Familywise Error Rate Controlling Procedures for Discrete Data -Supplementary Materials

Yalin Zhu

Biostatistics and Research Decision Sciences, Merck Research Laboratories, Upper Gwynedd, PA, U.S.A.

Wenge Guo

Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, U.S.A.

November 26, 2018

S1 Results from Independence Simulation Settings

The simulation results under the independence setting for stepwise procedures comparisons are shown in this section. Tables S1, S2 and Tables S3, S4 respectively provide the results of numerical comparisons of single-step procedures using Fisher and Binomial Exact Tests (as plotted in Figures 1 and 2).

Table S1: Simulated FWER comparisons for single-step procedures with independent p-values generated from Fisher's Exact Test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

		N = 25	N = 50	N = 75	N = 100	N = 125	N = 150
m = 5 $\pi_0 = 0.2$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0025 \\ 0.0015 \\ 0.0010 \\ 0.0010 \end{array}$	$\begin{array}{c} 0.0060 \\ 0.0030 \\ 0.0030 \\ 0.0030 \end{array}$	$\begin{array}{c} 0.0035 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \end{array}$	$\begin{array}{c} 0.0075 \\ 0.0055 \\ 0.0055 \\ 0.0055 \end{array}$	$\begin{array}{c} 0.0075 \\ 0.0045 \\ 0.0045 \\ 0.0045 \end{array}$	$\begin{array}{c} 0.0095 \\ 0.0085 \\ 0.0085 \\ 0.0085 \end{array}$
m = 5 $\pi_0 = 0.4$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0045 \\ 0.0030 \\ 0.0015 \\ 0.0015 \end{array}$	$\begin{array}{c} 0.0130 \\ 0.0060 \\ 0.0060 \\ 0.0060 \end{array}$	$\begin{array}{c} 0.0120 \\ 0.0065 \\ 0.0065 \\ 0.0065 \end{array}$	$\begin{array}{c} 0.0170 \\ 0.0140 \\ 0.0140 \\ 0.0140 \end{array}$	$\begin{array}{c} 0.0135 \\ 0.0090 \\ 0.0090 \\ 0.0090 \end{array}$	$\begin{array}{c} 0.0145 \\ 0.0100 \\ 0.0100 \\ 0.0100 \end{array}$
m = 5 $\pi_0 = 0.6$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0085 \\ 0.0060 \\ 0.0025 \\ 0.0025 \end{array}$	$\begin{array}{c} 0.0200 \\ 0.0105 \\ 0.0100 \\ 0.0100 \end{array}$	$\begin{array}{c} 0.0195 \\ 0.0105 \\ 0.0105 \\ 0.0105 \\ 0.0105 \end{array}$	$\begin{array}{c} 0.0235 \\ 0.0180 \\ 0.0180 \\ 0.0180 \end{array}$	$\begin{array}{c} 0.0225 \\ 0.0155 \\ 0.0155 \\ 0.0160 \end{array}$	$\begin{array}{c} 0.0245 \\ 0.0170 \\ 0.0170 \\ 0.0175 \end{array}$
m = 5 $\pi_0 = 0.8$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0140 \\ 0.0110 \\ 0.0045 \\ 0.0045 \end{array}$	$\begin{array}{c} 0.0265 \\ 0.0140 \\ 0.0135 \\ 0.0135 \end{array}$	$\begin{array}{c} 0.0270 \\ 0.0155 \\ 0.0155 \\ 0.0155 \end{array}$	$\begin{array}{c} 0.0340 \\ 0.0245 \\ 0.0245 \\ 0.0245 \\ 0.0245 \end{array}$	$\begin{array}{c} 0.0315 \\ 0.0215 \\ 0.0215 \\ 0.0220 \end{array}$	$\begin{array}{c} 0.0370 \\ 0.0220 \\ 0.0220 \\ 0.0230 \end{array}$
m = 10 $\pi_0 = 0.2$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0020 \\ 0.0005 \\ 0.0005 \\ 0.0005 \end{array}$	$\begin{array}{c} 0.0060 \\ 0.0040 \\ 0.0040 \\ 0.0040 \end{array}$	$\begin{array}{c} 0.0100 \\ 0.0065 \\ 0.0065 \\ 0.0065 \end{array}$	$\begin{array}{c} 0.0115 \\ 0.0060 \\ 0.0060 \\ 0.0060 \end{array}$	$\begin{array}{c} 0.0095 \\ 0.0070 \\ 0.0070 \\ 0.0070 \\ 0.0070 \end{array}$	$\begin{array}{c} 0.0110 \\ 0.0060 \\ 0.0060 \\ 0.0060 \end{array}$
m = 10 $\pi_0 = 0.4$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0050 \\ 0.0025 \\ 0.0025 \\ 0.0025 \end{array}$	$\begin{array}{c} 0.0145 \\ 0.0090 \\ 0.0090 \\ 0.0090 \end{array}$	$\begin{array}{c} 0.0165 \\ 0.0120 \\ 0.0120 \\ 0.0120 \end{array}$	$\begin{array}{c} 0.0190 \\ 0.0100 \\ 0.0100 \\ 0.0110 \end{array}$	$\begin{array}{c} 0.0215 \\ 0.0140 \\ 0.0140 \\ 0.0145 \end{array}$	$\begin{array}{c} 0.0190 \\ 0.0125 \\ 0.0125 \\ 0.0130 \end{array}$
m = 10 $\pi_0 = 0.6$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0090 \\ 0.0055 \\ 0.0045 \\ 0.0045 \end{array}$	$\begin{array}{c} 0.0245 \\ 0.0150 \\ 0.0140 \\ 0.0140 \end{array}$	$\begin{array}{c} 0.0260 \\ 0.0185 \\ 0.0185 \\ 0.0185 \end{array}$	$\begin{array}{c} 0.0265 \\ 0.0150 \\ 0.0150 \\ 0.0160 \end{array}$	$\begin{array}{c} 0.0300 \\ 0.0180 \\ 0.0180 \\ 0.0195 \end{array}$	$\begin{array}{c} 0.0255 \\ 0.0155 \\ 0.0155 \\ 0.0155 \\ 0.0155 \end{array}$
m = 10 $\pi_0 = 0.8$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0175 \\ 0.0090 \\ 0.0055 \\ 0.0055 \end{array}$	$\begin{array}{c} 0.0335 \\ 0.0215 \\ 0.0190 \\ 0.0190 \end{array}$	$\begin{array}{c} 0.0345 \\ 0.0225 \\ 0.0225 \\ 0.0225 \\ 0.0225 \end{array}$	$\begin{array}{c} 0.0370 \\ 0.0190 \\ 0.0190 \\ 0.0210 \end{array}$	$\begin{array}{c} 0.0390 \\ 0.0220 \\ 0.0220 \\ 0.0240 \end{array}$	$\begin{array}{c} 0.0360 \\ 0.0200 \\ 0.0200 \\ 0.0200 \\ 0.0200 \end{array}$
m = 15 $\pi_0 = 0.2$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0040 \\ 0.0020 \\ 0.0005 \\ 0.0005 \end{array}$	$\begin{array}{c} 0.0060 \\ 0.0030 \\ 0.0030 \\ 0.0030 \end{array}$	$\begin{array}{c} 0.0065 \\ 0.0030 \\ 0.0030 \\ 0.0030 \end{array}$	$\begin{array}{c} 0.0120 \\ 0.0065 \\ 0.0065 \\ 0.0075 \end{array}$	$\begin{array}{c} 0.0080 \\ 0.0045 \\ 0.0045 \\ 0.0045 \end{array}$	$\begin{array}{c} 0.0100 \\ 0.0070 \\ 0.0070 \\ 0.0070 \end{array}$
m = 15 $\pi_0 = 0.4$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0090 \\ 0.0060 \\ 0.0010 \\ 0.0010 \end{array}$	$\begin{array}{c} 0.0150 \\ 0.0075 \\ 0.0070 \\ 0.0070 \end{array}$	$\begin{array}{c} 0.0140 \\ 0.0065 \\ 0.0065 \\ 0.0065 \end{array}$	$\begin{array}{c} 0.0240 \\ 0.0125 \\ 0.0125 \\ 0.0145 \end{array}$	$\begin{array}{c} 0.0210 \\ 0.0150 \\ 0.0150 \\ 0.0150 \end{array}$	$\begin{array}{c} 0.0200 \\ 0.0105 \\ 0.0105 \\ 0.0105 \end{array}$
m = 15 $\pi_0 = 0.6$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0165 \\ 0.0090 \\ 0.0020 \\ 0.0020 \end{array}$	$\begin{array}{c} 0.0250 \\ 0.0130 \\ 0.0105 \\ 0.0105 \end{array}$	$\begin{array}{c} 0.0210 \\ 0.0095 \\ 0.0095 \\ 0.0095 \\ 0.0095 \end{array}$	$\begin{array}{c} 0.0325\\ 0.0170\\ 0.0170\\ 0.0170\\ 0.0190 \end{array}$	$\begin{array}{c} 0.0320 \\ 0.0205 \\ 0.0205 \\ 0.0205 \\ 0.0205 \end{array}$	$\begin{array}{c} 0.0280 \\ 0.0180 \\ 0.0180 \\ 0.0180 \\ 0.0180 \end{array}$
$m = 15$ $\pi_0 = 0.8$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0210 \\ 0.0115 \\ 0.0020 \\ 0.0020 \end{array}$	$\begin{array}{c} 0.0\overline{345} \\ 0.0170 \\ 0.0135 \\ 0.0135 \end{array}$	$\begin{array}{r} 0.0315\\ 0.0155\\ 0.0155\\ 0.0155\\ 0.0155\end{array}$	$\begin{array}{c} 0.0400\\ 0.0215\\ 0.0215\\ 0.0240 \end{array}$	$\begin{array}{c} 0.0\overline{460} \\ 0.0285 \\ 0.0285 \\ 0.0285 \end{array}$	$\begin{array}{c} 0.0\overline{360} \\ 0.0240 \\ 0.0240 \\ 0.0240 \\ 0.0240 \end{array}$

