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Abstract

Multi-label classification is a common challenge in various machine learning applications,
where a single data instance can be associated with multiple classes simultaneously. The
current paper proposes a novel tree-based method for multi-label classification using con-
formal prediction and multiple hypothesis testing. The proposed method employs hierar-
chical clustering with labelsets to develop a hierarchical tree, which is then formulated as
a multiple-testing problem with a hierarchical structure. The split-conformal prediction
method is used to obtain marginal conformal p-values for each tested hypothesis, and two
hierarchical testing procedures are developed based on marginal conformal p-values, includ-
ing a hierarchical Bonferroni procedure and its modification for controlling the family-wise
error rate. The prediction sets are thus formed based on the testing outcomes of these two
procedures. We establish a theoretical guarantee of valid coverage for the prediction sets
through proven family-wise error rate control of those two procedures. We demonstrate
the effectiveness of our method in a simulation study and two real data analysis compared
to other conformal methods for multi-label classification.

Keywords: Multi-label Classification, Conformal Prediction, Hierarchical Tree, Multiple-
Testing, Family-wise Error Rate

1. Introduction

Most machine learning research on classification deals with 2n instances as {(Xj , Yj)}2nj=1

with features Xj ∈ Rd and a response variable Yj ∈ Y = {1, . . . ,K}. Each feature vector Xj

is associated with a single response Yj . As opposed to this standard setting, in multi-label
classification, each instance can belong to multiple classes, Yj = (Y 1

j , . . . , Y
c
j ) is the response

vector for jth observation with c labels. There are many real-world problems in which such
a setting is natural. For instance, in medical diagnosis, a patient may be suffering from
diabetes and prostate cancer simultaneously. Another example is the problem of semantic
scene classification, where multiple class labels can describe a natural scene (e.g., mountain,
sea, tree, sun etc.)

Many multi-label classification methods have been developed like Binary Relevance
(BR) (Boutell et al., 2004), classifier chains (Read et al., 2009) and Label Powerset (LP)
(Tsoumakas and Katakis, 2007; Boutell et al., 2004) using black-box algorithms like logistic

© 2023 C. Tyagi & W. Guo.



Tyagi Guo

regression, svm etc. Given the growing utilization of black-box methods and the heightened
risk of making erroneous decisions, it is crucial to develop techniques for accurately estimat-
ing the uncertain nature of their predictions. For example, in the field of medical imaging, a
multi-label classifier may be employed to recognize various conditions in a single scan, such
as identifying the presence of a tumor and its level of malignancy. If the classifier makes
an incorrect prediction, it could lead to misdiagnosis and subsequent incorrect treatment,
which can have serious consequences for the patient.

Therefore, it is essential for the classifier to provide not only an estimation of the most
probable outcome but also a quantification of uncertainty that is actionable, such as a
set of predictions that can be proven to contain the true diagnosis with a high level of
confidence (for example, 90%). Conformal prediction (CP) is a popular method devel-
oped for uncertainty quantification. Importantly, conformal prediction is a distribution-free
framework. This means that it does not rely on any assumptions about the distribution
of the data or the model being used. Only a few works have been done to accommodate
statistical guarantees using conformal prediction for multi-label classification like binary
relevance multi-label conformal predictor (BR-MLCP) (Wang et al., 2015) and label pow-
erset multi-label conformal predictor (PS-MLCP1) (Papadopoulos, 2014) and (Wang et al.,
2014). These procedures do not accommodate dependencies among the multiple response
variables and are computationally inefficient for large number of response variables. Addi-
tionally, in multi-label classification, the response variables (i.e., the class labels) can often
have missing information, i.e., with c labels and 2c possible labelsets, not all labelsets are
present in the data. This can have significant implications for the accuracy and reliability
of the predictions made by existing methods. In this paper, we develop a tree-based confor-
mal prediction method for multi-label classification using multiple hypothesis testing. The
method is not only able to have quantification of uncertainty with statistical guarantees but
also takes into account of any missing information in the response variables. Since it uses a
tree-based approach, the method is computationally efficient for large number of labels and
considers label dependence. Thus, we have created a classification approach that delivers
precise prediction sets with statistical coverage guarantee.

The rest of the paper is organized as follows. With conformal prediction framework and
related works discussed in section 2, we provide notations and describe our proposed tree-
based procedure (TB) in section 3. The statistical properties of the procedure are analyzed
in Section 4. In section 5, we discuss our proposed procedures developed to account for
missing information. Numerical findings from the simulation study and real data analysis
are presented in section 6. We conclude the paper in section 7 with some remarks on the
present work and brief discussions on some future research topics. We defer the proofs of
the propositions in section 4 to the appendix A.

2. Background and related work

2.1. Conformal Prediction

Conformal prediction (CP) is a statistical learning framework that provides a prediction set
Ĉ(X2n+1), instead of point predictions with statistical guarantees for a given test instance
X2n+1.

2
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Given dataset D ≡ {(Xi, Yi)}2ni=1 ≡ {Zi}2ni=1 with Xi ∈ X ,X ⊂ Rd is input of real val-
ued attributes and Yi ∈ Y ∈ {0, 1} , where (X2n+1, Y2n+1) and {(Xi, Yi)}2ni=1 are drawn
exchangeably from PXY . The goal of CP is to construct a prediction set Ĉ(X2n+1) that
contains Y2n+1 with probability at least (1 − α), where α is user-defined significance level
such that α ∈ (0, 1).

Figure 1: Steps of Conformal Prediction.

