepdown BH except for moderate

α.

1.6. Conclusions

We have presented a number of new stepdown k-FDR procedures in this

article under different assumptions on the dependence structure of the p-

values, generalizing some existing stepdown FDR procedures. These would

be of use in situations where one is willing to tolerate at most k − 1 false

rejections and is looking for a stepdown procedure controlling a powerful

notion of error rate than the k-FWER for exercising a control over at least

k false rejections. Although any FDR stepdown procedure can also control

the k-FDR, ours are powerful than the corresponding FDR versions. More-

over, we offer better k-FDR stepdown procedures than the stepdwon analog

of the BH stepup procedure, with its first k− 1 critical values equal to the

kth one, which would have been commonly used by researchers without

knowing the existence of any other stepdown k-FDR procedure.
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