Table S2: Simulated minimal power comparisons for single-step procedures with independent *p*-values generated from Fisher's exact test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

		N = 25	N = 50	N = 75	N = 100	N = 125	N = 150
$m = 5$ $\pi_0 = 0.2$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.2550 \\ 0.1945 \\ 0.1125 \\ 0.1125 \end{array}$	$\begin{array}{c} 0.5060 \\ 0.3900 \\ 0.3825 \\ 0.3825 \end{array}$	$\begin{array}{c} 0.6855 \\ 0.5775 \\ 0.5765 \\ 0.5850 \end{array}$	$\begin{array}{c} 0.8195 \\ 0.7680 \\ 0.7680 \\ 0.7680 \end{array}$	$\begin{array}{c} 0.9145 \\ 0.8655 \\ 0.8655 \\ 0.8710 \end{array}$	$\begin{array}{c} 0.9505 \\ 0.9275 \\ 0.9275 \\ 0.9340 \end{array}$
$m = 5$ $\pi_0 = 0.4$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.2110 \\ 0.1605 \\ 0.0880 \\ 0.0880 \end{array}$	$\begin{array}{c} 0.4085 \\ 0.3110 \\ 0.3000 \\ 0.3000 \end{array}$	$\begin{array}{c} 0.5785 \\ 0.4715 \\ 0.4700 \\ 0.4770 \end{array}$	$\begin{array}{c} 0.7405 \\ 0.6705 \\ 0.6705 \\ 0.6705 \end{array}$	$\begin{array}{c} 0.8375 \\ 0.7695 \\ 0.7695 \\ 0.7765 \end{array}$	$\begin{array}{c} 0.9025 \\ 0.8625 \\ 0.8625 \\ 0.8680 \end{array}$
$m = 5$ $\pi_0 = 0.6$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.1550 \\ 0.1180 \\ 0.0605 \\ 0.0605 \end{array}$	$\begin{array}{c} 0.3130 \\ 0.2365 \\ 0.2190 \\ 0.2190 \end{array}$	$\begin{array}{c} 0.4320 \\ 0.3370 \\ 0.3355 \\ 0.3420 \end{array}$	$\begin{array}{c} 0.5835 \\ 0.5145 \\ 0.5145 \\ 0.5145 \end{array}$	$\begin{array}{c} 0.7025 \\ 0.6255 \\ 0.6255 \\ 0.6330 \end{array}$	$\begin{array}{c} 0.7845 \\ 0.7245 \\ 0.7245 \\ 0.7345 \end{array}$
$m = 5$ $\pi_0 = 0.8$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.0945 \\ 0.0740 \\ 0.0330 \\ 0.0330 \end{array}$	$\begin{array}{c} 0.1800 \\ 0.1330 \\ 0.1190 \\ 0.1190 \end{array}$	$\begin{array}{c} 0.2570 \\ 0.1920 \\ 0.1920 \\ 0.1955 \end{array}$	$\begin{array}{c} 0.3595 \\ 0.2955 \\ 0.2955 \\ 0.2955 \\ 0.2955 \end{array}$	$\begin{array}{c} 0.4660 \\ 0.3950 \\ 0.3950 \\ 0.4025 \end{array}$	$\begin{array}{c} 0.5505 \\ 0.4850 \\ 0.4850 \\ 0.5005 \end{array}$
m = 10 $\pi_0 = 0.2$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.3155 \\ 0.2075 \\ 0.1575 \\ 0.1575 \end{array}$	$\begin{array}{c} 0.6130 \\ 0.4695 \\ 0.4660 \\ 0.4660 \end{array}$	$\begin{array}{c} 0.8090 \\ 0.7220 \\ 0.7220 \\ 0.7220 \\ 0.7220 \end{array}$	$\begin{array}{c} 0.9110 \\ 0.8550 \\ 0.8550 \\ 0.8595 \end{array}$	$\begin{array}{c} 0.9765 \\ 0.9415 \\ 0.9415 \\ 0.9425 \end{array}$	$\begin{array}{c} 0.9930 \\ 0.9820 \\ 0.9820 \\ 0.9830 \end{array}$
m = 10 $\pi_0 = 0.4$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.2700 \\ 0.1770 \\ 0.1235 \\ 0.1235 \end{array}$	$\begin{array}{c} 0.5220 \\ 0.3905 \\ 0.3795 \\ 0.3795 \end{array}$	$\begin{array}{c} 0.7180 \\ 0.6065 \\ 0.6065 \\ 0.6065 \end{array}$	$\begin{array}{c} 0.8455 \\ 0.7720 \\ 0.7720 \\ 0.7775 \end{array}$	$\begin{array}{c} 0.9440 \\ 0.8905 \\ 0.8905 \\ 0.8920 \end{array}$	$\begin{array}{c} 0.9750 \\ 0.9505 \\ 0.9505 \\ 0.9575 \end{array}$
m = 10 $\pi_0 = 0.6$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.2005 \\ 0.1330 \\ 0.0800 \\ 0.0800 \end{array}$	$\begin{array}{c} 0.4030 \\ 0.2990 \\ 0.2825 \\ 0.2825 \end{array}$	$\begin{array}{c} 0.5615 \\ 0.4525 \\ 0.4525 \\ 0.4525 \end{array}$	$\begin{array}{c} 0.7300 \\ 0.6315 \\ 0.6315 \\ 0.6375 \end{array}$	$\begin{array}{c} 0.8450 \\ 0.7590 \\ 0.7590 \\ 0.7615 \end{array}$	$\begin{array}{c} 0.9035 \\ 0.8525 \\ 0.8525 \\ 0.8585 \end{array}$
m = 10 $\pi_0 = 0.8$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.1115 \\ 0.0760 \\ 0.0390 \\ 0.0390 \end{array}$	$\begin{array}{c} 0.2440 \\ 0.1680 \\ 0.1555 \\ 0.1555 \end{array}$	$\begin{array}{c} 0.3500 \\ 0.2645 \\ 0.2645 \\ 0.2645 \end{array}$	$\begin{array}{c} 0.4775 \\ 0.3810 \\ 0.3810 \\ 0.3880 \end{array}$	$\begin{array}{c} 0.6140 \\ 0.5165 \\ 0.5165 \\ 0.5170 \end{array}$	$\begin{array}{c} 0.6935 \\ 0.6060 \\ 0.6060 \\ 0.6185 \end{array}$
m = 15 $\pi_0 = 0.2$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.3370 \\ 0.2520 \\ 0.1390 \\ 0.1390 \end{array}$	$\begin{array}{c} 0.6715 \\ 0.4995 \\ 0.4870 \\ 0.4870 \end{array}$	$\begin{array}{c} 0.8820 \\ 0.7530 \\ 0.7515 \\ 0.7515 \end{array}$	$\begin{array}{c} 0.9495 \\ 0.8910 \\ 0.8910 \\ 0.8960 \end{array}$	$\begin{array}{c} 0.9915 \\ 0.9765 \\ 0.9765 \\ 0.9765 \\ 0.9765 \end{array}$	$\begin{array}{c} 0.9965 \\ 0.9895 \\ 0.9895 \\ 0.9895 \\ 0.9895 \end{array}$
m = 15 $\pi_0 = 0.4$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.2880 \\ 0.2110 \\ 0.1030 \\ 0.1030 \end{array}$	$\begin{array}{c} 0.5815 \\ 0.4105 \\ 0.3870 \\ 0.3870 \end{array}$	$\begin{array}{c} 0.7910 \\ 0.6475 \\ 0.6460 \\ 0.6460 \end{array}$	$\begin{array}{c} 0.9025 \\ 0.8050 \\ 0.8050 \\ 0.8125 \end{array}$	$\begin{array}{c} 0.9635 \\ 0.9335 \\ 0.9335 \\ 0.9335 \\ 0.9335 \end{array}$	$\begin{array}{c} 0.9830 \\ 0.9745 \\ 0.9745 \\ 0.9745 \end{array}$
$m = 15$ $\pi_0 = 0.6$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.2135 \\ 0.1495 \\ 0.0700 \\ 0.0700 \end{array}$	$\begin{array}{c} 0.4485 \\ 0.3070 \\ 0.2760 \\ 0.2760 \end{array}$	$\begin{array}{c} 0.6570 \\ 0.5085 \\ 0.5065 \\ 0.5065 \\ 0.5065 \end{array}$	$\begin{array}{c} 0.7925 \\ 0.6730 \\ 0.6730 \\ 0.6790 \end{array}$	$\begin{array}{c} 0.8840 \\ 0.8315 \\ 0.8315 \\ 0.8315 \\ 0.8315 \end{array}$	$\begin{array}{c} 0.9500 \\ 0.9140 \\ 0.9140 \\ 0.9140 \\ 0.9140 \end{array}$
m = 15 $\pi_0 = 0.8$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.1205 \\ 0.0830 \\ 0.0335 \\ 0.0335 \end{array}$	$\begin{array}{c} 0.2635 \\ 0.1785 \\ 0.1480 \\ 0.1480 \end{array}$	$\begin{array}{c} 0.4270 \\ 0.3050 \\ 0.3040 \\ 0.3040 \end{array}$	$\begin{array}{c} 0.5490 \\ 0.4295 \\ 0.4290 \\ 0.4345 \end{array}$	$\begin{array}{c} 0.6710 \\ 0.5890 \\ 0.5890 \\ 0.5895 \end{array}$	$\begin{array}{c} 0.7780 \\ 0.7020 \\ 0.7020 \\ 0.7020 \\ 0.7020 \end{array}$

Table S3: Simulated FWER comparisons for single-step procedures with independent p-values generated from Binomial Exact Test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