Figure 1 summarizes the main steps involved in the split-conformal prediction frame-
work, starting from training the model to the final prediction set. The initial step involves
splitting the data into two parts, i.e., proper training Dtr ≡ {(Xi, Yi)}ni=1 and calibration
Dcal ≡ {(Xi, Yi)}2ni=n+1. The first step involves training the model using a black-box al-
gorithm mapping features X to a real attribute Y. The next step, calibration is a crucial
component of the conformal prediction framework as it defines a function (called as non-
conformity score) that measures how well the true response value y conforms with the pre-
dictions of our fitted model f̂ . Given the score function σ : X ×Y → R, the non-conformity
score for observations in the calibration set is given by:

σi = σ(Xi, Yi), i = n+ 1, . . . , 2n (1)

For a given test observation, X2n+1, we compute the non-conformity score for each y ∈ Y
as

σy
2n+1 = σ(X2n+1, y) (2)

In our specific case, we use the non-conformity score as 1-predicted probability i.e.,

σi = 1− f̂(Yi|Xi), i = n+ 1, . . . , 2n (3)

σy
2n+1 = 1− f̂(y|X2n+1), for each y ∈ Y (4)

The third step showcases to calculate conformal p-values as given in equation (5), which
provides a way to quantify the confidence in the predictions

py(X2n+1) =

∑2n
i=n+1{I(σi < σy

2n+1) + U2n+1 · I(σi = σy
2n+1)}

n
(5)

where U2n+1 ∼ Unif(0, 1) is random variable independent of σi’s introduced to break ties.
The last panel illustrates to calculate prediction sets using the conformal p-values provided
by equation (6)

Ĉ(X2n+1) = {y ∈ Y : py(X2n+1) ≥ α} (6)
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The prediction set constructed using the conformal p-values in equation (5) is subject
to the guarantee of marginal coverage, as expressed in Equation (7), which states that the
probability of the true label of a new instance falling within the prediction set is at least
1− α.

P(Y2n+1 ∈ Ĉ(X2n+1)) ≥ 1− α (7)

2.2. Related work

Conformal prediction is a statistical framework that was first proposed by Vovk et al. (1999,
2005); Shafer and Vovk (2008). The literature on conformal prediction has identified two
main types of conformal prediction methods, namely full conformal prediction (transduc-
tive) and split-conformal prediction (inductive) Vovk et al. (2005), which is introduced in
section 2.1. Full conformal prediction involves using all the training observations to calcu-
late the conformal p-values, which can become computationally expensive. On the other
hand, split-conformal prediction is a hold-out method where part of the data is reserved
for training and the remaining are used for calibration, which may result in less accurate
estimates of f̂ than if all the data had been used for estimation but much computationally
efficient. The framework has been widely used in regression problems Romano et al. (2019);
Johansson et al. (2014); Izbicki et al. (2019); Gupta et al. (2022); Lei and Wasserman (2014)
and classification problems Balasubramanian et al. (2014); Vovk et al. (2003); Lei (2014);
Sadinle et al. (2019); Romano et al. (2020). A detailed introduction to the conformal predic-
tion framework is provided in Angelopoulos and Bates (2022). Our work primarily builds on
the use of split-conformal prediction (Vovk et al., 2005). Other types of conformal predic-
tion methods include cross-conformal prediction Vovk (2015) and CV+/Jacknife+ Barber
et al. (2021).

The most relevant works in the context of multi-label classification problems using con-
formal prediction include Binary Relevance multi-label conformal predictor (BR-MLCP)
Wang et al. (2015) and Power set multi-label conformal predictor (PS-MLCP1) Papadopou-
los (2014) and Wang et al. (2014). BR-MLCP uses a one-against-all method to decompose
the multi-label dataset into multiple single-label binary classification problems. However,
this method does not consider the dependency among the labels. PS-MLCP1 efficiently ac-
counts for the dependency among the labels but does not consider any missing information
on the labels and also runs into computational issues for large number of labels. Cauchois
et al. (2021) developed a tree-structured method to consider the interaction among the
labels. Another framework that addresses multi-label classification problems using confor-
mal prediction is risk control introduced by Bates et al. (2021); Angelopoulos et al. (2022).
Bates et al. (2021) proposed a method for constructing distribution-free prediction sets that
control the risk of incorrect predictions by introducing a new loss function that directly con-
trols the risk of incorrect predictions. Specifically, their approach minimizes the expected
loss over the prediction sets, subject to the constraint that the coverage probability is at
least as large as the specified level of significance. Angelopoulos et al. (2022) proposed a
new method for controlling the risk of prediction sets, which is highly relevant for multi-
label classification problems in the field of conformal prediction. Their approach, called
Conformal Risk Control (CRC), uses a novel loss function to optimize the trade-off between
coverage and size of the prediction sets.
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In contrast to traditional conformal prediction methods, CRC aims to minimize the
overall risk of incorrect predictions by taking into account the cost of making errors.

There are also several statistical extensions to conformal prediction, including the ideas
of non-exchangeability like time series by Xu and Xie (2021), outlier testing by Bates et al.
(2022), covariate shift by Tibshirani et al. (2019), and image classifiers by Angelopoulos
et al. (2021).

3. Proposed Tree-based multi-label Conformal Prediction Method (TB)

3.1. Notations

Consider the data set D = {(Xj , Yj)}2nj=1 = {Zj}2nj=1, with Xj ∈ X ,X ⊂ Rd is input of real

valued attributes and Yj = (Y 1
j , . . . , Y

c
j ) is the response vector for jth observation. Each

Y i
j ∈ {0, 1} denotes the label of the ith class in the jth observation, which is labeled as

1 if the instance belongs to the ith class and 0 otherwise. Let (X2n+1, Y2n+1) be the test
observation. The goal is to provide prediction set Ĉ(X2n+1) for unobserved Y2n+1 based
on a given test instance X2n+1 to show the statistical guarantee on the prediction, given a
significance level α ∈ (0, 1).

3.2. Procedure

Our proposed procedure consists of five main steps. Firstly, a hierarchical tree is developed
based on all possible labelsets obtained from c labels. Secondly, we formulate a hypothesis
for each node of the tree. Since we have multiple nodes on the tree, it is a multiple hypothesis
testing (MHT) problem with hierarchical structure. Thirdly, we compute conformal p-
values for each tested hypothesis using the split-conformal prediction method and any black-
box algorithm. Fourthly, we develop two types of hierarchical testing procedures based on
conformal p-values for controlling family-wise error rate (FWER). Finally, we form the
prediction set from the test outcomes of the previous step by leveraging split-conformal
prediction.

