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Abstract

In complex clinical trials, multiple research objectives are often grouped

into sets of objectives based on their inherent hierarchical relationships. Con-

sequently, the hypotheses formulated to address these objectives are grouped

into ordered families of hypotheses and thus to be tested in a pre-defined

sequence. In this paper, we introduce a novel Bonferroni based multiple test-

ing procedure for testing hierarchically ordered families of hypotheses. The

proposed procedure allows the families to be sequentially tested more than

once with updated local critical values. It is proved to control the global
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familywise error rate strongly under arbitrary dependence. Implementation

of the procedure is illustrated using two examples. Finally, the procedure is

extended to testing multiple families of hypotheses with a complex two-layer

hierarchical structure.

1 Introduction

Complex clinical trials always involve multiple research objectives that are related

in a hierarchically logical fashion based on importance, clinical relevance, and so

on. Consequently, the statistical hypotheses formulated to address such objectives

are grouped into hierarchically ordered families of hypotheses requiring them to be

tested in a predefined sequence. Testing multiple families of hypotheses has received

much attention in the last decade, and several methods have been introduced in the

literature, including gatekeeping strategy (Westfall and Krishen, 2001; Dmitrienko,

Offen and Westfall, 2003; Dmitrienko, Wiens and Tamhane, 2007), union closure

procedures (Kim, Entsuah and Shults, 2011) and superchain procedures (Kordzakhia

and Dmitrienko, 2013).

The gatekeeping strategy is a general approach developed specifically to test pre-

ordered families of hypotheses in a sequential manner with each family working as a

gatekeeper for the ones following it. There are several types of gatekeeping strategies

available in the literature, such as serial gatekeeping strategy (Maurer, Hothorn

and Lehmacher, 1995; Bauer et al. 1998; Westfall and Krishen, 2001), parallel

gatekeeping strategy (Dmitrienko, Offen and Westfall, 2003), and tree gatekeeping

strategy (Dmitrienko, Wiens and Tamhane, 2007; Dmitrienko et al., 2008). Based

on these gatekeeping strategies, some other more powerful and flexible multiple

testing methods have been developed (Chen, Luo and Capizzi, 2005; Liu and Hsu,

2009; Dmitrienko et al., 2006; Dmitrienko, Tamhane and Wiens, 2008; Dmitrienko

and Tamhane, 2011; Guibaud, 2007; Bretz et al., 2009; and Burman, Sonesson and

Guilbaud, 2009). For reviews on recent developments, see Dmitrienko, Tamhane

and Bretz (2009), Dmitrienko, D’Agostino and Huque (2013), and Alosh, Bretz and

Huque (2014).

The aforementioned gatekeeping procedures allow each family to be tested only
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once, which some researchers have attempted to improve. More specifically, they

have added retesting options to enhance their testing powers (Guibaud, 2007; Dmitrienko,

Kordzakhia and Tamhane, 2011; Dmitrienko et al., 2011; and Kordzakhia and

Dmitrienko, 2013). Guilbaud (2007) incorporated the retesting option into Bon-

ferroni based gatekeeping procedures by allowing the families to be retested in a

reverse order by using procedures more powerful than the original Bonferroni proce-

dures when all hypotheses in the last family are rejected. Dmitrienko, Kordzakhia

and Tamhane (2011) improved Guilbaud’s procedure by applying some mixture pro-

cedure to each family instead of the Bonferroni procedure. In the case of testing two

families, Dmitrienko et al. (2011) further improved the aforementioned procedures

with retesting option by using the second family as a parallel gatekeeper instead of

a serial gatekeeper for the first family; that is, as long as one hypothesis is rejected

in the second family, the first family can be retested by using a more powerful pro-

cedure than the one used in the previous step. However, this procedure not only

restricts to two-family case, it also requires to specify the logical relationship be-

tween each specific hypothesis in first family with each specific hypothesis in second

family.

In contrast with the aforementioned sequential retesting procedures, Kordzakhia

and Dmitrienko (2013) introduced a class of multiple testing procedures with retest-

ing option on the basis of the simultaneous testing strategy, termed as superchain

procedures. Unlike those sequential retesting procedures, superchain procedures test

all families simultaneously at each step. Each family serves as a parallel gatekeeper

for the other families. If at least one new rejection occurs in either family, the rest

of the families are retested using procedures with updated critical values at the next

step. Compared to the superchain procedures, the sequential retesting procedures

are, however, simpler, easier to implement, and more intuitive in a clinical sense, al-

though they have certain limitations and are restricted to some specific scenarios. In

this paper, we consider overcoming such limitations and restrictions by developing

newer sequential retesting procedures.

Our procedure proposed in this paper is Bonferroni based gatekeeping procedure

with retesting option. However, the families are now being allowed to be retested

repeatedly using Bonferroni procedures in a sequential manner with different critical
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value at each repetition for a family. To begin with, each family is assigned a pre-

determined fraction of the overall level α for its initial critical value. The critical

value used to test one particular family is defined as its local critical value. The level

for the local critical value (referred to as local level) for a family at each test depends

on certain amount of the levels associated with the local critical values passed down

from higher ranked families and the initial levels assigned to lower ranked families.

Each family is iteratively retested with increasingly updated local critical values.

The proposed procedure exhibits several desirable features. First, as we prove,

it strongly controls the global familywise error rate (FWER), i.e., the probability of

falsely rejecting at least one true null hypothesis across all families of hypotheses at

a pre-specified level α under arbitrary dependence. Second, it is more general than

the existing sequential retesting procedures since it can be constructed under almost

any scenarios. And it strictly follows the hierarchical sequential scheme in the sense

that higher rank families have more chances to be retested than lower rank families.