		$\pi_0 = 0.2$	$\pi_0 = 0.4$	$\pi_0 = 0.6$	$\pi_0 = 0.8$
	MBonf	0.0020	0.0060	0.0075	0.0165
m = 5	Tarone	0.0010	0.0030	0.0055	0.0105
$\alpha = 0.05$	Bonf	0.0010	0.0020	0.0025	0.0030
	Sidak	0.0010	0.0020	0.0025	0.0030
	MBonf	0.0010	0.0045	0.0130	0.0160
m = 10	Tarone	0.0000	0.0010	0.0050	0.0115
$\alpha = 0.05$	Bonf	0.0000	0.0005	0.0025	0.0025
	Sidak	0.0000	0.0005	0.0025	0.0025
	MBonf	0.0010	0.0065	0.0045	0.0150
m = 15	Tarone	0.0000	0.0010	0.0020	0.0070
$\alpha = 0.05$	Bonf	0.0000	0.0005	0.0000	0.0000
	Sidak	0.0000	0.0005	0.0000	0.0000
	MBonf	0.0070	0.0125	0.0200	0.0365
m = 5	Tarone	0.0020	0.0065	0.0110	0.0285
$\alpha = 0.1$	Bonf	0.0020	0.0055	0.0065	0.0130
	Sidak	0.0020	0.0055	0.0065	0.0130
	MBonf	0.0040	0.0080	0.0275	0.0350
m = 10	Tarone	0.0000	0.0030	0.0165	0.0195
$\alpha = 0.1$	Bonf	0.0000	0.0015	0.0055	0.0060
-	Sidak	0.0000	0.0015	0.0055	0.0060
	MBonf	0.0060	0.0155	0.0185	0.0315
m = 15	Tarone	0.0005	0.0060	0.0045	0.0200
$\alpha = 0.1$	Bonf	0.0000	0.0010	0.0020	0.0025
	Sidak	0.0000	0.0010	0.0020	0.0025

Table S4: Simulated minimal power comparisons for single-step procedures with independent *p*-values generated from Binomial Exact Test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

		$\pi_0 = 0.2$	$\pi_0 = 0.4$	$\pi_0 = 0.6$	$\pi_0 = 0.8$
	MBonf	0.9205	0.8805	0.7845	0.5565
m = 5	Tarone	0.8815	0.8240	0.7395	0.5235
$\alpha = 0.05$	Bonf	0.8735	0.8055	0.6610	0.4045
$\alpha = 0.05$	Sidak	0.8735	0.8055	0.6610	0.4045
	MBonf	0.9850	0.9635	0.9035	0.7390
m = 10	Tarone	0.9470	0.9240	0.8630	0.6855
$\alpha = 0.05$	Bonf	0.9315	0.8635	0.7050	0.4775
$\alpha = 0.05$	Sidak	0.9315	0.8635	0.7050	0.4775
	MBonf	0.9925	0.9810	0.9555	0.8210
m = 15	Tarone	0.9825	0.9500	0.9095	0.7845
$\alpha = 0.05$	Bonf	0.9820	0.9475	0.8560	0.6135
$\alpha = 0.05$	Sidak	0.9820	0.9475	0.8560	0.6135
	MBonf	0.9680	0.9415	0.8615	0.6330
m = 5	Tarone	0.9410	0.9140	0.8240	0.5920
- 01	Bonf	0.9050	0.8375	0.7040	0.4520
$\alpha = 0.1$	Sidak	0.9050	0.8375	0.7040	0.4520
	MBonf	0.9965	0.9875	0.9620	0.8315
m = 10	Tarone	0.9885	0.9660	0.9170	0.7835
$\alpha = 0.1$	Bonf	0.9870	0.9565	0.8690	0.6600
$\alpha = 0.1$	Sidak	0.9870	0.9565	0.8690	0.6600
	MBonf	0.9995	0.9970	0.9830	0.9030
m = 15	Tarone	0.9960	0.9930	0.9605	0.8400
$\alpha = 0.1$	Bonf	0.9880	0.9615	0.8830	0.6515
$\alpha = 0.1$	Sidak	0.9895	0.9635	0.8880	0.6590

Tables S5 and S6 provide numerical results of step-down procedures comparisons using Fisher Exact Test, which are also plotted as Figures S1 and S2. Tables S7 and S8 provide numerical results of step-up procedures comparisons using Fisher Exact Test, which are plotted as Figures S3 and S4.

Table S5: Simulated FWER comparisons for step-down procedures with independent p-values generated from Fisher's Exact Test statistics, including Procedure 3.2 (MHolm), Procedure 2.3 (TH), and the conventional Holm procedure (Holm).

		N = 25	N = 50	N = 75	N = 100	N = 125	N = 150
m = 5	MHolm TH	$0.0030 \\ 0.0015$	$0.0090 \\ 0.0045$	$0.0065 \\ 0.0030$	$0.0115 \\ 0.0075$	$0.0150 \\ 0.0090$	$0.0150 \\ 0.0140$
$\pi_0 = 0.2$	Holm	0.0010	0.0045	0.0030	0.0075	0.0090	0.0140
m = 5	MHolm TH	$0.0055 \\ 0.0030$	$0.0155 \\ 0.0080$	$0.0135 \\ 0.0080$	$0.0230 \\ 0.0185$	$0.0225 \\ 0.0140$	$0.0225 \\ 0.0180$
$\pi_0 = 0.4$	Holm	0.0020	0.0075	0.0080	0.0185	0.0140	0.0180
m = 5	MHolm TH	$0.0100 \\ 0.0065$	$\begin{array}{c} 0.0215 \\ 0.0115 \end{array}$	$\begin{array}{c} 0.0215 \\ 0.0115 \end{array}$	$0.0290 \\ 0.0220$	$0.0305 \\ 0.0185$	$0.0320 \\ 0.0205$
$\pi_0 = 0.6$	Holm	0.0030	0.0110	0.0115	0.0220	0.0185	0.0205
m = 5 $\pi_0 = 0.8$	MHolm TH Holm	$\begin{array}{c} 0.0155 \\ 0.0115 \\ 0.0050 \end{array}$	$0.0285 \\ 0.0145 \\ 0.0140$	$0.0285 \\ 0.0160 \\ 0.0160$	$\begin{array}{c} 0.0360 \\ 0.0260 \\ 0.0260 \end{array}$	$0.0375 \\ 0.0240 \\ 0.0240$	$0.0440 \\ 0.0270 \\ 0.0270$
m = 10	MHolm TH	0.0020 0.0005	0.0070 0.0040 0.0040	0.0125 0.0070 0.0070	0.0130 0.0080	0.0160 0.0115	0.0185 0.0125
$\pi_0 = 0.2$	Holm	0.0005	0.0040	0.0070	0.0080	0.0115	0.0125
m = 10	MHolm TH Holm	$0.0050 \\ 0.0025 \\ 0.0025$	$0.0155 \\ 0.0090 \\ 0.0090$	$0.0200 \\ 0.0125 \\ 0.0125$	$0.0215 \\ 0.0125 \\ 0.0125$	$0.0280 \\ 0.0200 \\ 0.0200$	$0.0265 \\ 0.0175 \\ 0.0175$
$\pi_0 = 0.4$		0.0025	0.0050	0.0120	0.0120	0.0200	0.0170
m = 10 $\pi_0 = 0.6$	TH Holm	0.0095 0.0060 0.0045	$0.0250 \\ 0.0150 \\ 0.0140$	$0.0285 \\ 0.0185 \\ 0.0185$	0.0290 0.0155 0.0155	$\begin{array}{c} 0.0360 \\ 0.0220 \\ 0.0220 \end{array}$	$\begin{array}{c} 0.0350 \\ 0.0215 \\ 0.0215 \end{array}$
m = 10	MHolm TH	$0.0175 \\ 0.0090$	$0.0340 \\ 0.0215$	$0.0360 \\ 0.0235$	$0.0380 \\ 0.0195$	$0.0420 \\ 0.0255$	$0.0405 \\ 0.0230$
$\pi_0 = 0.8$	Holm	0.0055	0.0190	0.0225	0.0195	0.0255	0.0230
m = 15	MHolm TH Holm	$0.0045 \\ 0.0025 \\ 0.0005$	$0.0070 \\ 0.0035 \\ 0.0030$	0.0070 0.0030 0.0030	$0.0140 \\ 0.0090 \\ 0.0090$	0.0125 0.0060 0.0060	$0.0120 \\ 0.0085 \\ 0.0085$
$\pi_0 = 0.2$	MHolm	0.0005	0.0165	0.0145	0.0255	0.0255	0.0285
m = 15	TH Holm	0.0095	0.0105 0.0080 0.0070	0.0145 0.0075 0.0075	0.0255 0.0160 0.0160	0.0255 0.0175 0.0175	0.0285 0.0165 0.0165
$\pi_0 = 0.4$	MIL-l	0.0010	0.0000	0.0015	0.0245	0.0250	0.0245
m = 15	MHolm TH Halm	0.0165 0.0090	0.0260 0.0130 0.0105	0.0215 0.0105 0.0100	$0.0345 \\ 0.0190 \\ 0.0100$	0.0350 0.0215 0.0215	$0.0345 \\ 0.0195 \\ 0.0105$
$\pi_0 = 0.6$		0.0020	60100	0.0100	0.0190	0.0210	0.0195
m = 15	MHolm TH Holm	$0.0215 \\ 0.0120 \\ 0.0020$	$0.0350 \\ 0.0170 \\ 0.0135$	$0.0315 \\ 0.0165 \\ 0.0165$	$0.0415 \\ 0.0225 \\ 0.0225$	$0.0465 \\ 0.0290 \\ 0.0290$	$0.0390 \\ 0.0260 \\ 0.0260$
$\pi_0 = 0.8$	1101111	0.0020	0.0100	0.0100	0.0440	0.0290	0.0200

Table S6: Simulated minimal power comparisons for step-down procedures with independent *p*-values generated from Fisher's Exact Test statistics, including Procedure 3.2 (MHolm), Procedure 2.3 (TH), and the conventional Holm procedure (Holm).