3.2.1. Hierarchical Tree

In this section, we present a method for constructing a hierarchical tree for multi-label
classification by utilizing hierarchical clustering on the binary representation of all possi-
ble labelsets, denoted by si ∈ {0, 1}c, i = 1, . . . , 2c. The use of hierarchical clustering is
motivated by the need to handle a large number of labels in multi-label classification and
to reduce the number of labelsets used for classification while preserving an elegant and
manageable tree structure.

To build the hierarchical tree, we need to define a distance metric and linkage criteria
between the labelsets. For our purposes, we use the Hamming distance (Tamasauskas et al.,
2012), which is a widely used metric in the binary setting, to calculate the dissimilarity, dij ,
between each pair of labelsets si and sj , for i, j = 1, 2, ..., l. Given two binary vectors s1
and s2 with c elements each, the Hamming distance between them is defined as:

dH(s1, s2) =
c∑

i=1

I{s1i ̸= s2i} (8)
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where sj = (sj1, . . . , sjc), for j = 1, 2. Thus, the Hamming distance counts the number of
mismatches between two binary vectors.

To calculate the distance among the clusters of labelsets, we use the complete linkage
method (Tamasauskas et al., 2012). In complete linkage, the distance between any two
clusters CK and CL is defined as the maximum distance between two observations that
belong to different clusters,

DKL = max
s∈CK ,t∈CL

d(s, t). (9)

The advantage of using complete linkage is that it is less sensitive to noise and outliers
compared to other linkage methods such as single linkage or centroid linkage. The steps for
constructing a hierarchical tree are outlined in Algorithm 1.

Algorithm 1: Hierarchical Clustering

Input: Labelsets si ∈ {0, 1}c, i = 1, . . . , 2c

Output: Hierarchical Tree
Cluster size ← 2c. // Each labelset is a cluster.

Initialize a hierarchical tree T with 2c leaves, one for each labelset.
Compute pairwise distances (dij) between labelsets si, sj as defined in equation (8) and
store in a matrix.
while Cluster size > 1 do

Find the pair of nodes with the smallest distance from the matrix formed.
Merge the two nodes into a new parent node, and add edges to connect the parent
node to the two children.

// Reduce number of clusters by 1.

Compute the distance between the parent node and all other nodes in T from
equation (9).

end

In Figure 2, we illustrate the hierarchical tree for the case of 3 labels. In this tree, each
node represents a subset of the labelset space. We use the terms “parent” and “children” to
describe the relationships between nodes in the tree. The parent of a node is the immediate
ancestor in the tree, and its children are the immediate descendants. For example, if
we select node S21 from the tree, its parent would be S11 which contains the labelset
{0, 1, 2, 3}, and its children would be S31 and S32 which contain the labelsets {0, 1} and
{2, 3} respectively. This terminology describes the labelsets contained within the parent
and children nodes in decimal form (i.e., base 10). Specifically, the parent node contains a
larger subset of labelset than its children nodes. The depth of a hierarchical tree is defined
as the number of layers in the tree, where the root node is at layer 0 and the leaf nodes are at
the maximum layer. Each layer consists of nodes with the same depth. As an illustration, in
Figure 2, node S11 and S12 are located at depth 1, and all 8 leaf nodes are at the maximum
depth of 3. Nodes at depth 0 do not have parents and nodes at the maximum depth of the
tree (i.e., leaf nodes) do not have children.
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Figure 2: Hierarchical tree with c = 3 labels.

Remark 1 In the hierarchical tree, the union of all nodes in a layer covers the entire
response space, Y , i.e., for each layer i = 1, . . . , c, we have ∪ni

k=1Sik = Y , where ni is the
number of nodes in ith layer. Additionally, for each pair of distinct nodes Sik and Sik′ in
the same layer i, their intersection is empty, i.e., Sik ∩ S

′
ik = ϕ.

3.2.2. Multiple Hypothesis Testing Problem

In this section, we formulate the multi-label classification problem as a multiple hypothesis
testing (MHT) problem based on the hierarchical tree established in Section 3.2.1. For each
node in the tree, we construct a hypothesis. Since we have multiple nodes in the tree, it
becomes a multiple hypothesis testing (MHT) problem. The hypotheses are constructed
such that under the null hypothesis, the test label belongs to the subset of labelsets corre-
sponding to that node; under the alternative hypothesis, the test label does not belong to
the subset of labelsets corresponding to that node.

We construct the hypothesis layer by layer, starting from the second layer (i.e., depth
1) and proceeding until the leaves of the tree (i.e., maximum depth). For each layer i,
i = 1, . . . , c, assume ni as the number of nodes in each layer. The structure for constructing
these hypotheses is discussed below.

ith Layer: Layer i corresponds to the depth i on the tree in Figure 2. Then the hypotheses
are as follows:

Hi1 : Y2n+1 ∈ Si1 versus H
′
i1 : Y2n+1 /∈ Si1

Hi2 : Y2n+1 ∈ Si2 versus H
′
i2 : Y2n+1 /∈ Si2

...

Hini : Y2n+1 ∈ Sini versus H
′
ini

: Y2n+1 /∈ Sini

This procedure is repeated until we reach the tree’s leaf layer, i.e., i = c.

Mathematical properties of the constructed hypotheses:
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1. Due to the structural relationship among the nodes of the tree, in each layer i, exactly
one hypothesis is true.

2. If a children hypothesis is true, then its parent hypothesis is also true. Conversely, if
a parent hypothesis is false, then its children’s hypothesis are automatically false.

3.2.3. Conformal p-values

This section describes the method to compute the conformal p-values for the hypotheses
constructed in Section 3.2.2. First, the data is split into training, calibration and tuning
data as Dtr, Dcal and Dtune respectively using split-conformal prediction. Then, Dtr and
Dcal are transformed from (Xj , Yj) to (X̃j , Ỹj) for each layer i as described below.