Third, it is easier to implement than superchain procedure since it sticks to the

simple Bonferroni method for testing each family throughout the whole procedure

and proceeds in a sequential manner. Finally and interestingly, it can be described

via a directed graph similar to the graphical approach (see Bretz et al., 2009), except

that the nodes of the graph here represent families instead of hypotheses, and it is

easy to explain the underlying testing strategy to non-statisticians.

The rest of the paper is organized as follows. In Section 2, we present some

notations and definitions which are used throughout the whole paper. The main

theoretical results are introduced in Section 3 including the algorithms of the pro-

posed procedures and discussions of their global FWER control. Several special

cases are discussed in Section 4 to demonstrate the relationships among the pro-

posed procedures and some existing ones. Section 5 includes two clinical trial exam-

ples to illustrate the implementation of the proposed procedures. Section 6 extends

the proposed procedures to a two-layer structure with multiple families within each

layer while maintaining the control of the global FWER. Some concluding remarks

are discussed in Section 7 and the Appendix gives proofs of the theoretical results.
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2 Preliminary

In this section, we present some basic notations and definitions. Suppose that there

are n ≥ 2 hypotheses grouped into m ≥ 2 ordered families, with Fi = {Hi1, . . . , Hini
}

being the ith ordered family consisting of ni hypotheses, i = 1, . . . ,m,
∑m

i=1 ni =

n. These hypotheses are to be tested based on their respective p-values pij, i =

1, . . . ,m, j = 1, . . . , ni subject to controlling an overall measure of type I error at a

pre-specified level α. Each of the true null p-values is assumed to be stochastically

greater than or equal to the uniform distribution on [0, 1]; that is, if Ti is the set of

true null hypotheses in Fi, then

Pr {pij ≤ u|Hij ∈ Ti} ≤ u, i = 1, . . . ,m, j = 1, . . . , ni, for any fixed u ∈ [0, 1]. (1)

The familywise error rate (FWER), which is the probability of incorrectly re-

jecting at least one true null hypothesis, is a commonly used notion of an overall

measure of type I error when testing a single family of hypotheses. Since we have

multiple families, we consider this measure not locally for each family but globally.

In other words, we define the global FWER as the probability of incorrectly rejecting

at least one true null hypothesis across all families of hypotheses. If it is bounded

above by α regardless of which and how many null hypotheses within each family

are true, then this global FWER is said to be strongly controlled at α.

In this paper, we propose a procedure, called Bonferroni based gatekeeping

procedure with retesting option, strongly controlling the global FWER at α. With

an initial assignment of a pre-specified portion of α, say αi, to Fi, where
∑m

i=1 αi =

α, the procedure starts with testing F1 to Fm sequentially using the Bonferroni

procedure based on their own (local) critical values. The level used to locally test

each family is updated from its initially assigned value to one which incorporates

certain portions of the levels used in testing the previous families. After finishing a

round of tests of all m families, the procedure starts over for another round of tests

from F1 to Fm again using the Bonferroni procedure based on their updated local

critical values. The whole procedure stops only if there is no new rejection occurs

in all m families. The specific updating rule for local critical values is described in

Section 3. The distribution of the amount of critical value transfered among families

can be pre-fixed by an m×m transition matrix which is defined as follows.
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Figure 1: Three-family Bonferroni-based gatekeeping procedure with retesting op-

tion.

Denote G = {gij}, i, j = 1, . . . ,m as a transition matrix which satisfies the

following conditions:

0 ≤ gij ≤ 1; gij = 0, if i = j;
m∑
j=1

gij = 1, for any i = 1, . . . ,m.

Note that gij is defined as the proportion of the critical value that can be transferred

from Fi to Fj. Figure 1 shows the graphical representation of a special case with

m = 3.

Remark 1 Dmitrienko, Tamhane and Wiens (2008) quantified the amount of sig-

nificance level of a tested family that can be transferred to test subsequent fam-

ilies of hypotheses. For instance, consider testing a single family of hypotheses

Fi = {Hi1, . . . , Hini
}. Suppose it is tested using the Bonferroni procedure at level

α. Let Ai and Ri be the set of acceptances and rejections, respectively, with the

corresponding cardinalities |Ai| and |Ri|. Then, |Ai|
ni
α can be considered as a con-

servative estimate of the FWER of the Bonferroni procedure. Thus, the used and

unused parts of level α are |Ai|
ni
α and |Ri|

ni
α, respectively. The unused part, |Ri|

ni
α, can

be recycled to test the subsequent families of hypotheses.
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Figure 2: Two - family Bonferroni - based gatekeeping procedure with retesting

option.

3 Main results

This section presents our proposed Bonferroni-based gatekeeping procedure with

retesting option. We will begin with a simple case of two families of null hypotheses

in Section 3.1. The general case of an arbitrary number of families will be introduced

in Section 3.2. Section 3.3 discusses the main property of the proposed procedure,

which is the global FWER control.

3.1 Two - family problem

Consider multiple testing of two families of null hypotheses, Fi, i = 1, 2, which are

pre-ordered based on their hierarchical relationship. Initially, we assign α1 and α2

to F1 and F2, respectively, where α1 + α2 = α. We let α1(j) and α2(j), j ≥ 1 be the

levels for the updated local critical values used for testing F1 and F2 at the jth time.

The transition matrix is given by

G =

(
0 1

1 0

)
,

i.e., g12 = g21 = 1, which implies the whole amount of local critical value of one

family that can be recycled is transferred to test the other family. The graphical

representation of this case is shown in Figure 2.

Denote R1(j) and R2(j), respectively, the sets of rejected nulls when F1 and F2 are

tested at the jth time, while |R1(j)| and |R2(j)| are their corresponding cardinalities.
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The proposed Bonferroni-based gatekeeping procedure with retesting option in the

case of m = 2 is defined in the following.