		N = 25	N = 50	N = 75	N = 100	N = 125	N = 150
m = 5	MHolm TH	$0.2555 \\ 0.1945 \\ 0.1120$	0.5070 0.3905	$0.6855 \\ 0.5780 \\ 0.5770 \\ 0$	0.8200 0.7680 0.7600	$0.9145 \\ 0.8660 \\ 0.8660$	0.9505 0.9280
$\pi_0 = 0.2$	Holm	0.1130	0.3830	0.5770	0.7680	0.8660	0.9280
m = 5	MHolm TH	$0.2120 \\ 0.1605$	$0.4090 \\ 0.3115$	$0.5790 \\ 0.4725$	$0.7405 \\ 0.6705$	$0.8375 \\ 0.7695$	$0.9030 \\ 0.8630$
$\pi_0 = 0.4$	Holm	0.0880	0.3005	0.4710	0.6705	0.7695	0.8630
m = 5	MHolm TH	$0.1555 \\ 0.1185$	$\begin{array}{c} 0.3150 \\ 0.2365 \end{array}$	$\begin{array}{c} 0.4330 \\ 0.3375 \end{array}$	$0.5855 \\ 0.5160$	$0.7035 \\ 0.6265$	$0.7855 \\ 0.7260$
$\pi_0 = 0.6$	Holm	0.0605	0.2190	0.3360	0.5160	0.6265	0.7260
$m = 5$ $\pi_0 = 0.8$	MHolm TH Holm	$0.0950 \\ 0.0745 \\ 0.0330$	$0.1815 \\ 0.1330 \\ 0.1190$	$0.2585 \\ 0.1920 \\ 0.1920$	$0.3615 \\ 0.2965 \\ 0.2965$	$0.4690 \\ 0.3960 \\ 0.3960$	$0.5530 \\ 0.4860 \\ 0.4860$
10	MHolm	0.3160	0.6130	0.8095	0.9120	0.9765	0.9930
m = 10	TH Holm	$0.2075 \\ 0.1575$	$0.4700 \\ 0.4660$	$0.7220 \\ 0.7220$	$0.8550 \\ 0.8550$	$0.9415 \\ 0.9415$	0.9820 0.9820
$\pi_0 = 0.2$		0.1010	0.4000	0.1220	0.0000	0.0410	0.3020
m = 10	MHolm TU	0.2705	0.5220	0.7185	0.8455 0.7720	0.9445	0.9750
$\pi_0 = 0.4$	Holm	0.1770 0.1235	$0.3903 \\ 0.3795$	0.6065	0.7720 0.7720	0.8905 0.8905	0.9505 0.9505
m = 10	MHolm	0.2010	0.4035	0.5615	0.7300	0.8450	0.9035
$\pi_0 = 0.6$	Holm	$0.1350 \\ 0.0800$	0.2990 0.2825	$0.4525 \\ 0.4525$	0.6315 0.6315	0.7590 0.7590	$0.8525 \\ 0.8525$
m = 10	MHolm	0.1115	0.2440	0.3500	0.4780	0.6145	0.6935
$\pi_0 = 0.8$	Holm	0.0760 0.0390	$0.1680 \\ 0.1555$	$0.2645 \\ 0.2645$	$0.3810 \\ 0.3810$	$0.5175 \\ 0.5175$	$0.6065 \\ 0.6065$
m = 15	MHolm TH	$0.3375 \\ 0.2520$	$0.6715 \\ 0.4995$	$0.8820 \\ 0.7530$	$0.9495 \\ 0.8910$	$0.9915 \\ 0.9765$	$0.9965 \\ 0.9895$
$\pi_0 = 0.2$	Holm	0.1390	0.4870	0.7515	0.8910	0.9765	0.9895
m = 15	MHolm TH	$0.2885 \\ 0.2110$	$0.5825 \\ 0.4105$	$0.7915 \\ 0.6475$	$0.9025 \\ 0.8055$	$0.9635 \\ 0.9335$	$0.9830 \\ 0.9745$
$\pi_0 = 0.4$	Holm	0.1030	0.3870	0.6460	0.8055	0.9335	0.9745
m = 15	MHolm TH	$0.2135 \\ 0.1495$	$0.4495 \\ 0.3070$	$0.6575 \\ 0.5085$	$0.7930 \\ 0.6730$	$0.8840 \\ 0.8315$	$0.9500 \\ 0.9140$
$\pi_0 = 0.6$	Holm	0.0700	0.2760	0.5065	0.6730	0.8315	0.9140
m = 15	MHolm TH	$0.1205 \\ 0.0835$	$0.2645 \\ 0.1785$	$0.4280 \\ 0.3055$	$0.5495 \\ 0.4295$	$0.6730 \\ 0.5890$	$0.7780 \\ 0.7030$
$\pi_0 = 0.8$	Holm	0.0335	0.1480	0.3045	0.4290	0.5890	0.7030

Methods - MHolm - Tarone-Holm - Holm

Figure S1: Simulated FWER comparisons for different step-down procedures based on FET, including Procedure 3.2 (MHolm), Procedure 2.3 (Tarone-Holm), and the conventional Holm procedure (Holm).

Methods - MHolm - Tarone-Holm - Holm

Figure S2: Simulated minimal power comparisons for different step-down procedures based on FET, including Procedure 3.2 (MHolm), Procedure 2.3 (Tarone-Holm), and the conventional Holm procedure (Holm).

Table S7: Simulated FWER comparisons for step-up procedures with independent *p*-values generated from Fisher's Exact Test statistics, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hoch).

		N = 25	N = 50	N = 75	N = 100	N = 125	N = 150
m = 5	MHoch Both	0.0030	0.0090	0.0070	0.0115 0.0085	0.0150	0.0155
$\pi_0 = 0.2$	Hoch	0.0020 0.0015	0.0045 0.0045	0.0040 0.0040	0.0085 0.0085	0.0115 0.0115	0.0155 0.0155
m = 5	MHoch	0.0060	0.0155	0.0140	0.0235	0.0230	0.0245
$\pi_0 = 0.4$	Hoch	$0.0035 \\ 0.0025$	0.0080 0.0075	$0.0085 \\ 0.0085$	$0.0185 \\ 0.0185$	0.0160 0.0160	0.0200 0.0200
m = 5	MHoch Doth	0.0105	0.0215	0.0215	0.0290	0.0305	0.0325
$\pi_0 = 0.6$	Hoch	0.0005 0.0030	$0.0115 \\ 0.0110$	$0.0115 \\ 0.0115$	0.0220 0.0220	$0.0195 \\ 0.0195$	0.0215 0.0215
m = 5	MHoch Roth	$0.0160 \\ 0.0115$	$0.0285 \\ 0.0145$	$0.0285 \\ 0.0160$	$0.0360 \\ 0.0265$	$0.0380 \\ 0.0245$	$0.0445 \\ 0.0280$
$\pi_0 = 0.8$	Hoch	0.0050	0.0140	0.0160	0.0265	0.0245	0.0280
m = 10	MHoch Roth	$0.0025 \\ 0.0005$	$0.0070 \\ 0.0040$	$0.0125 \\ 0.0070$	$0.0140 \\ 0.0080$	$0.0170 \\ 0.0120$	$0.0200 \\ 0.0135$
$\pi_0 = 0.2$	Hoch	0.0005	0.0040	0.0070	0.0080	0.0120	0.0135
m = 10	MHoch Roth	$0.0055 \\ 0.0025$	$0.0155 \\ 0.0090$	$0.0200 \\ 0.0125$	$0.0225 \\ 0.0125$	$0.0290 \\ 0.0200$	$0.0275 \\ 0.0185$
$\pi_0 = 0.4$	Hoch	0.0025	0.0090	0.0125	0.0125	0.0200	0.0185
m = 10	MHoch Roth	0.0095 0.0060	$0.0250 \\ 0.0150$	$0.0285 \\ 0.0185$	$0.0290 \\ 0.0155$	$0.0360 \\ 0.0220$	$0.0350 \\ 0.0215$
$\pi_0 = 0.6$	Hoch	0.0045	0.0140	0.0185	0.0155	0.0220	0.0215
m = 10	MHoch Roth	$0.0180 \\ 0.0095$	$0.0340 \\ 0.0210$	$0.0360 \\ 0.0235$	$0.0380 \\ 0.0195$	$0.0420 \\ 0.0255$	$0.0405 \\ 0.0235$
$\pi_0 = 0.8$	Hoch	0.0055	0.0190	0.0225	0.0195	0.0255	0.0235
m = 15	MHoch Roth Hoch	$0.0045 \\ 0.0020 \\ 0.0005$	$0.0070 \\ 0.0035 \\ 0.0030$	$0.0070 \\ 0.0030 \\ 0.0030$	0.0140 0.0090 0.0000	0.0125 0.0060 0.0060	$0.0130 \\ 0.0095 \\ 0.0005$
$\pi_0 = 0.2$		0.0005	0.0050	0.0050	0.0090	0.0000	0.0095
m = 15	MHoch Roth	$0.0100 \\ 0.0060$	$0.0165 \\ 0.0080$	$0.0145 \\ 0.0075$	$0.0255 \\ 0.0160$	$0.0255 \\ 0.0175$	$0.0290 \\ 0.0165$
$\pi_0 = 0.4$	Hoch	0.0010	0.0070	0.0075	0.0160	0.0175	0.0165
m = 15	MHoch Roth	$0.0175 \\ 0.0090$	$0.0260 \\ 0.0130$	$0.0215 \\ 0.0105$	$0.0345 \\ 0.0190$	$0.0350 \\ 0.0220$	$0.0345 \\ 0.0195$
$\pi_0 = 0.6$	Hoch	0.0020	0.0105	0.0100	0.0190	0.0220	0.0195
m = 15	MHoch Roth	$0.0215 \\ 0.0120$	$0.0350 \\ 0.0170$	$0.0315 \\ 0.0165$	$0.0415 \\ 0.0225$	$0.0465 \\ 0.0290$	$0.0390 \\ 0.0265$
$\pi_0 = 0.8$	Hoch	0.0020	0.0135	0.0165	0.0225	0.0290	0.0265

Table S8: Simulated minimal power comparisons for step-up procedures with independent p-values generated from Fisher's Exact Test statistics, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hoch).