X̃j = Xj , and Ỹj = k, if Yj ∈ Sik, (10)

where k = 1, 2, . . . , ni. Thus, each layer is transformed as a multi-class classification problem
with transformed data as D̃tr and D̃cal. Algorithm 2 describes the general procedure to
calculate conformal p-values for each node on the tree using split-conformal prediction,
which includes tuning set, Dtune used later in Algorithm 4 for tuning parameter λ∗.

In addition to the procedure described above, there are alternative approaches to com-
puting conformal p-values. One such approach involves transforming the problem into
multiple multi-class classification problems for each layer. For instance, if nodes in a given
layer share the same parent, a multi-class classification transformation is applied to those
nodes. This alternative approach provides an alternate way to compute conformal p-values
and may interest researchers seeking to explore different methods for solving this problem.

3.2.4. Controlling FWER

In multiple-testing problems, control of some overall error rate such as the family-wise error
rate (FWER) and the false discovery rate (FDR) (Hochberg and Tamhane, 1987), is crucial.

We use a hierarchical testing procedure to test the hypotheses formulated in section
3.2.2. Tree-based constructed hypotheses Hik are tested layer by layer with critical value
αi for i

th layer and kth node, i = 1, . . . , c and k = 1, . . . , ni such that
∑c

i=1 αi ≤ α. For each
layer i, if pi,k < αi, we reject the hypothesis and also reject all its children hypotheses and
move to the next layer until the leaf layer.

Our proposed procedure focuses on controlling FWER, which is defined as the prob-
ability of not making any Type I error. It implies we do not allow making any Type I
error. We consider the following two specific hierarchical testing procedures for controlling
the family-wise error rate (FWER).

1. Procedure 1: In this hierarchical testing procedure, the significance level for each
layer is set to αi = α/c. This method is a Bonferroni procedure for hierarchical
testing. It is known to be relatively less powerful.

2. Procedure 2: In this hierarchical testing procedure, the significance level for each
layer is set to αi = λα, where λ is the tuning parameter. We use Algorithm 4 to
perform hyperparameter tuning using binary search and find the optimal value of λ,
denoted as λ∗ s.t. αi = λ∗α, which helps to overcome the conservativeness of the first
method.
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Algorithm 3 outlines the steps involved in implementing the FWER control procedure.

Remark 2 In Algorithm 3, to utilize the first procedure of FWER control, we replace α̃i

with αi = α/c and there is no need for Dtune. If the second procedure is being employed, we
substitute α̃i with αi = λ∗α.

Algorithm 2: Conformal p-values

Input: D = {(Xj , Yj)}2nj=1, test observation X2n+1, black-box algorithm B.
Output: Conformal p-values: pi,ktune(Xl) and pi,ytest(X2n+1).
Randomly split the data into 3 equal disjoint subsets, Dtr, Dcal and Dtune with
n1, n2, n3 observations in each set respectively s.t. n1 + n2 + n3 = 2n.

forall i ∈ {1, 2, . . . , c} do
Obtain D̃tr and D̃cal for each layer as in equation (10).
Train B on all samples in D̃tr, f̂ : B({(Xj , Yj)}j∈D̃tr

)

forall k ∈ {1, 2, . . . , ni} do
Calculate the non-conformity scores for ith layer, kth node, and jth observation
on D̃cal as σ

ik
cal(Xj), j = 1, . . . , n2 using equation (3).

Calculate the non-conformity scores for ith layer, kth node, and lth observation
on D̃tune as σik

tune(Xl), l = 1, . . . , n3 using equation (3).
Given (Xl, Yl) ∈ Dtune, conformal p-values for ith layer, kth node and lth

observation is,

pi,ktune(Xl) =

∑n2
j=1{I(σik

cal(Xj) < σik
tune(Xl)) + Un2+1 · I(σik

cal(Xj) = σik
tune(Xl))}

n2 + 1
,

(11)
Given X2n+1 ∈ Dtest and y = k, we form (X2n+1, y), compute the
non-conformity score σi,y

test(X2n+1) from equation (4) and corresponding
conformal p-value as

pi,ytest(X2n+1) =

∑n2
j=1{I(σik

cal(Xj) < σi,y
test(X2n+1)) + Un2+1 · I(σik

cal(Xj) = σi,y
test(X2n+1))}

n2 + 1
(12)

end

end
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Algorithm 3: FWER controlling procedure for MHT

Input: α ∈ (0, 1), α̃i, i = 1, 2, . . . , c s.t.
∑c

i=1 α̃i ≤ α.
Output: S(α): Set of accepted hypotheses in the leaf layer.
while layer, i < c do

for k ∈ {1, . . . , ni} do
For y = k, compute conformal p-values for each node y in the ith layer as
pi,y(X2n+1), using Algorithm 1.

Test Hik, in layer i at α̃i.
Reject Hik and all its children’s hypotheses if pi,y(X2n+1) < α̃i.

end

end
For layer i = c and k = 1, . . . , ni, Reject Hik if pi,y(X2n+1) < α̃i.

Algorithm 4: Hyper-parameter tuning λ∗

Input: αf = 0, αc = α, α∗ = (αf + αc)/2, α ∈ (0, 1).
Output: λ∗

while (α∗ > 0 and α∗ ≤ α) do
Compute prediction set for each observation (Xj , Yj) ∈ Dtune, j = 1, . . . , n3 is given
by

Ĉtune(Xj , α
∗) = {y : Labelset y for which leaf hypothesis ∈ S(α∗)} (13)

// This is done using output of Algorithm 3 where X2n+1 is replaced

by Xj ∈ Dtune.