Algorithm 1

Stage 1. Test F1 at its local critical value based on the level α1(1) = α1 using the

Bonferroni procedure, and then do the same for F2 at the level

α2(1) = α2 +
|R1(1)|
n1

α1.

If no null hypotheses are rejected in both families, the algorithm stops. Otherwise,

it proceeds to the next stage.

Stage k(k ≥ 2). Retest F1 at its local critical value based on

α1(k) = α1 +
|R2(k−1)|

n2

α2, (2)

using the Bonferroni procedure, and then do the same for F2 at the level

α2(k) = α2 +
|R1(k)|
n1

α1(k). (3)

If no new null hypotheses are rejected in both families, the algorithm stops. Other-

wise, it proceeds to the next stage.

Remark 2 Algorithm 1 allows iteratively retesting F1 and F2 using the Bonferroni

procedure at increasingly updated local levels. The amount of increased local level

of F1 depends on the initial level of F2 during each retesting stage, while the updated

local level of F2 depends on the local level of F1 at current stage. Both families can

be repeatedly tested as long as at least one new rejection occurs in the two families

of hypotheses at each retesting stage.

Remark 3 In Algorithm 1, if we initially assign critical values as α1 = α and α2 = 0

to F1 and F2, respectively, then there is no level transferred from F2 to F1 and hence

no retesting stage is involved. Thus, the proposed procedure reduces to the original

multistage parallel gatekeeping procedure (see Dmitrienko, Tamhane and Wiens,

2008). For this gatekeeping procedure, although F1 is tested at full level α, if there

is only a small number of rejections occurs in F1, F2 can only be tested at relatively
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small local critical value. Specifically, when no rejection occurs in F1, F2 even has

no chance to be tested. However, if a portion of level α is initially assigned to F2,

then F2 is always tested no matter how many rejections occur in F1 and the local

critical value for F1 is still increasingly updated at the retesting stages. When all

hypotheses are rejected in F2, F1 can even be tested at full level α at the retesting

stages.

3.2 Multi-family problem

In this subsection, we generalize Algorithm 1 to any m ≥ 2 families. Based on

the notations in Section 2, the algorithm for general Bonferroni-based gatekeeping

procedure with retesting option is defined as follows.

Algorithm 2

Stage 1. Test the family Fi using the Bonferroni procedure at its local critical value

based on the level

αi(1) = αi +
i−1∑
j=1

|Rj(1)|
nj

gjiαj(1),

sequentially for i = 1, . . . ,m. If |Ri(1)| = 0 for all i = 1, . . . ,m, the algorithm stops.

Otherwise, it proceeds to the next stage.

Stage k(k ≥ 2). Retest the family Fi using the Bonferroni procedure at its updated

local critical value based on the level

αi(k) = αi +
i−1∑
j=1

|Rj(k)|
nj

gjiαj(k) +
m∑

l=i+1

|Rl(k−1)|
nl

gliαl, (4)

sequentially for i = 1, . . . ,m. After retesting all the families Fi, i = 1, . . . ,m at

this stage, if no new hypotheses are rejected in any family, the algorithm stops.

Otherwise, it proceeds to the next stage.

Remark 4 Algorithm 2 provides a method of testing and retesting ordered families

of hypotheses using the Bonferroni procedure in a sequential manner without loosing

a control over the global FWER. The order of the families, the initial levels assigned

to them, and the transition matrix used to distribute levels among the families are

all pre-specified.
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It is interesting to note from (4) how exactly the initially assigned level for each

family is being updated at a particular stage before it is used to test or retest the

family using the Bonferroni procedure. The initial level for each family is updated

by adding to it a weighted sum of the levels used for testing or retesting the higher-

ranked families at the same stage and a weighed sum of the initially assigned levels

for the lower-ranked families. The weights attached to the levels used for the higher-

ranked families are based on the proportions of rejected hypotheses in those families

tested or retested at the same stage, whereas the weights attached to the initial

levels assigned to lower-ranked families are based on the proportions of rejected

hypotheses in those families tested or retested at the previous stage.

Remark 5 In Algorithm 2, if we initially assign α1 = α and α2 = . . . = αm = 0 to

Fi’s, respectively, then there is no portions of levels transferred from lower-ranked

families to the higher-ranked ones since all the initial critical values are zero except

for F1, and hence no retesting stages will be involved. Thus, this procedure reduces

to a Bonferroni-based multistage parallel gatekeeping procedure (see Dmitrienko,

Tamhane and Wiens, 2008). Moreover, if each family only has one hypothesis, i.e.,

F1 = {H11}, . . . , Fm = {Hm1}, then this procedure further reduces to the conven-

tional fixed sequence procedure (see Maurer, Hothorn and Lehmacher, 1995; Westfall

and Krishen, 2001).

3.3 Global familywise error rate control

The following theorem presents that the Bonferroni-based gatekeeping procedure

with retesting option proposed in Algorithm 2 controls the global FWER in the

strong sense.

Theorem 1 The Bonferroni-based gatekeeping procedure with retesting option de-

scribed in Algorithm 2 strongly controls the global FWER at level α under arbitrary

dependence.

For a proof of Theorem 1, see Appendix.

Remark 6 Clearly, Algorithm 1 developed for testing two families of hypotheses is

a special case of Algorithm 2 with m = 2. Hence, Theorem 1 is also true for the
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Figure 3: Graphical visualization of Case 1 with m families of hypotheses.

two-family Bonferroni-based gatekeeping procedure with retesting option described

in Algorithm 1.