		N = 25	N = 50	N = 75	N = 100	N = 125	N = 150
m = 5	MHoch Roth	$0.2600 \\ 0.1975$	$0.5075 \\ 0.3915$	$0.6885 \\ 0.5820$	$0.8240 \\ 0.7685$	$0.9170 \\ 0.8695$	$0.9525 \\ 0.9300$
$\pi_0 = 0.2$	Hoch	0.1170	0.3845	0.5810	0.7685	0.8695	0.9300
m = 5	MHoch Roth	$0.2155 \\ 0.1630$	$\begin{array}{c} 0.4105 \\ 0.3115 \end{array}$	$0.5810 \\ 0.4755$	$0.7410 \\ 0.6705$	$0.8400 \\ 0.7715$	$0.9055 \\ 0.8660$
$\pi_0 = 0.4$	Hoch	0.0885	0.3010	0.4740	0.6705	0.7715	0.8660
m = 5	MHoch Roth	$0.1580 \\ 0.1200$	$\begin{array}{c} 0.3155 \ 0.2365 \end{array}$	$0.4340 \\ 0.3380$	$0.5860 \\ 0.5165$	$0.7045 \\ 0.6280$	$0.7875 \\ 0.7275$
$\pi_0 = 0.6$	Hoch	0.0605	0.2190	0.3365	0.5165	0.6280	0.7275
m = 5 $\pi_0 = 0.8$	MHoch Roth Hoch	$0.0955 \\ 0.0745 \\ 0.0330$	$0.1815 \\ 0.1330 \\ 0.1190$	$0.2585 \\ 0.1920 \\ 0.1920$	$0.3615 \\ 0.2970 \\ 0.2970$	$0.4695 \\ 0.3965 \\ 0.3965$	$0.5535 \\ 0.4870 \\ 0.4870$
m = 10 $\pi = 0.2$	MHoch Roth Hoch	$0.3215 \\ 0.2080 \\ 0.1580$	$0.6155 \\ 0.4685 \\ 0.4660$	0.8110 0.7225 0.7225	0.9130 0.8555 0.8555	0.9765 0.9420 0.9420	0.9930 0.9820 0.9820
$\pi_0 = 0.2$	MILh	0.1000	0.1000	0.7200	0.0465	0.0450	0.0755
m = 10	Roth	0.2735 0.1770	$0.5245 \\ 0.3840$	0.7200 0.6070	$0.8400 \\ 0.7720$	0.9450 0.8920	0.9755 0.9510
$\pi_0 = 0.4$	Hoch	0.1240	0.3795	0.6065	0.7720	0.8920	0.9510
m = 10	MHoch Roth	$0.2030 \\ 0.1335$	$0.4045 \\ 0.2910$	$0.5615 \\ 0.4525$	$0.7310 \\ 0.6315$	$0.8450 \\ 0.7600$	$0.9045 \\ 0.8530$
$\pi_0 = 0.6$	Hoch	0.0800	0.2825	0.4525	0.6315	0.7600	0.8530
m = 10	MHoch Roth Hoch	$0.1135 \\ 0.0765 \\ 0.0200$	0.2440 0.1625 0.1555	$0.3500 \\ 0.2645 \\ 0.2645$	$0.4780 \\ 0.3810 \\ 0.2810$	$0.6150 \\ 0.5175 \\ 0.5175$	0.6935 0.6075 0.6075
$\pi_0 = 0.8$	HIOCH	0.0390	0.1555	0.2045	0.3810	0.3175	0.0075
m = 15	MHoch Roth Hoch	$\begin{array}{c} 0.3405 \\ 0.2520 \\ 0.1390 \end{array}$	$0.6720 \\ 0.5010 \\ 0.4875$	$0.8830 \\ 0.7545 \\ 0.7535$	$0.9505 \\ 0.8910 \\ 0.8910$	$\begin{array}{c} 0.9915 \\ 0.9765 \\ 0.9765 \end{array}$	$0.9965 \\ 0.9900 \\ 0.9900$
$\pi_0 = 0.2$	MIT 1	0.1000	0.1010	0.7005	0.0010	0.0100	0.0000
m = 15	MHoch Roth Hoch	0.2895 0.2110 0.1030	0.5830 0.4115 0.3870	0.7925 0.6485 0.6470	0.9025 0.8060 0.8060	0.9635 0.9335 0.9335	0.9830 0.9745 0.9745
$\pi_0 = 0.4$		0.1050	0.0010	0.0410	0.0000	0.3000	0.3140
m = 15	MHoch Roth Uach	$0.2150 \\ 0.1495 \\ 0.0700$	$0.4500 \\ 0.3080 \\ 0.2760$	$0.6595 \\ 0.5095 \\ 0.5075$	$0.7935 \\ 0.6730 \\ 0.6720$	$0.8845 \\ 0.8320 \\ 0.8220$	$0.9505 \\ 0.9150 \\ 0.0150$
$\pi_0 = 0.6$	nocn	0.0700	0.2700	0.0070	0.0730	0.8320	0.9190
m = 15	MHoch Roth	0.1210 0.0835	$0.2645 \\ 0.1785 \\ 0.1490$	0.4285 0.3055 0.2045	$0.5500 \\ 0.4295 \\ 0.4200$	$0.6730 \\ 0.5895 \\ 0.5005$	$0.7780 \\ 0.7035 \\ 0.7035$
$\pi_0 = 0.8$	Hoch	0.0335	0.1480	0.3045	0.4290	0.5895	0.7035

Methods -- MHoch -- Roth -- Hochberg

Figure S3: Simulated FWER comparisons for different step-up procedures based on FET, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hochberg).

Methods - MHoch - Roth - Hochberg

Figure S4: Simulated minimal power comparisons for different step-up procedures based on FET, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hochberg).

S2 Results from Dependence Simulation Settings

In this section, we provide the details for simulating the block dependent binomial exact test (BET) statistics and the simulation results for the stepwise procedures comparisons. The following steps illustrate how to generate the dependent BET statistics and corresponding p-values.

Step 1. Generate dependent Poisson observed counts for each group

In order to generate m dependent BET statistics T_i , we use the following algorithm to generate m dependent Poisson random variables within each group, noting that the Poisson random variables between two groups are independent.

1. Let $\lambda_{i1} = 2$ for $i = 1, \ldots, m$, generate m independent Poisson random variable

 $Y_{i1} \sim Poi((1-\rho)\lambda_{i1})$ and one $Y_{01} \sim Poi(2\rho)$.

- 2. Let $X_{i1} = Y_{i1} + Y_{01}$ for i = 1, ..., m, then $X_{i1} \sim Poi(2)$ and the correlation between X_{i1} and X_{j1} is $\frac{Cov(X_{i1}, X_{j1})}{\sqrt{Var(X_{i1})}\sqrt{Var(X_{j1})}} = \frac{Var(Y_{01})}{\sqrt{2}\sqrt{2}} = \frac{2\rho}{2} = \rho$ for i, j = 1, ..., m and $i \neq j$.
- 3. Let $\lambda_{i2} = 2$ for $i = 1, \ldots, m_0$ and $\lambda_{i2} = 10$ for $i = m_0 + 1, \ldots, m$, generate m independent Poisson random variable $Y_{i2} \sim Poi((1 \rho)\lambda_{i2})$ for $i = 1, \ldots, m$, one $Y_{02} \sim Poi(2\rho)$, and one $Y'_{02} \sim Poi(10\rho)$.
- 4. Let $X_{i2} = Y_{i2} + Y_{02}$ for $i = 1, ..., m_0$ and $X_{i2} = Y_{i2} + Y'_{02}$ for $i = m_0 + 1, ..., m$, then $X_{i2} \sim Poi(2)$ for $i = 1, ..., m_0$ and $X_{i2} \sim Poi(10)$ for $i = m_0 + 1, ..., m$. For $i, j = 1, ..., m_0$ and $i \neq j$, the correlation between X_{i2} and X_{j2} is $\frac{Cov(X_{i2}, X_{j2})}{\sqrt{Var(X_{i2})}\sqrt{Var(X_{j2})}} = \frac{Var(Y_{02})}{\sqrt{2}\sqrt{2}} = \frac{2\rho}{2} = \rho$. Similarly, for $i, j = m_0 + 1, ..., m$ and $i \neq j$, the correlation

between X_{i2} and X_{j2} is also equal to ρ ; for $i = 1, ..., m_0$ and $j = m_0 + 1, ..., m$, the correlation between X_{i2} and X_{j2} is equal to zero.

Step 2. Obtain the conditional test statistics

Since the generated Poisson random variables between two groups are independent, we can directly conduct BET for each hypothesis. After generating Poisson observed counts x_{i1} and x_{i2} , let $c_i = x_{i1} + x_{i2}$ be the total observed count for two groups. Then the test statistics T_i is conditional test statistics X_{i1} given $X_{i1} + X_{i2} = c_i$ and the critical value is the observed count x_{i1} for Group 1.

Step 3. Conditional distribution of the test statistics

Based on the conditional inference in Lehmann and Romano [1], which is the BET in our paper, the conditional distribution of X_{i1} given $X_{i1} + X_{i2} = c_i$ is Binomial, $Bin(c_i, p_i)$, where $p_i = \frac{\lambda_{i1}}{\lambda_{i1} + \lambda_{i2}}$.