Calculate the coverage on Ĉtune(Xj , α
∗) as

C(α∗) =
1

n3

n3∑
j=1

I
{
Yj ∈ Ĉtune(Xj , α

∗)
}

if C(α∗) < 1− (1 + 1/n)(α− 1/n) then
αc ← α∗; α∗ = (αf + αc)/2

end
if C(α∗) > 1− (1 + 1/n)(α− 1/n) then

αf ← α∗; α∗ = (αf + αc)/2
end
if 0 ≤ C(α∗) ≤ 1/n then

break
end

end
λ∗ = α∗/α
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3.2.5. Prediction Set

To construct the prediction set, we utilize the output of Algorithm 3, which provides S(α)
as the set of accepted hypotheses in the leaf layer. The prediction set includes all labels for
which the corresponding leaf hypotheses are not rejected at level α. The prediction set for
Dtest = X2n+1 is given by:

Ĉtest(X2n+1, α) = {y : Labelset y for which leaf hypothesis ∈ S(α)}, (14)

Split-Conformal Prediction Set: Algorithm 5 outlines our proposed method, Tree-
Based Multi-Label Conformal Prediction (TB) with split-conformal method. For simplic-
ity, we divide the data into three equal subsets, namely Dtr,Dcal and Dtune. However, in
practice, we can change the splitting ratio for better results.

Algorithm 5: Split-Conformal λ∗ TB

Input: D = (Xj , Yj)
2n
j=1, Dtest = X2n+1, black-box B, number of labels c.

Output: Prediction set, Ĉtest(X2n+1, α̃) for the unobserved label Y2n+1.
Build a hierarchical tree using Algorithm 1.
Randomly split the data into 3 equal subsets, Dtr,Dcal and Dtune.
Calculate the conformal p-values pi,ktune(Xj) on the nodes of the tree for the labeled data in
Dtune using Algorithm 2.

Perform multiple hypothesis testing (MHT) on the conformal p-values, pi,ktune(Xj) using
Algorithm 3.

Find the tuning parameter λ∗ using pi,ktune(Xj) in Algorithm 4.

Calculate the conformal p-values pi,ytest(X2n+1) on the test data in Dtest using Algorithm 2.
Perform multiple hypothesis testing (MHT) on the conformal p-values pitest(X2n+1) with λ∗

using Algorithm 3.
Build the prediction set, Ĉtest(X2n+1, α̃) for Dtest = X2n+1 using equation (14).

Remark 3 In Algorithm 5, if we use procedure 1 of FWER control, then Dtune and calcu-
lation of λ∗ is omitted.

4. Statistical Property

For any non-conformity score function, given the non-conformity scores of calibration data
(Xi, Yi)

n
i=1 as σi, i = 1, . . . , n and for test data (Xn+1, Yn+1), where Yn+1 is unknown as

σn+1, we define smoothed conformal p-value for test observation as p(Xn+1, Yn+1) defined
below:

p(Xn+1, Yn+1) =

∑n
i=1{I(σi < σ

Yn+1

n+1 ) + Un+1 · I(σi = σ
Yn+1

n+1 )}
n+ 1

, (15)

where Un+1 ∼ Unif(0, 1) is random variable independent of σi’s introduced to break ties.

For the sake of simplicity, we will use the notation σn+1 to represent σ
Yn+1

n+1 throughout the
remaining proofs in Section 4 and appendix A.
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Proposition 1 (Validity of conformal p-values) Given (n+1) observations, (Xi, Yi)
n+1
i=1

are exchangeable, then the smoothed conformal p-value defined in equation (15) is uniformly
distributed on the interval (0, 1) i.e., for any given t ∈ [0, 1], we have

P{p(Xn+1, Yn+1) ≤ t} = t

Proposition 2 Under the same exchangeability assumption as in Proposition 1, any hier-
archical testing procedure defined in section 3.2.4 with critical values αi satisfying

∑c
i=1 αi ≤

α strongly controls FWER at level α.

Remark 3 By using the result of Proposition 2, procedure 1 described in section 3.2.4 with
critical value αi = α/c strongly controls FWER at level α.

To show the FWER control of procedure 2, we need to use the following lemma.

Lemma 4 (Romano et al., 2019) Suppose Z1, . . . , Zn are exchangeable random variables.
For any α ∈ (0, 1),

P{Zn+1 ≤ Q̂n((1 +
1

n
)α)} ≥ α

Moreover, if the random variable Z1, . . . , Zn are almost surely distinct, then also,

P{Zn+1 ≤ Q̂n((1 +
1

n
)α)} ≤ α+

1

n

Proposition 5 Under the same exchangeability assumption as in Proposition 1, procedure
2 defined in Section 3.2.4, ensures strong control of FWER at level α i.e,

FWER ≤ α

Moreover, the FWER is bounded from below by α− 1/n, i.e.,

FWER ≥ α− 1

n

Remark 6 Proposition 5 shows procedure 2 is almost optimal in the sense that the corre-
sponding FWER is almost equal to the pre-specified level α if n is large enough.

Theorem 7 (Validity of Prediction Set) Under the same exchangeability assumption
as in Proposition 1, the prediction sets obtained based on procedure 1 and 2 and equation
(14) are both guaranteed to be marginally valid, i.e.,

P{Yn+1 ∈ Ĉtest(Xn+1, α)} ≥ 1− α.

Moreover, the prediction set based on procedure 2 also satisfies

P{Yn+1 ∈ Ĉtest(Xn+1, α)} ≤ 1− α+
1

n
.

Proof By using the same argument as in Proposition 5, the event of Yn+1 ∈ Ĉtest(Xn+1, α
∗)

is equivalent to the only true null hypothesis is not rejected for each layer i, which in turn
implies

P{Yn+1 ∈ Ĉtest(Xn+1, α)} = 1− FWER (16)

12
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By using proposition 2 and 5, we have marginal validity of prediction sets from both the
procedures,

P{Yn+1 ∈ Ĉtest(Xn+1, α)} ≥ 1− α. (17)

From equation (26) of proposition 5, we get the upper bound of the prediction set for Pro-
cedure 2 as

P{Yn+1 ∈ Ĉtest(Xn+1, α)} ≤ 1− α+
1

n
. (18)

This completes the proof.

5. Missing Information

In practical applications, it is common to encounter situations where not all possible la-
belsets are present in the data. This missing information can pose a challenge when im-
plementing our proposed Tree-Based Multi-label Conformal Prediction (TB) procedure de-
scribed in section 3. To address this issue, we have developed two modified versions of our
procedure that can handle missing labelsets in different ways.