4 Discussions

This section presents two special cases of Algorithm 2 and discusses the relationships

between the proposed procedure and several existing multiple testing procedures.

Case 1. Suppose we assign αi 6= 0 to Fi, i = 1, . . . ,m, initially. Assume that the

transition matrix G is an upper shift matrix as follows:

gij =

1 if j = i+ 1, for i = 1, . . . ,m− 1,

0 otherwise.

This matrix implies that there is no retesting involved. The graphical represen-

tation of this case is shown in Figure 3. Under such case, the proposed proce-

dure can be considered as an extension of the Bonferroni-based multistage parallel

gatekeeping procedure (see Dmitrienko, Tamhane and Wiens, 2008) in the sense

that even no rejection occurs in the previous family, the current family still has

chance to be tested. Moreover, suppose each family has only one hypothesis, i.e.,

F1 = {H11}, . . . , Fm = {Hm1}. Then, if the previous hypothesis is rejected, its level

can be fully added to test the current one. However, if the previous hypothesis is

not rejected, the current one is tested at its initially assigned level. That is, the pro-

posed procedure reduces to the conventional fallback procedure (see Wiens, 2003;

Wiens and Dmitrienko, 2005) for this case.

Case 2. Suppose retesting is involved in Case 1. The graphical representation of the

new case is shown in Figure 4. According to Algorithm 2, after a round of tests for
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Figure 4: Graphical visualization of Case 2 with m families of hypotheses.

all m families of hypotheses, an amount of the initial level αm for Fm is transferred to

the local critical value of F1 such that all m families of hypotheses can have chances

to be retested at the updated local critical values. Specially, if all hypotheses in Fm

are rejected, then F1 will be retested at updated critical value α1 + αm. Moreover,

suppose each family has only one hypothesis, i.e., F1 = {H11}, . . . , Fm = {Hm1}.
In this case, the proposed procedure can be regarded as an improved version of the

conventional fallback procedure in the sense that all m hypotheses have chances to

be retested at the updated critical values. For instance, if Hm1 is rejected, then H11

can be retested at the updated level α1 + αm.

5 Clinical trial examples

In this section, we consider two clinical trial examples to illustrate the applica-

tion of our proposed Bonferroni-based gatekeeping procedures with retesting op-

tion. The results are compared with those of our own procedures without the

retesting option and the existing three procedures with retesting option, Guil-

baud’s generalized Bonferroni parallel gatekeeping method with retesting (Guil-

baud, 2007), Dmitrienko et al.’s α-exhaustive multistage gatekeeping method with

retesting (Dmitrienko, Kordzakhia and Tamhane, 2011) and superchain procedure

(Kordzakhia and Dmitrienko, 2013). For notational convenience, the proposed pro-

cedures with and without the retesting option are labeled Retest and No-retest, and

the three existing Guilbaud’s procedure, Dmitrienko et al.’s procedure and super-

chain procedure are labeled BR, MR and SC, respectively.
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5.1 Two-family Problem

This example is based on the EPHESUS trial (see Pitt et al., 2003), in which a

balanced design clinical trial is used to assess the effects of eplerenone on morbidity

and mortality in patients with severe heart failure. There are two primary endpoints

and two secondary endpoints grouped into two families:

• F1: all-cause mortality (Endpoint P1) and cardiovascular mortality plus car-

diovascular hospitalization (Endpoint P2).

• F2: cardiovascular mortality (Endpoint S1) and all-cause mortality plus all-

cause hospitalization (Endpoint S2).

The hypotheses of no treatment effect corresponding to these two primary endpoints

and two secondary endpoints areH11, H12 andH21, H22, respectively. With α = 0.05,

the initial levels for the two families are set at 0.04 and 0.01 for all aforementioned

five procedures. For the proposed Retest procedure and the existing SC procedure,

we used the same graphical representation as shown in Figure 5. Specifically, for

the MR procedure, we applied the truncated Holm method to each family at each

stage with initial truncation parameter = 0.5. For the SC procedure, we applied the

Holm-based Superchain procedure. At the first step, we used Bonferroni procedure

to test both families simultaneously at the initial levels. According to the testing

results of the first step, we proceeded to test both families using truncated Holm

procedure at updated critical values at the subsequent steps. Due to the complexity

of updating rules for local critical values and truncation parameters for truncated

Holm procedure, we omit the detailed steps here. For more information about up-

dating rules of superchain procedure, see Kordzakhia and Dmitrienko (2013). The

raw p-values for the four null hypotheses and the test results using the aforemen-

tioned three procedures are given in Table 1. The Retest procedure is implemented

as follows.

Stage 1. Test null hypotheses of F1 at level α1(1) = 0.04. Since p11 <
0.04
2

and

p12 >
0.04
2

, R1(1) = {H11}. Hence, the level for the local critical value for F2 is

updated to

α2(1) = α2 +
1

2
α1(1) = 0.01 + 0.02 = 0.03.
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Figure 5: Graphical visualization of the two-family clinical trial problem.

Test F2 at α2(1). Since p21 <
0.03
2

and p22 >
0.03
2

, R2(1) = {H21}. So far, the No-retest

procedure stops. To proceed with the Retest procedure, we updated the level for

the local critical value for F1 to

α1(2) = α1 +
1

2
α2 = 0.045.

Stage 2. Retest F1 using the Bonferroni method at level α1(2). Since p11 <
0.045
2

and p12 >
0.045
2

, R1(2) = {H11} = R1(1). Thus, the updated level for the local critical

value for F2 is

α2(2) = α2 +
1

2
α1(2) = 0.0325.

Retest F2 using the Bonferroni method at level α2(2). Since p21 <
0.0325

2
and p22 <

0.0325
2

, R2(1) = {H21, H22}. Thus, the updated level for the local critical value for F1

is

α1(3) = α1 +
2

2
α2 = 0.05.