Step 4. Calculate available *p*-value P_i and attainable *p*-values

When H_i is true, i.e., $\lambda_{i1} = \lambda_{i2}$, $p_i = 0.5$. Thus, $X_{i1}|X_{i1} + X_{i2} = c_i \sim Bin(c_i, 0.5)$ under H_i . Therefore, the available conditional *p*-value for H_i can be calculated by

$$P_{i} = \Pr_{H_{i}} \{ X_{i1} \ge x_{i1} | X_{i1} + X_{i2} = c_{i} \}$$

$$= \sum_{j=x_{i1}}^{c_{i}} {\binom{c_{i}}{j}} 0.5^{j} (1 - 0.5)^{c_{i} - j}$$

$$= \sum_{j=x_{i1}}^{c_{i}} {\binom{c_{i}}{j}} 0.5^{c_{i}}.$$
(1)

The corresponding attainable p-values can be calculated by

$$\Pr_{H_i} \left\{ X_{i1} \ge x | X_{i1} + X_{i2} = c_i \right\} = \sum_{j=x}^{c_i} {\binom{c_i}{j}} 0.5^{c_i} \text{ for } x = 0, 1, \dots, c_i.$$
(2)

The simulation results under the above simulation setting for stepwise procedures comparisons are shown in Tables S9 - S14 and Figures S5 - S8. It is easy to see that in such block dependence simulation setting, the *p*-values calculated based on the Poisson outcomes satisfies the PRDS Assumption 2.2, since $\rho \geq 0$ and the tests are one-sided.

- **R-package for MHTdiscrete:** R-package MHTdiscrete [3] contains R code to implement our proposed methods and several existing FWER controlling procedures for discrete data, which are described in this paper. The package can be downloaded from https://cran.r-project.org/web/packages/MHTdiscrete.
- Web Application for MHTdiscrete: A web application containing the proposed procedures and several comparable procedures can be accessed at https://allen.shinyapps. io/MTPs.

References

- [1] Lehmann, E. L. and Romano, J. P. (2005). *Testing Statistical Hypotheses, 3rd Edition*. Springer.
- [2] R Development Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
- [3] Zhu, Y. and Guo, W. (2017). *MHT discrete: Multiple Hypotheses Testing for Discrete Data*. R package version 1.0.0.

Table S9: Simulated FWER comparisons for single-step procedures with dependent *p*-values generated from Binomial Exact Test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

0.9 0.9	0045 0.0040 0010 0.0005 0000 0.0005	0000 0.0005 0.0005	0045 0.0040 0040 0.0025	3020 0.0010 3020 0.0010	0105 0.0045 0065 0.0030	0025 0.0000 0025 0.0000	0025 0.0035 010 0.0010	0010 0.0010 0005 0.0005 0005 0.0005	0070 0.0030 0030 0.0025	0010 0.0005 0010 0.0005	0050 0.0085 0040 0.0045	0100 0.0010
0.7 (0.0080 0.0 0.0040 0.0 0.0035 0.0	0.0035 0.0	0.0070 0.0	0.0000 0.0	0.0060 0.0 0.0045 0.0	0.0010 0.0 0.0010 0.0	0.0030 0.0	0.0005 0.0	$\begin{array}{cccc} 0.0055 & 0.0 \\ 0.0030 & 0.0 \end{array}$	0.0010 0.0	0.0030 0.0	0.0005 0.0
0.6	0.0025 0.0005 0.0005	0.0005	0.0095 0.0045	$0.0010 \\ 0.0010$	0.0110 0.0070	0.0025 0.0025	0.0025	00000.0	0.0025 0.0010	0.0005 0.0005	$0.0100 \\ 0.0065$	0.0020
0.5	0.0055 0.0030 0.0035	0.0025	0.0050 0.0045	$0.0010 \\ 0.0010$	0.0135 0.0085	0.0025 0.0025	0.0025	0.0010 0.0010 0.0010	0.0035 0.0020	$0.0010 \\ 0.0010$	$0.0150 \\ 0.0100$	0.0000
0.4	0.0025 0.0010	0.0010	$0.0080 \\ 0.0050$	0.0020 0.0020	0.0115 0.0080	0.0025 0.0025	0.0030	0.0010 0.0010 0.0010	0.0065 0.0020	0.0000 0.0000	0.0135 0.0075	0.0010
0.3	0.0045 0.0020 0.0015	0.0015	0.0085 0.0050	0.0035 0.0035	$0.0160 \\ 0.0095$	0.0015 0.0015	0.0035	0.0005 0.0005 0.0005	0.0095 0.0050	0.0015 0.0015	0.0135 0.0095	0.0010
0.2	0.0035 0.0005 0.0005	0.0005	0.0080 0.0060	0.0020 0.0020	0.0155 0.0065	0.0020 0.0020	0.0025	0.0010 0.0010 0.0010	0.0095 0.0060	0.0020 0.0020	0.0115 0.0075	0.0005
0.1	0.0050 0.0010	0.0010	0.0055 0.0025	0.0015 0.0015	0.0145 0.0105	0.0005 0.0005	0.0030	0.0005 0.0005	0.0065 0.0030	$0.0015 \\ 0.0015$	0.0105 0.0080	0.0005
0	0.0045 0.0015 0.0015	0.0015	0.0100 0.0060	0.0025 0.0025	0.0125 0.0090	0.0035 0.0035	0.0035	0.0005 0.0005 0.0005	0.0080 0.0020	0.0000 0.0000	0.0185 0.0120	0.0005
θ	MBonf Tarone Bonf	Sidak	MBonf Tarone	Bonf Sidak	MBonf Tarone	Bonf Sidak	MBonf	Bonf Sidak	MBonf Tarone	Bonf Sidak	MBonf Tarone	Bonf
	m = 5	$\pi_0 = 0.4$	m = 5	$\pi_0 = 0.6$	m = 5	$\pi_0 = 0.8$	m = 10	$\pi_0 = 0.4$	m = 10	$\pi_0 = 0.6$	m = 10	$\pi_{0} = 0.8$

Table S10: Simulated minimal power comparisons for single-step procedures with dependent *p*-values generated from Binomial Exact Test statistics, including Procedure 3.1 (MBonf), Procedure 2.1 (Tarone), and the conventional Bonferroni (Bonf) and Sidak (Sidak) procedures.

	θ	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
m = 5 $\pi_0 = 0.4$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.9095\\ 0.8500\\ 0.7530\\ 0.7530\\ \end{array}$	$\begin{array}{c} 0.8880\\ 0.8350\\ 0.7465\\ 0.7465\\ 0.7465\end{array}$	$\begin{array}{c} 0.8580 \\ 0.8000 \\ 0.7010 \\ 0.7010 \\ 0.7010 \end{array}$	$\begin{array}{c} 0.8455\\ 0.7945\\ 0.6920\\ 0.6920\\ 0.6920\end{array}$	$\begin{array}{c} 0.8135\\ 0.7585\\ 0.6750\\ 0.6750\\ 0.6750\end{array}$	$\begin{array}{c} 0.7745\\ 0.7070\\ 0.6205\\ 0.6205\\ 0.6205\end{array}$	$\begin{array}{c} 0.7545\\ 0.6815\\ 0.5930\\ 0.5930\\ 0.5930\end{array}$	$\begin{array}{c} 0.7295\\ 0.6630\\ 0.5675\\ 0.5675\end{array}$	$\begin{array}{c} 0.6840 \\ 0.6130 \\ 0.5260 \\ 0.5260 \\ 0.5260 \end{array}$	$\begin{array}{c} 0.6305 \\ 0.5605 \\ 0.4685 \\ 0.4685 \\ 0.4685 \end{array}$
m = 5 $\pi_0 = 0.6$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.8150 \\ 0.8150 \\ 0.7635 \\ 0.6135 \\ 0.6135 \end{array}$	$\begin{array}{c} 0.8020 \\ 0.7435 \\ 0.5985 \\ 0.5985 \\ 0.5985 \end{array}$	$\begin{array}{c} 0.7755\\ 0.7210\\ 0.5740\\ 0.5740\\ 0.5740\end{array}$	$\begin{array}{c} 0.7740 \\ 0.7075 \\ 0.5615 \\ 0.5615 \end{array}$	$\begin{array}{c} 0.7655\\ 0.7185\\ 0.5725\\ 0.5725\\ 0.5725\end{array}$	$\begin{array}{c} 0.7195\\ 0.6775\\ 0.5410\\ 0.5410\\ 0.5410\end{array}$	$\begin{array}{c} 0.7255\\ 0.6815\\ 0.5270\\ 0.5270\\ 0.5270\end{array}$	$\begin{array}{c} 0.6790 \\ 0.6425 \\ 0.5070 \\ 0.5070 \\ 0.5070 \end{array}$	$\begin{array}{c} 0.6750 \\ 0.6255 \\ 0.4715 \\ 0.4715 \\ 0.4715 \end{array}$	$\begin{array}{c} 0.6260 \\ 0.5865 \\ 0.4365 \\ 0.4365 \\ 0.4365 \end{array}$
m = 5 $\pi_0 = 0.8$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.5965\\ 0.5635\\ 0.3825\\ 0.3825\\ 0.3825\end{array}$	$\begin{array}{c} 0.6055\\ 0.5730\\ 0.3845\\ 0.3845\\ 0.3845\end{array}$	$\begin{array}{c} 0.5955\\ 0.5675\\ 0.3805\\ 0.3805\\ 0.3805\end{array}$	$\begin{array}{c} 0.5925\\ 0.5600\\ 0.3760\\ 0.3760\\ 0.3760\end{array}$	$\begin{array}{c} 0.6075\\ 0.5755\\ 0.3875\\ 0.3875\\ 0.3875\end{array}$	$\begin{array}{c} 0.6095\\ 0.5880\\ 0.4000\\ 0.4000\\ 0.4000\end{array}$	$\begin{array}{c} 0.5960 \\ 0.5730 \\ 0.3690 \\ 0.3690 \\ 0.3690 \end{array}$	$\begin{array}{c} 0.5960\\ 0.5730\\ 0.3735\\ 0.3735\\ 0.3735\end{array}$	$\begin{array}{c} 0.6075\\ 0.5935\\ 0.3820\\ 0.3820\\ 0.3820\end{array}$	$\begin{array}{c} 0.6120\\ 0.5985\\ 0.3810\\ 0.3810\\ 0.3810\end{array}$
m = 10 $\pi_0 = 0.4$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.9760\\ 0.9470\\ 0.8805\\ 0.8805\end{array}$	$\begin{array}{c} 0.9460 \\ 0.8940 \\ 0.8260 \\ 0.8260 \\ 0.8260 \end{array}$	$\begin{array}{c} 0.9175 \\ 0.8535 \\ 0.7625 \\ 0.7625 \\ 0.7625 \end{array}$	$\begin{array}{c} 0.8925\\ 0.8295\\ 0.7500\\ 0.7500\\ 0.7500\end{array}$	$\begin{array}{c} 0.8570 \\ 0.7875 \\ 0.6845 \\ 0.6845 \end{array}$	$\begin{array}{c} 0.8250 \\ 0.7585 \\ 0.6695 \\ 0.6695 \\ 0.6695 \end{array}$	$\begin{array}{c} 0.7885\\ 0.7120\\ 0.6075\\ 0.6075\\ 0.6075\end{array}$	$\begin{array}{c} 0.7270 \\ 0.6525 \\ 0.5550 \\ 0.5550 \end{array}$	$\begin{array}{c} 0.6895\\ 0.6040\\ 0.5045\\ 0.5045\\ 0.5045\end{array}$	$\begin{array}{c} 0.6090\\ 0.5260\\ 0.4410\\ 0.4410\\ 0.4410\end{array}$
$m = 10$ $\pi_0 = 0.6$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.9250\\ 0.8820\\ 0.7420\\ 0.7420\\ 0.7420\end{array}$	$\begin{array}{c} 0.9125\\ 0.8630\\ 0.7260\\ 0.7260\\ 0.7260\end{array}$	$\begin{array}{c} 0.8845\\ 0.8370\\ 0.7030\\ 0.7030\\ 0.7030\end{array}$	$\begin{array}{c} 0.8425\\ 0.7705\\ 0.6220\\ 0.6220\\ 0.6220\end{array}$	$\begin{array}{c} 0.8300\\ 0.7680\\ 0.6285\\ 0.6285\\ 0.6285\end{array}$	$\begin{array}{c} 0.7920 \\ 0.7285 \\ 0.5710 \\ 0.5710 \\ 0.5710 \end{array}$	$\begin{array}{c} 0.7470 \\ 0.6925 \\ 0.5425 \\ 0.5425 \\ 0.5425 \end{array}$	$\begin{array}{c} 0.7160 \\ 0.6645 \\ 0.4995 \\ 0.4995 \end{array}$	$\begin{array}{c} 0.6590 \\ 0.6090 \\ 0.4440 \\ 0.4440 \\ 0.4440 \end{array}$	$\begin{array}{c} 0.6180\\ 0.5745\\ 0.4155\\ 0.4155\\ 0.4155\end{array}$
$m = 10$ $\pi_0 = 0.8$	MBonf Tarone Bonf Sidak	$\begin{array}{c} 0.7675\\ 0.7145\\ 0.4935\\ 0.4935\end{array}$	$\begin{array}{c} 0.7595\\ 0.7055\\ 0.4880\\ 0.4880\\ 0.4880\end{array}$	$\begin{array}{c} 0.7390 \\ 0.6910 \\ 0.4655 \\ 0.4655 \\ 0.4655 \end{array}$	$\begin{array}{c} 0.7330 \\ 0.6860 \\ 0.4710 \\ 0.4710 \\ 0.4710 \end{array}$	$\begin{array}{c} 0.7320 \\ 0.6885 \\ 0.4630 \\ 0.4630 \\ 0.4630 \end{array}$	$\begin{array}{c} 0.6975\\ 0.6540\\ 0.4235\\ 0.4235\\ 0.4235\end{array}$	$\begin{array}{c} 0.6865\\ 0.6445\\ 0.4145\\ 0.4145\\ 0.4145\end{array}$	$\begin{array}{c} 0.6665\\ 0.6310\\ 0.3975\\ 0.3975\\ 0.3975\end{array}$	$\begin{array}{c} 0.6340 \\ 0.5925 \\ 0.3725 \\ 0.3725 \\ 0.3725 \end{array}$	$\begin{array}{c} 0.6160 \\ 0.5875 \\ 0.3495 \\ 0.3495 \\ 0.3495 \end{array}$