1. The first approach referred to as Tree-Based MLCP with present labelsets (TB1),
involves building the hierarchical tree using only the labelsets that are present in the
data. Next, we formulate the multiple hypothesis testing (MHT) problem based on
the resulting hierarchical tree. Finally, we apply Algorithm 5 to build a prediction set
for an unobserved test instance. This approach assumes that the missing labelsets are
simply absent from the data and does not attempt to make any assumptions about
them. Papadopoulos (2014) and Wang et al. (2014) proposed Power-Set MLCP1
(PS-MLCP1), which uses a similar approach for handling missing labelsets.

2. The second approach referred to as Tree-Based MLCP with parent p-value labelsets
(TB2), addresses the issue of missing labelsets by using the hierarchical tree of all
possible labelsets and assigning parent p-value to the nodes with missing informa-
tion. Finally, we apply Algorithm 5 to build a prediction set for an unobserved test
instance. This approach provides a more structured way of making predictions on
missing labelsets and takes into account the relationships between different labelsets
in the hierarchical tree. Due to the logical relationship between parent and children
from the hierarchical tree, we can assign the parent p-value to the nodes with missing
labelsets (i.e., missing information). Hence, it can handle the missing information
more efficiently than PS-MLCP2 (refer section 6 for more details), where we use PS-
MLCP1 to the present labelsets and add all missing labelsets in the predictions set to
account for missing information.

Overall, these two modified versions of our TB procedure provide more robust ways of
handling missing labelsets in real-world applications. The choice of approach will depend
on the specific context and nature of the missing labelsets, and both approaches have
their respective strengths and limitations. TB2 accounts for the missing information by
assigning parent p-value to the nodes with missing information. However, this method is
computationally intensive. On the other hand, TB1 will be computationally efficient, but

13
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it does not account for missing information in the data. A trade-off between the length of
prediction sets and coverage rate arises when choosing between TB1 and TB2 methods.
TB1, which employs present labelsets, yields shorter prediction sets with low coverage
compared to TB2, which provides larger prediction sets with higher coverage.

6. Experiments

In this section, we evaluate the performance of our proposed method, TB, described in
section 3, and compare it with two existing methods, BR-MLCP and PS-MLCP, with some
modifications for fair comparisons. We use one simulated dataset and two real datasets to
compare the methods based on their length of prediction set and marginal coverage. We
evaluate the results for a range of significance levels, including α = (0.02, 0.05, 0.08, 0.10,
0.12, 0.15, 0.20, 0.25, 0.30, 0.35). For each task, we implement the following 5 methods for
comparisons:

1. Binary Relevance MLCP (BR-MLCP): With significance level = α/c for c labels.

2. Power Set MLCP with present labelsets (PS-MLCP1): In this scenario, Power set
MLCP is applied to the data with present labelsets and missing labelsets are not
included in the prediction set.

3. Power Set MLCP with all labelsets (PS-MLCP2): In this scenario, Power set MLCP
is applied to the data with present labelsets and missing labelsets are added in the
prediction set.

4. Tree Based MLCP with present labelsets (TB1): The following two versions are im-
plemented with present labelsets:

(i) TB1 fixed-alpha method: Using procedure 1 of FWER control i.e., αi = α/c with
Algorithm 5 (omitting tuning set and λ∗).

(ii) TB1 adaptive-alpha: Using procedure 2 of FWER control i.e., using optimal λ∗

with Algorithm 5.

5. Tree Based MLCP with parent p-value labelsets (TB2): The following two versions are
implemented with parent p-value labelsets:

(i) TB2 fixed-alpha: Using procedure 1 of FWER control i.e., αi = α/c with Algo-
rithm 5 (omitting tuning set and λ∗).

(ii) TB2 adaptive-alpha: Using procedure 2 of FWER control i.e., using optimal λ∗

with Algorithm 5.

For all experiments, we use the Naive-Bayes algorithm as the black-box algorithm, and
the non-conformity score is computed as 1− predicted probability, as discussed in section
2.1. We perform 50 replications of the simulations and real data and present the average
results.

14
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6.1. Simulation

We generate n = 10,000 data points (Xi, Yi), i = 1, 2, . . . , n, and Yi = (Y 1
i , . . . , Y

5
i ) denotes

the response vector for ith observation with c = 5 labels and each feature X = (X1, X2) is
derived from Gaussian mixture model of two distributions as follows:

• X1 ∼ 0.5 ∗ N (1, 0.3) + 0.5 ∗ N (0, 1)

• X2 ∼ 0.3 ∗ N (−1/2, 0.2) + 0.7 ∗ N (−
√

3/2, 0.4)

We generate multiple labels (i.e., response variables) sequentially by Y 1 ∼ Bernoulli(π1),

where π1 = P(Y 1|X) =
1

1 + e−z1
and z1 = XTβ+ϵ1, for a coefficient vector β = (β0, β1, β2) =

(2, 2.5, 2) and random error term, ϵ1 = −0.5X3
1 . For consecutive labels, i.e., for the j-th la-

bel, j > 1 and j = 2, . . . , 5, we set zj = XTβ +
∑j−1

k=1wjkY
k + ϵj , wjk = 0 for k ≥ j,

and wjk = 1.5 for k < j, indicating that the value of (Y 1, . . . , Y j−1) has a direct effect on
Y j . This is done to introduce dependence among the labels. The total number of possible
labelsets is 2c, out of which 16 labelsets are present in the data as illustrated from the leaf
nodes in Figure 3. However, TB2 (all labelsets) uses 32 possible labelsets to build the tree.

Figure 3: Hierarchical tree for TB-MLCP (present labelsets) where c = 5.

In the adaptive-alpha approach, we split the data into four parts: proper training,
calibration, tuning and test, with a split ratio of 30:30:20:20. In the fixed-alpha approach,
we split the data into three parts: proper training, calibration and test, with a split ratio
of 20:60:20.