Stage 3. Retest F1 using the Bonferroni method at level α1(3). Since for both F1

and F2, there is no new rejection, the whole Retest procedure stops.

As seen from Table 1, the No-retest, BR and MR procedure only rejects two

null hypotheses. but the proposed Retest rejects more, which is three. SC rejects

all hypotheses. Note that for BR and MR, since not all secondary hypotheses are

rejected, primary hypothses have no chance to be retested.

14



Table 1: Comparison of the results of five procedures in the EPHESUS trial example.

The initial levels for F1 and F2 are 0.04 and 0.01, respectively. The globe Type I

error rate is α = 0.05. Note: S=significant; NS=not significant.

Family Null Raw Retest No-retest BR MR SC

hypothesis p-value

F1 H11 0.0121 S S S S S

H12 0.0337 NS NS NS NS S

F2 H21 0.0084 S S S S S

H22 0.0160 S NS NS NS S

5.2 Three-family Problem

In this subsection, we reconsider the example disccussed in Kordzahia and Dmitrienko

(2013). It is a balanced design clinical trial in which two doses (D1, D2) of a treat-

ment are compared with a placebo (P) in the general population of patients as well

as in two pre-specified subpopulations of patients. The subpopulations are defined

by phenotype or genotype markers. The three populations are labeled Group 1

(General population), Group 2 (Subpopulation 1) and Group 3 (Subpopulation 2).

There are six null hypotheses grouped into three families:

• F1: H11 (D1 vs P in Group 1) and H12 (D2 vs P in Group 1).

• F2: H21 (D1 vs P in Group 2) and H22 (D2 vs P in Group 2).

• F3: H31 (D1 vs P in Group 3) and H32 (D2 vs P in Group 3).

We applied the proposed Retest, No-retest, BR, MR and SC procedures to this

example. The global FWER needs to be controlled at level α = 0.025 and the

initial levels for the three families were set at α1 = 1
2
α = 0.0125, α2 = 1

3
α = 0.00833

and α3 = 1
6
α = 0.00417. For Retest and SC procedures, the transition matrix is

pre-defined as

G =


0 0.5 0.5

0.5 0 0.5

0.5 0.5 0

 .
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Figure 6: Graphical visualization of three-family clinical trial problem.

Figure 6 shows its graphical representation of the three-family clinical trial example.

Similar to the aforementioned two-family problem, we applied the truncated Holm

procedure to each family at each stage with initial truncation parameter = 0.5

for the MR procedure. And we also applied Holm-based SC procedure to this

example. As in Kordzakhia and Dmitrienko (2013), the three families are assumed

to be interchangeable and can be tested in any order. At the first step, we used

the Bonferroni procedure to test these three families simultaneously at their initial

levels. According to the testing results at the first step, we proceeded to test the

three families using the truncated Holm procedure at updated local critical values at

the subsequent steps. Again, we omit the detailed steps here due to its complexity

of updating rules. For more information about updating rules, see Kordzakhia and

Dmitrienko (2013). The raw p-values for six null hypotheses and the test results

using the aforementioned five procedures are shown in Table 2. The proposed Retest

procedure is implemented as follows.

Stage 1. Test F1 using the Bonferroni method at level α1(1) = 0.0125. Since

p11 >
0.0125

2
and p12 >

0.0125
2

, R1(1) = ∅. Then, test F2 at level α2(1) = α2 = 0.00833.

Since p21 >
0.00833

2
and p22 >

0.00833
2

, R2(1) = ∅. Test F3 at level α3(1) = α3 = 0.00417.

Since p31 >
0.00417

2
and p32 <

0.00417
2

, R3(1) = {H32}. The No-retest procedure stops

here. The proposed Retest procedure proceeds to the next stage.

Stage 2. Retest F1 using the Bonferroni method at level

α1(2) = α1 +
1

2
g31α3 = 0.0125 +

1

2
· 0.5 · 0.00417 = 0.0135.

Since p11 >
0.00135

2
and p12 >

0.0135
2

, R2(1) = ∅. Then retest F2 at level

α2(2) = α2 +
1

2
g32α3 = 0.00833 +

1

2
· 0.5 · 0.00417 = 0.00937.
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Table 2: Comparison of results of three procedures in the dose-response trial exam-

ple. The initial critical values for F1, F2 and F3 are 0.0125, 0.00833 and 0.00417,

respectively. The globe Type I error rate is α = 0.025. Note: S=significant; NS=not

significant.

Family Null Raw Retest No-retest BR MR SC

hypothesis p-value

F1 H11 0.0092 NS NS NS NS NS

H12 0.0105 NS NS NS NS NS

F2 H21 0.0059 NS NS NS NS NS

H22 0.0044 S NS NS NS S

F3 H31 0.0271 NS NS NS NS NS

H32 0.0013 S S S S S

Since p21 >
0.00937

2
and p22 <

0.00937
2

, R2(2) = {H22}. Retest F3 at level

α3(2) = α3 + g23α2(2) = 0.00417 +
1

2
· 0.5 · 0.00937 = 0.0065.

Since p31 >
0.0065

2
and p32 <

0.0065
2

, R3(2) = {H32}. Thus, there are no new rejections

in F3 at this stage and hence the testing algorithm stops. The final set of rejected

null hypotheses is {H22, H32}.
As seen from Table 2, the No-retest, BR and MR procedure has poor perfor-

mance. It only rejects H32. By contrast, the proposed Retest and Holm-based SC

procedures reject H32 as well as H22.