Table S11: Simulated FWER comparisons for step-down procedures with dependent *p*-values generated from Binomial Exact Test statistics, including Procedure 3.2 (MHolm), Procedure 2.3 (TH), and the conventional Holm procedure (Holm).

)	~			, ,					4	~
	θ	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	MHolm	0.0085	0.0090	0.0070	0.0090	0.0105	0.0120	0.0095	0.0150	0.0115	0.0055
m = 5	\mathbf{TH}	0.0055	0.0060	0.0040	0.0050	0.0065	0.0100	0.0040	0.0130	0.0095	0.0045
$\pi_0 = 0.4$	Holm	0.0025	0.0040	0.0035	0.0035	0.0035	0.0055	0.0015	0.0075	0.0040	0.0035
	MHolm	0.0170	0.0095	0.0125	0.0140	0.0125	0.0095	0.0160	0.0150	0.0090	0.0065
m=5	$\mathrm{H}\mathrm{I}$	0.0110	0.0065	0.0095	0.0095	0.0090	0.0070	0.0115	0.0125	0.0075	0.0055
$\pi_0 = 0.6$	Holm	0.0030	0.0020	0.0035	0.0055	0.0040	0.0030	0.0045	0.0025	0.0040	0.0030
	MHolm	0.0160	0.0205	0.0200	0.0190	0.0170	0.0175	0.0135	0.0075	0.0120	0.0070
m = 5	\mathbf{TH}	0.0110	0.0145	0.0120	0.0150	0.0120	0.0120	0.0115	0.0065	0.0100	0.0060
$\pi_0 = 0.8$	Holm	0.0035	0.0015	0.0020	0.0015	0.0025	0.0025	0.0025	0.0010	0.0025	0.0000
	MHolm	0.0130	0.0150	0.0115	0.0095	0.0090	0.0100	0.0115	0.0130	0.0095	0.0090
m = 10	HT	0.0060	0.0030	0.0075	0.0040	0.0040	0.0075	0.0080	0.0105	0.0070	0.0075
$\pi_0 = 0.4$	Holm	0.0005	0.0005	0.0015	0.0005	0.0015	0.0015	0.0010	0.0030	0.0010	0.0010
	MHolm	0.0160	0.0150	0.0185	0.0165	0.0175	0.0105	0.0125	0.0130	0.0140	0.0055
m = 10	$\mathrm{H}\mathrm{T}$	0.0055	0.0085	0.0115	0.0100	0.0125	0.0075	0.0065	0.0100	0.0125	0.0045
$\pi_0=0.6$	Holm	0.0000	0.0020	0.0020	0.0025	0.0000	0.0015	0.0005	0.0015	0.0025	0.0005
	MHolm	0.0230	0.0160	0.0195	0.0195	0.0200	0.0215	0.0145	0.0120	0.0090	0.0130
m = 10	$\mathrm{H}\mathrm{I}$	0.0160	0.0130	0.0145	0.0130	0.0145	0.0165	0.0130	0.0100	0.0075	0.0120
$\pi_0 = 0.8$	Holm	0.0005	0.0005	0.0005	0.0010	0.0010	0.0000	0.0020	0.0005	0.0010	0.0010

IJ	
ia.	
Ц	Ц
ō	-F
ň	E
31	jĽí,
нч	
п	<u>e</u>
IC	Ξ
Ξ.	-Ð
Ŧ	ė
p	X
te	ĭ
g	d
G	С
ň	Ц
e	Ö
00	Η
S	
пé	, G
Ę.	q
22	.9
Ĩ	Lt.
\mathcal{L}	GL
It	ž
E	Ц
F	0
ă	0
ē	le
ð	τ.
Ę.	_
0	p
q	Ľ.
ij.	.0
≥	Ù.
\mathbf{v}	Η
ē	Ē
Я	Ŀ
-5	\sim
ē	
ğ	51
Ľ	e
d	Ц
Ц	Ę
17	ĕ
2	S
F	2
ĭ	Ē
d.	
Ę	,
\mathbf{v}	В
)Ľ	
fC	Ĥ
S	出
n	\geq
õ	$\dot{}$
-57	2
ЪГ	÷
ğ	
ġ	re
OI	p
õ	D.
Ч	9
NG	õ
Ň	\mathbf{r}
ĕ.	щ
	60
മി	Ц
Ц	;=
·Ξ	Ē
н.	5
Ц	ц
	•=
ğ	Ś
te	<u>ٽ</u> .
la	Ę.
'n	-93
Ц	эt
;i	Ť.
0)	U
÷	\mathbf{st}
12	تة
\mathbf{v}	Г
ດັ່ງ	ب
J	JC
ЦЦ Ц	XS
Ĥ	Ē
-	