In Figure 4, we present a comparison of our proposed procedures (TB1 and TB2
with both fixed-alpha and adaptive-alpha) with existing methods including BR-MLCP,
PS-MLCP1, and PS-MLCP2. The left panel of Figure 4 shows that all evaluated methods,
including our proposed procedures, are able to achieve marginal coverage, indicating their
ability to capture the true labels with high probability. TB1 and TB2 with fixed-alpha
approach provide over-coverage, but with adaptive-alpha approaches, TB1 and TB2 pro-
vide nicely controlled coverages. The right panel of Figure 4 indicates that BR-MLCP and
PS-MLCP2 tend to generate larger prediction sets, while our proposed tree-based approach
(TB2 with adaptive-alpha) provides shorter prediction sets than TB2 with fixed-alpha ap-
proach and PS-MLCP2 method, providing a more efficient solution to the problem of missing
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Figure 4: Comparison results of our-proposed procedure with BR-MLCP and PS-MLCP in
terms of length of the prediction set and marginal coverage.

information than the PS-MLCP2 method. We also note that there is only a slight difference
between the prediction set lengths of PS-MLCP1 and TB1 with adaptive-alpha. Also, the
adaptive-alpha approach produces shorter prediction sets than the fixed-alpha approach in
both TB1 and TB2 methods.

6.2. Real Data Example

The real datasets used in this study were obtained from the MULAN library.

6.2.1. Scene Classification

The dataset pertains to the semantic classification of images into multiple labels, including
beach, sunset, foliage, field, mountain, and urban, with a total of 6 labels. The dataset
comprises 1,211 training and 1,196 test samples, each described by 294 features. Among
the 64 possible labelsets in the data with c = 6, only 14 were present, and we further
filtered and preprocessed the data to focus on 8 of these labelsets (that occurred more than
20 times). To train and evaluate our proposed methods with existing methods, we split
training samples into proper training and calibration set as 40:60 split. If we require tuning
set (i.e., for TB1 and TB2 with adaptive-alpha approach), then we split test samples into
tuning and test with 50:50 split else, there is no split for test samples.

Figure 5 provides similar results as simulation studies. The left panel of the figure shows
that all methods, including our proposed methods, provide marginal coverage guarantees
with over coverage provided by the fixed-alpha approach. However, with adaptive-alpha
approach, nice coverages are achieved for both TB1 and TB2 methods. The right panel
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Figure 5: Comparison results of our-proposed procedure with BR-MLCP and PS-MLCP in
terms of length of the prediction set and marginal coverage on scene dataset.

of Figure 5 shows that TB2 fixed-alpha and adaptive-alpha approach produces shorter
sets compared to the PS-MLCP2 approach. Moreover, the set size produced by the TB2
adaptive-alpha approach is smaller than TB2 fixed-alpha approach. Meanwhile, PS-MLCP1
and TB1 adaptive-alpha produce similar set sizes. TB1 fixed-alpha set sizes are slightly
larger than TB1 adaptive-alpha. BR-MLCP produces larger set sizes than other methods.

6.2.2. Yeast

The dataset comprises 1,500 training and 917 test samples. Each gene is initially character-
ized by microarray expression data and phylogenetic profile, from which 103 features were
extracted, and is linked to a subset of 14 functional classes (i.e., c = 14 labels). Among
the 16,384 possible labelsets in the data with c = 14, only 16 were present. To train and
evaluate our proposed methods, we have used the same setting as in section 6.2.1.

The results presented in Figure 6 demonstrate that all of the methods under consid-
eration offer marginal coverage guarantees. TB1 and TB2 with adaptive-alpha approach
provides nice coverage as compared to fixed-alpha approach with both methods. In terms
of prediction set size, our proposed method TB2 adaptive-alpha outperforms PS-MLCP2.
Both PS-MLCP1 and TB1 adaptive-alpha show similar results in terms of the length of
prediction sets. On the other hand, the length of the prediction set for BR-MLCP is shorter
than that of PS-MLCP2. TB1 and TB2 with adaptive-alpha approach produce shorter set
sizes as compared to TB1 and TB2 with fixed-alpha approach.
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Figure 6: Comparison results of our-proposed procedure with BR-MLCP and PS-MLCP in
terms of length of the prediction set and marginal coverage on yeast dataset.

6.2.3. Tuning Parameter

In this section, we verify that the hyperparameter λ∗ is much larger than 1/c, which im-
plies that the adaptive-alpha approach is more powerful than the fixed-alpha approach in
both TB1 and TB2 methods. This is because the adaptive-alpha approach uses higher
critical value than the fixed-alpha approach. Figure 7 illustrates cλ∗ as a function of α and
demonstrates that cλ∗ is significantly greater than 1 for all three scenarios with c = 5, 6, 14.
This finding clearly explains why the adaptive-alpha approach performs better than the
fixed-alpha approach in our simulation study and real data analysis.

Figure 7: Tuning parameter λ∗ behavior with TB1 and TB2 adaptive-alpha approaches in
simulation, scene data and yeast data respectively.
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7. Discussion

In this paper, we proposed a tree-based method for multi-label classification problems us-
ing conformal prediction and multiple-testing. We presented four variants of the method,
TB1 (present labelsets) and TB2 (all labelsets), both with fixed-alpha and adaptive-alpha
approaches. Our method allows the use of any base classifier and provides prediction sets
with a pre-specified coverage rate, such as 90% while maintaining a small average length of
the prediction set. We can tune the parameter λ for adaptive-alpha approaches to ensure
the nice marginal coverage guarantee. Our simulation study and real data analysis demon-
strate that TB2 adaptive-alpha method outperforms other methods in terms of coverage
and prediction set length and also accounts for missing label information. We anticipate
that TB2 adaptive-alpha method will be a useful tool for researchers and practitioners
working on multi-label classification problems. However, some critical questions still need
to be addressed in future work. Firstly, we will explore more desired conditional coverage
guarantees. Secondly, when a large number of test samples are considered, we may need
to control some appropriate overall error rate, such as false discovery rate or false coverage
rate. Additionally, it is necessary to extend the method to handle a larger number of labels
and explore its performance in other types of machine-learning problems.
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Appendix A. Proofs