Remark 7 These two examples illustrate that our proposed Retest procedure has

power improvement over No-retest procedure and BR procedure. In many cases,

it performs better than MR procedure and is comparable with the Holm-based SC

procedure in terms of power. For BR procudure, although one higher rank family

is possible to be retested by a method more powerful than Bonferroni method, it

can be retested only if all of the hypotheses in lower rank families are rejected. For

MR procedure, although it is based on the method which is more powerful than

Bonferroni method (i.e., truncated version of multiple testing procedures) at each
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stage, it will stop testing early if there are many acceptances occurs in the higher

rank families. Since only a small amount of critical value can be carried over to test

subsequent families. Moreover, the common problem for both BR and MR procedure

is that since the retesting order is from last family to first family, the higher rank

important families will have less chance to be retesd than lower-rank families which

is counterintuitive in the sense of hierarchical sequential testing. Compared with

the proposed procedure, the implementation of the SC procedure is complicated due

to its complex updating rules of the local critical values and truncation parameters

at each stage, especially when the number of families is large.

6 An Extension

In the preceding sections, we considered only one family within each layer while

testing hierarchically ordered families of hypotheses. However, there are situations

where there are multiple families within a layer. For instance, in clinical trials

where both multiple primary and multiple secondary endpoints are evaluated in

several patient populations, each family of hypotheses corresponds to one primary

or secondary endpoint and the families corresponding to all the primary endpoints

and the secondary endpoints are grouped as primary layer and secondary layer,

respectively.

In this section, we consider a complex two-layer hierarchical structure with mul-

tiple families of hypotheses within each layer. Using similar idea as in developing

Algorithm 2, we develop a procedure with retesting option in which the families

between layers are tested sequentially while those within each layer are tested simul-

taneously. Each family is still allowed to be iteratively retested using the Bonferroni

procedure with repeatedly updated local critical values. The procedure is designed

to strongly control the global FWER at α under arbitrary dependence.

Suppose that n ≥ 2 hypotheses are grouped into m ≥ 2 families which are

divided into two layers, with Fi1, . . . , Fimi
being the families of the ith layer, for

i = 1, 2, where
∑2

i=1mi = m. Let the family Fij have nij ≥ 1 null hypotheses,

where
∑2

i=1

∑mi

j=1 nij = n. For i = 1, 2; j = 1, . . . ,mi, let αij denote the initial

critical value assigned to Fij such that
∑2

i=1

∑mi

j=1 αij = α. The distribution of
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Figure 7: Two-layer with four families Bonferroni - based gatekeeping procedure

with retesting option.

critical values transferred among families can be pre-fixed by a transition coefficient

set which is defined as follows.

Denote G = {gijkl}, i, k = 1, 2, j = 1, . . . ,mi, l = 1, . . . ,mk as a set of transition

coefficients satisfying the following conditions:

0 ≤ gijkl ≤ 1; gijkl = 0, if i = k;
m2∑
l=1

g1j2l = 1, for any j = 1, . . . ,m1;

m1∑
j=1

g2l1j = 1, for any l = 1, . . . ,m2.

The gijkl is used to determine the proportion of the level associated with Fij that

can be transferred to Fkl. Figure 7 shows the graphical representation of the case

of two layers with four families.

The proposed procedure allows all m families of hypotheses to be tested more

than once. For notational conveniences, let the local critical value used to test Fij

for the tth time be αij(t) . Let Rij(t) be the set of rejected hypotheses when Fij is

tested for the tth time with the cardinality |Rij(t)|. The algorithm for the two-layer

Bonferroni-based gatekeeping procedure with retesting option is as follows.

Algorithm 3

Stage 1. Test F1j, j = 1, . . . ,m1 simultaneously using the Bonferroni method at
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level α1j(1) = α1j. Update the local critical values for F2l, l = 1, . . . ,m2 to

α2l(1) = α2l +

m1∑
j=1

|R1j(1)|
n1j

g1j2lα1j.

Test F2l, l = 1, . . . ,m2 simultaneously at level α2l(1) using the Bonferroni method. If

no hypotheses are rejected among all m families, the algorithm stops. Otherwise, it

continues to the next stage.

Stage k(k ≥ 2). For j = 1, . . . ,m1, set

α1j(k) = α1j +

m2∑
l=1

|R2l(k−1)
|

n2l

g2l1jα2l. (5)

Retest F1j, j = 1, . . . ,m1 simultaneously at level αij(k) using the Bonferroni method

and update the local critical values for F2l, l = 1, . . . ,m2 to

α2l(k) = α2l +

m1∑
j=1

|R1j(k)|
n1j

g1j2lα1j(k) .

Retest F2l, l = 1, . . . ,m2, simultaneously at level α2l(k) using the Bonferroni method.

If no new null hypotheses are rejected among all m families, the algorithm stops.

Otherwise, it continues to the next stage.

Remark 8 In Algorithm 3, the families of hypotheses within a layer are tested

simultaneously, however, the families across layers are tested in a sequential manner.

For each family, its local critical value is updated on the basis of the results of the

most recent tests of families within other layer. It is seen from Algorithm 3 that

with increasing number of retesting stages, the updated local critical value of each

family is non-decreasing, which in turn implies its number of rejection is also non-

decreasing. Besides, when more rejections occur in one family, larger portions of

its local critical value are transferred to the families within other layer. When all

families of one layer have no new hypotheses rejected, the whole algorithm stops.

Remark 9 Consider the problem of two layers with four families as described in

Figure 7. Regarding Algorithm 3 and relevant scenarios, we have the following

observations:
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(i) Suppose α12 = α22 = 0 and g1121 = g2111 = 1. Then, each layer only has one

family of hypotheses. Thus, Algorithm 3 reduces to Algorithm 1 introduced

in Section 3.1.