	θ	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	MHolm	0.9095	0.8880	0.8580	0.8455	0.8135	0.7745	0.7545	0.7300	0.6840	0.6305
m = 5	TH	0.8500	0.8350	0.8000	0.7945	0.7585	0.7070	0.6815	0.6630	0.6130	0.5605
$\pi_0 = 0.4$	Holm	0.7535	0.7465	0.7010	0.6920	0.6750	0.6205	0.5930	0.5675	0.5260	0.4690
	MHolm	0.8155	0.8020	0.7755	0.7740	0.7655	0.7195	0.7255	0.6795	0.6750	0.6260
m = 5	TH	0.7640	0.7440	0.7210	0.7080	0.7185	0.6775	0.6815	0.6425	0.6255	0.5865
$\pi_0 = 0.6$	Holm	0.6135	0.5985	0.5750	0.5615	0.5725	0.5415	0.5270	0.5070	0.4715	0.4365
	MHolm	0.5980	0.6060	0.5975	0.5930	0.6080	0.6095	0.5965	0.5960	0.6080	0.6125
m = 5	TH	0.5640	0.5740	0.5685	0.5600	0.5755	0.5880	0.5735	0.5730	0.5940	0.5990
$\pi_0 = 0.8$	Holm	0.3830	0.3845	0.3805	0.3760	0.3875	0.4000	0.3690	0.3735	0.3820	0.3810
	MHolm	0.9760	0.9460	0.9175	0.8925	0.8570	0.8250	0.7885	0.7270	0.6895	0.6090
m = 10	TH	0.9470	0.8940	0.8535	0.8295	0.7875	0.7585	0.7120	0.6525	0.6040	0.5260
$\pi_0 = 0.4$	Holm	0.8805	0.8260	0.7625	0.7500	0.6845	0.6695	0.6075	0.5550	0.5045	0.4410
	MHolm	0.9265	0.9125	0.8845	0.8425	0.8300	0.7920	0.7470	0.7160	0.6590	0.6180
m = 10	TH	0.8820	0.8630	0.8380	0.7705	0.7680	0.7285	0.6925	0.6645	0.6090	0.5745
$\pi_0 = 0.6$	Holm	0.7420	0.7260	0.7030	0.6220	0.6285	0.5710	0.5425	0.4995	0.4440	0.4155
	MHolm	0.7680	0.7600	0.7390	0.7330	0.7325	0.6975	0.6870	0.6665	0.6340	0.6160
m = 10	ΤH	0.7165	0.7060	0.6925	0.6865	0.6895	0.6540	0.6450	0.6310	0.5925	0.5875
$\pi_0 = 0.8$	Holm	0.4935	0.4880	0.4655	0.4710	0.4630	0.4235	0.4145	0.3975	0.3725	0.3495

est	
act J	Hoch
l Ex:	re (I
omia	cedu
Bine	pro
rom	berg
ted f	Ioch [.]
nera	lal F
ss gei	ntio
value	onve
t p^{-1}	he c
ender	and t
depe	ih), 8
with	(Rot
. səır	lure
lbeoc	roce
p pro	th p
ep-u	e Ro
or st), th
ons f	Ioch
paris	IM)
com]	e 3.3
/ER	edur
I FW	Proc
lated	ing]
Simu	lolud
13: 5	cs, ir
ble S	tisti
Ta	sta

- Fe	1
د	5
ธุ	<u> </u>
g –	Ξ.
3	
_	re
la	<u> </u>
Ħ	. O
ō	õ
ц	2
ñ	ā
	60
Ħ	ĩ
2	S
	Ā
ğ	с С
e ce	Ĥ
50	щ
er	al
g	Ï
Ð	.9
 10	F
ಲ್	er
2	Ē
ದ	Ä
\geq	8
à	a)
2	Å
er	÷
ð	Ч
r.	Ч
e	σ
f	Ù,
d	q
q	đ
11	Ř
≥	Ċ
ŝ	e
ē	Ħ
8	- 5
g	ğ
e	ŏ
ŏ	Ĕ
E	Ц
-	Ч
2	ot
ī	ഷ്
p D	_
Ľ.	ЗG
ŝ	t]
G	÷
ĭ	<u> </u>
\mathbf{IS}	с С
G	Ĥ
S	出
5	2
Ö.	\smile
Ē	က္
ō	\mathfrak{S}
ت	Θ
2	Ц
3	Ð
>	ĕ
>	ž
ц	ĭ
d D	Д
сe	60
5 G	ĽĽ.
E	÷
E	ň
	Cl
1	Ľ.
	·
Ť	Ň
N	Ξ
e	77
ą	nti.

	φ	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	MHoch	0.0085	0.0090	0.0070	0.0090	0.0105	0.0120	0.0110	0.0175	0.0130	0.0080
m=5	Roth	0.0060	0.0070	0.0050	0.0065	0.0075	0.0095	0.0060	0.0140	0.0105	0.0070
$\pi_0 = 0.4$	Hoch	0.0025	0.0040	0.0035	0.0035	0.0035	0.0060	0.0020	0.0090	0.0055	0.0060
	MHoch	0.0170	0.0100	0.0125	0.0160	0.0130	0.0105	0.0165	0.0170	0.0120	0.0120
m=5	Roth	0.0120	0.0075	0.0095	0.0110	0.0085	0.0070	0.0125	0.0140	0.0095	0.0105
$\pi_0 = 0.6$	Hoch	0.0030	0.0020	0.0035	0.0055	0.0040	0.0030	0.0050	0.0030	0.0050	0.0075
	MHoch	0.0165	0.0210	0.0200	0.0200	0.0170	0.0180	0.0135	0.0095	0.0140	0.0115
m=5	Roth	0.0110	0.0145	0.0130	0.0150	0.0115	0.0130	0.0100	0.0075	0.0120	0.0085
$\pi_0 = 0.8$	Hoch	0.0035	0.0015	0.0020	0.0015	0.0025	0.0025	0.0030	0.0010	0.0030	0.0035
	MHoch	0.0145	0.0165	0.0115	0.0100	0.0105	0.0105	0.0135	0.0155	0.0110	0.0125
m = 10	Roth	0.0075	0.0045	0.0080	0.0035	0.0045	0.0075	0.0095	0.0120	0.0080	0.0115
$\pi_0 = 0.4$	Hoch	0.0005	0.0005	0.0015	0.0010	0.0015	0.0015	0.0015	0.0035	0.0025	0.0060
	MHoch	0.0165	0.0150	0.0185	0.0165	0.0185	0.0115	0.0150	0.0155	0.0190	0.0085
m = 10	Roth	0.0060	0.0070	0.0110	0.0100	0.0110	0.0070	0.0070	0.0105	0.0135	0.0070
$\pi_0 = 0.6$	Hoch	0.0000	0.0020	0.0020	0.0025	0.0005	0.0015	0.0010	0.0020	0.0045	0.0015
	MHoch	0.0235	0.0170	0.0205	0.0200	0.0210	0.0225	0.0165	0.0140	0.0105	0.0170
m = 10	Roth	0.0145	0.0120	0.0125	0.0130	0.0155	0.0155	0.0130	0.0075	0.0080	0.0110
$\pi_0 = 0.8$	Hoch	0.0005	0.0005	0.0005	0.0010	0.0010	0.0000	0.0020	0.0005	0.0010	0.0035

Table S14: Simulated minimal power comparisons for step-up procedures with dependent *p*-values generated from Binomial Exact Test statistics, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hoch).

	θ	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	MHoch	0.9110	0.8905	0.8595	0.8490	0.8155	0.7780	0.7595	0.7370	0.6985	0.6525
m = 5	Roth	0.8565	0.8430	0.8075	0.8020	0.7640	0.7200	0.6945	0.6755	0.6300	0.5955
$\pi_0 = 0.4$	Hoch	0.7640	0.7555	0.7105	0.7025	0.6835	0.6310	0.6050	0.5860	0.5435	0.4945
	MHoch	0.8165	0.8065	0.7785	0.7775	0.7690	0.7255	0.7290	0.6880	0.6835	0.6425
m = 5	Roth	0.7670	0.7515	0.7245	0.7115	0.7250	0.6845	0.6840	0.6505	0.6325	0.5990
$\pi_0 = 0.6$	Hoch	0.6210	0.6045	0.5780	0.5665	0.5800	0.5460	0.5345	0.5140	0.4845	0.4530
	MHoch	0.5985	0.6065	0.5975	0.5940	0.6080	0.6095	0.5965	0.5965	0.6085	0.6130
m = 5	Roth	0.5490	0.5590	0.5520	0.5490	0.5610	0.5755	0.5560	0.5570	0.5775	0.5800
$\pi_0 = 0.8$	Hoch	0.3830	0.3845	0.3805	0.3760	0.3875	0.4000	0.3690	0.3735	0.3820	0.3815
	MHoch	0.9770	0.9465	0.9205	0.8945	0.8630	0.8300	0.7925	0.7380	0.7055	0.6305
m = 10	Roth	0.9495	0.8980	0.8595	0.8325	0.7910	0.7610	0.7190	0.6605	0.6190	0.5625
$\pi_0 = 0.4$	Hoch	0.8815	0.8260	0.7630	0.7520	0.6850	0.6705	0.6095	0.5565	0.5075	0.4485
	MHoch	0.9285	0.9155	0.8855	0.8475	0.8340	0.7985	0.7540	0.7235	0.6735	0.6405
m = 10	Roth	0.8870	0.8650	0.8425	0.7760	0.7735	0.7335	0.7000	0.6700	0.6145	0.5875
$\pi_0 = 0.6$	Hoch	0.7425	0.7260	0.7030	0.6225	0.6290	0.5710	0.5430	0.5000	0.4465	0.4205
	MHoch	0.7725	0.7625	0.7400	0.7380	0.7350	0.6995	0.6890	0.6710	0.6400	0.6285
m = 10	Roth	0.7200	0.7055	0.6945	0.6895	0.6905	0.6515	0.6460	0.6365	0.5970	0.5965
$\pi_0 = 0.8$	Hoch	0.4935	0.4880	0.4655	0.4710	0.4630	0.4235	0.4145	0.3975	0.3725	0.3495

Methods - MHolm - Tarone-Holm - Holm

Figure S5: Simulated FWER comparisons for different step-down procedures based on the blocking dependent BET, including Procedure 3.2 (MHolm), Procedure 2.3 (Tarone-Holm), and the conventional Holm procedure (Holm).

Methods ---- MHolm ---- Holm ---- Holm

Figure S6: Simulated minimal power comparisons for different step-down procedures based on the blocking dependent BET, including Procedure 3.2 (MHolm), Procedure 2.3 (Tarone-Holm), and the conventional Holm procedure (Holm).

Methods -- MHoch -- Roth -- Hochberg

Figure S7: Simulated FWER comparisons for different step-up procedures based on the blocking dependent BET, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hochberg).

Methods -- MHoch -- Roth -- Hochberg

Figure S8: Simulated minimal power comparisons for different step-up procedures based on the blocking dependent BET, including Procedure 3.3 (MHoch), the Roth procedure (Roth), and the conventional Hochberg procedure (Hochberg).