A.1. Proof of Proposition 1: Validity of conformal p-values

Proof Suppose, for any given values of non-conformity scores, v1, . . . , vn+1, they can be
rearranged as:

ṽ1 < . . . < ṽk,

where each ṽi is repeated ni times such that
∑k

i=1 ni = n + 1. Let Ev denote the event
that the non-conformity scores σi, i = 1, . . . , n+ 1 take on the specific values v1, . . . , vn+1.
Mathematically,

Ev = {(σ1, σ2, . . . , σn+1) : σi = vi for some permutation of v1, . . . , vn+1}
Since {Xi, Yi}n+1

i=1 are exchangeable, σi’s are also exchangeable, we have

P {σn+1 = ṽj |Ev} =
nj

n+ 1
, for j = 1, . . . , k (19)

Under the event of Ev and σn+1 = ṽj , we have from equation (15)

p(Xn+1, Yn+1) =

∑j−1
i=1 ni + Un+1 · nj

n+ 1
(20)

Thus, for any t ∈ [0, 1], we have from equation (20)

P
{
p(Xn+1, Yn+1) ≤ t

∣∣Ev, σn+1 = ṽj)
}
= P

{∑j−1
i=1 ni + Un+1 · nj

n+ 1
≤ t

∣∣Ev, σn+1 = ṽj

}

=



(n+ 1)t−
∑j−1

i=1 nj

nj
if

∑j−1
i=1 ni

n+ 1
< t ≤

∑j
i=1 ni

n+ 1
,

0 if 0 < t ≤
∑j−1

i=1 ni

n+ 1
,

1 if

∑j
i=1

n+ 1
< t ≤ 1

for j = 1, . . . , k. Thus, for

∑j−1
i=1 ni

n+ 1
< t ≤

∑j
i=1 ni

n+ 1
and j = 1, 2, . . . , k we have

P {p(Xn+1, Yn+1) ≤ t | Ev} =
k∑

j=1

P {p(Xn+1, Yn+1) ≤ t | Ev, σn+1 = σj} · P {σn+1 = σj | Ev}

=
k∑

j=1

nj

n+ 1
P {p(Xn+1, Yn+1) ≤ t | Ev, σn+1 = σj} , using equation (19)

=
nj

n+ 1

[
(n+ 1)t−

∑j−1
i=1 ni

nj

]
+

∑j−1
i=1 ni

n+ 1

= t−
∑j−1

i=1 ni

n+ 1
+

∑j−1
i=1 ni

n+ 1

= t
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That is,

p(Xn+1, Yn+1) | Ev ∼ U(0, 1) (21)

Taking the expectation on both sides of equation (21), we have

p(Xn+1, Yn+1) ∼ U(0, 1)

This completes the proof.

A.2. Proof of Proposition 2

Proof For the tree-based tested hypotheses formulated in section 3.2.2, there is only one
true null hypothesis in each layer. Let Hi denote the true null hypotheses for ith layer.
Then, the FWER of the hierarchical testing procedure with critical value αi is given below.

FWER = P{at least one Hi is rejected for i = 1, . . . , c}

Based on the construction of tested hypotheses, true null hypotheses H1, . . . ,Hc have the
parent-children relationship (i.e., Hi is a parent of Hi+1 for i = 1, · · · , c− 1), we get

FWER =

c∑
i=1

P{Hi is rejected but Hj are not rejected for j = 1, . . . , i− 1.}

≤
c∑

i=1

P{p(Xn+1, Yn+1) ≤ αi} (based on the definition of hierarchical testing)

=

c∑
i=1

αi, (by Proposition 1)

≤ α,

the desired result.

A.3. Proof of Proposition 5

Proof Let Dtune be the tuning dataset with |Dtune| = n. By Algorithm 4, we have

1

n

n∑
j=1

I{Yj ∈ Ĉtune(Xj , α
∗)} = 1− (1 +

1

n
)(α− 1

n
) (22)

Note that for any observation (Xj , Yj) ∈ Dtune, the event of Yj ∈ Ĉtune(Xj , α
∗) is equiv-

alent to the corresponding true null hypothesis is not rejected for each layer i, which in
turn is equivalent to pi(Xj , Yj) ≥ α∗, where pi(Xj , Yj) denotes the smoothed conformal
p-value for ith layer and jth observation as defined in equation (15). Define p(Xj , Yj) =
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min
i∈{1,...,c}

{pi(Xj , Yj)}. Thus, I{Yj ∈ Ĉtune(Xj , α
∗} = I{p(Xj , Yj) ≥ α∗}. Therefore, equation

(22) is equivalent to

1

n

n∑
j=1

I{p(Xj , Yj) ≥ α∗} = 1− (1 +
1

n
)(α− 1

n
) (23)

Thus, α∗ = Q̂n((1+
1

n
)(α− 1

n
)), the upper (1− (1+

1

n
)(α− 1

n
)) quantile of {p(Xj , Yj)}nj=1.

Let Zj = p(Xj , Yj), j = 1, . . . , n and Zn+1 = min
i∈{1,...,c}

{pi(Xn+1, Yn+1)}. Note that (Xi, Yi)’s

are exchangeable, so Z1, . . . , Zn+1 are also exchangeable. By Lemma 4, we have

P{Zn+1 ≤ Q̂n((1 +
1

n
)(α− 1

n
))} ≥ α− 1

n

By using the fact of α∗ = Q̂n((1 +
1

n
)(α− 1

n
)), we have

P{Zn+1 ≤ α∗} ≥ α− 1

n
(24)

By equation (15), Z1, . . . , Zn+1 are almost surely distinct, then Lemma 4 also gives

P{Zn+1 ≤ α∗} ≤ α (25)

Note that FWER of procedure 2 is given by P{Zn+1 ≤ α∗}. By equation (24) and (25), we
have

α− 1

n
≤ FWER ≤ α (26)

This completes the proof.
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