(ii) Suppose g1122 = g2211 = g1221 = g2112 = 0. Then, each family of the first

layer is only related to one specific family of the second layer, that is, the

hierarchical logical relationships among families are given in advance. In this

case, the proposed Algorithm 3 takes into account such hierarchical logical

relationships.

(iii) Suppose α12 = 0 and g1221 = g1222 = g2112 = g2212 = 0. Then, both families

of the second layer only rely on the testing results of one particular family of

the first layer. Thus, we can regard it as the case that both “child” families

share one “parent” family, which is similar to a tree structure with retesting

option. Moreover, suppose α12 = 0 but g2112 6= 0 and g2212 6= 0. Then, F12

still has a chance to be tested at the retesting stages due to the portions of

levels transferred from the “child” families of the second layer.

(iv) Suppose α22 = 0, then the testing results of two families of the first layer can

both contribute to the local critical value of the first family of the second layer.

Thus, we can regard it as the case that one “child” family has two “parent”

families.

For algorithm 3, we have the following theorem.

Theorem 2 The two-layer Bonferroni-based gatekeeping procedure with retesting

option described in Algorithm 3 strongly controls the global FWER at level α under

arbitrary dependence.

For a proof of Theorem 2, see appendix.

7 Concluding Remarks

The main focus of this paper has been to develop simple and powerful procedures

for testing ordered families of hypotheses. We have introduced a new multiple
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testing procedure, termed as Bonferroni-based gatekeeping procedure with retesting

option, in which the families of hypotheses are repeatedly tested by the Bonferroni

procedure at updated local critical values in a sequential manner. We have shown

that the proposed procedure strongly controls the global FWER at level α under

arbitrary dependence. Through two clinical trial examples, we have illustrated the

straightforward testing algorithm of our proposed procedure.

Both Guibaud’s generalized Bonferroni parallel gatekeeping procedure and our

proposed procedure are based on simple Bonferroni method. But Guibaud’s pro-

cedure requires rejecting all hypotheses in the last family to start retesting. Al-

though Dmiritneko et al.’s α-exhaustive multistage gatekeeping procedure improves

Guibaud’s procedure by using more powerful method than Bonferroni method to

test each family, the common counterintuitive problem with Guibaud’s method that

lower rank families having more chances to be retested than higher rank families

still exists.

Both the superchain procedure and our proposed procedure allow iteratively

retesting families of hypotheses and both of them have power improvement com-

pared with the procedure without retesting option. Although by choosing the opti-

mized initial parameters and initial multiple testing procedure for each family, the

superchain procedure might has its advantage over our procedure with respect to

power, however, the proposed procedure has some better, desirable features.

While trying to solve problems associated with testing multiple ordered families

of hypotheses in real life applications, it is desirable to have simplicity in the testing

procedures. Our proposed procedure enjoys that simplicity when compared with the

superchain procedure. The sequential testing strategy in our proposed procedure

seems more natural than the superchain procedure which tests all families simul-

taneously. Given the families to be tested, the transition matrix, and the initial

critical values, our procedure can be easily implemented as a graphical form based

on the simple Bonferroni procedure. No matter how many iterations each family

has been through, the testing procedure used at each stage for each family never

changes. On the contrary, for the superchain procedure, even the graph of families

is given, the specific algorithm cannot be defined. One graph may have different

superchain algorithms which leads to completely different testing results. It has
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been mentioned by Kordzakhia and Dmitrienko (2013) that the performance of the

superchain procedure heavily depends on the choices of initial parameters, i.e., the

initial truncation parameters, and the initial local method. They have shown that

the power of the superchain procedures can dramatically differ with changing initial

values of the truncated parameters. Thus, before starting to implement the super-

chain procedure, we first need to make some efforts to decide the optimal values of

initial procedure parameters which add more complexities into the implementation.

From the computational point of view, our procedure is simple and easy to

implement. The implementation of the superchain procedure is complicated due

to the updating rules of the local critical values and the truncation parameters of

the testing procedure for each family at each stage. The computational complexity

is even more severe when the number of families is large. Because of these, it is

difficult to communicate with non-statisticians about the algorithm of the superchain

procedure.

The use of the Bonferroni procedure as the basic procedure for testing each fam-

ily makes our proposed procedure slightly conservative compared to the Dimitrienko

et al.’s α-exhaustive multistage gatekeeping procedure and superchain procedure in

some cases. Therefore, a natural extension of our present work would be to use

more powerful multiple testing procedures as the basic procedures toward develop-

ing a more powerful global FWER controlling sequential procedures with retesting

option. In addition, the proposed procedure controls the global FWER without any

assumption of dependence structure among the underlying test statistics. Given

some distributional information about the test statistics, it is possible to further

improve the proposed procedure.

Acknowledgments

The research of the second author is supported in part by NSF grants DMS-1006021

and DMS-1309162, and the research of the third author is supported in part by NSF

grants DMS-1006344 and DMS-1309273.

23



Appendix

Proof of Theorem 1

Let Vk be the total number of false rejections among all m families of hypotheses in

the first k stages by using the Bonferroni-based gatekeeping procedure with retesting

option. Denote FWERk as the FWER of this procedure in the first k stages such

that FWERk = Pr(Vk ≥ 1). Therefore, the global FWER of this procedure is

FWER = Pr (∪∞k=1 {Vk ≥ 1}). Let Dj denote the event that at least one true null

hypotheses is rejected among all m families at stage j, Ei(j) denote the event that

at least one true null hypothesis is rejected in Fi at stage j, and Ei(j) denote the

complement of Ei(j). Thus, {Vk ≥ 1} = ∪kj=1Dj and Dj =
⋃m

i=1Ei(j). Then, we have

FWERk = Pr(Vk ≥ 1) = Pr
{
∪kj=1Dj

}
.

Thus,

1− FWERk = Pr
(
Dk ∩

{
∩k−1

j=1Dj

})
= Pr

(
∩k−1j=1Dj|Dk

)
Pr
(
Dk

)
= Pr

(
Dk

)
, (6)

where the second equality follows from the fact that any family at stage k is tested

with a more powerful test than the test used in the first k − 1 stages. Thus, if no

true null hypotheses are rejected in any family at stage k, then no true nulls are

rejected in the first k − 1 stages with probability 1.

By (6), in order to show FWERk ≤ α, it is sufficient to show

1− Pr
(
Dk

)
≤ α.

Let pij, i = 1, . . . ,m, j = 1, . . . , ni denote the p-value corresponding to the null

hypothesis Hij in family Fi. Define Ti the set of true null hypotheses within Fi with

the cardinality |Ti|, i = 1, . . . ,m. Then

Pr
(
Dk

)
= Pr

(
m⋂
i=1

Ei(k)

)

≥ Pr


m⋂
i=1

⋂
Hij∈Ti

{
pij >

α∗i(k)
ni

} , (7)
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where

α∗1(k) = α1 +
m∑
l=2

(
1− |Tl|

nl

)
gl1αl (8)

and

α∗i(k) = αi +
i−1∑
j=1

(
1− |Tj|

nj

)
gjiαj(k) +

m∑
l=i+1

(
1− |Tl|

nl

)
gliαl, (9)

for i = 2, . . . ,m. Here, the inequality (7) follows from the argument that when the

event Dk occurs, no true null hypotheses are rejected among all m families at stage

k, which in turn implies that no true null hypotheses are rejected in the first k − 1

stages. Thus, |Rj(k−1)| ≤ |Rj(k)| ≤ nj − |Tj| for j = 1, . . . ,m. By comparing (9)

with (4), we have αi(k) ≤ α∗i(k) for i = 1, . . . ,m, and then (7) follows.

In order to prove the FWERk control, we need to use the following lemma.

Lemma 1 Consider a function f defined by

f(j) =

j∑
i=1

[
|Ti|
ni

+

(
1− |Ti|

ni

)( m∑
l=j+1

gil

)]
α∗i(k)

+
m∑

l=j+1

[
|Tl|
nl

+

(
1− |Tl|

nl

)( m∑
i=j+1

gli

)]
αl

on the set {2, . . . ,m− 1}. The function f(j) is non-increasing in terms of j.

Proof of Lemma 1

To show f(j) is a non-increasing function on j = 2, . . . ,m− 1, it is sufficient to
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show that f(j) ≤ f(j − 1) for any j = 3, . . . ,m− 1. Note that

f(j) =

j−1∑
i=1

[
|Ti|
ni

+

(
1− |Ti|

ni

)( m∑
l=j+1

gil

)]
α∗i(k)

+
m∑

l=j+1

[
|Tl|
nl

+

(
1− |Tl|

nl

)( m∑
i=j+1

gli

)]
αl

+

[
|Tj|
nj

+

(
1− |Tj|

nj

)( m∑
i=j+1

gji

)]
α∗j(k)

≤
j−1∑
i=1

[
|Ti|
ni

+

(
1− |Ti|

ni

)( m∑
l=j+1

gil

)]
α∗i(k)

+
m∑

l=j+1

[
|Tl|
nl

+

(
1− |Tl|

nl

)( m∑
i=j+1

gli

)]
αl

+

[
|Tj|
nj

+

(
1− |Tj|

nj

)( m∑
i=j+1

gji

)]
αj

+

j−1∑
i=1

(
1− |Ti|

ni

)
gijα

∗
i(k) +

m∑
l=j+1

(
1− |Tl|

nl

)
gljαl

=

j−1∑
i=1

[
|Ti|
ni

+

(
1− |Ti|

ni

)( m∑
l=j

gil

)]
α∗i(k)

+
m∑
l=j

[
|Tl|
nl

+

(
1− |Tl|

nl

)( m∑
i=j

gli

)]
αl

= f(j − 1),

the desired result follows. �
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By (7), we note that

1− Pr
(
Dk

)
≤

m∑
i=1

Pr

 ⋃
Hij∈Ti

{
p̂ij ≤

α∗i(k)
ni

} ≤
m∑
i=1

|Ti|
ni

α∗i(k) (10)

=
m−1∑
i=1

|Ti|
ni

α∗i(k) +
|Tm|
nm

[
αm +

m−1∑
i=1

(
1− |Ti|

ni

)
gimα

∗
i(k)

]

=
m−1∑
i=1

[
|Ti|
ni

+

(
1− |Ti|

ni

)
gim

]
α∗i(k) +

|Tm|
nm

αm

≤

[
|T1|
n1

+

(
1− |T1|

n1

)( m∑
l=2

g1l

)]
α∗1(k)

+
m∑
l=2

[
|Tl|
nl

+

(
1− |Tl|

nl

)( m∑
j=2

glj

)]
αl (11)

= α∗1(k) +
m∑
l=2

[
|Tl|
nl

+

(
1− |Tl|

nl

)( m∑
j=2

glj

)]
αl (12)

= α1 +
m∑
l=2

[
|Tl|
nl

+

(
1− |Tl|

nl

)( m∑
j=1

glj

)]
αl (13)

=
m∑
l=1

αl = α,

where (10) holds due to the fact that α∗i(k) is not random for any i = 1, . . . ,m and the

U(0, 1) assumption of true null p-values. The inequality (11) holds due to Lemma

1 and the equalities (12) and (13) hold due to the transition matrix condition that

for any i = 1, . . . ,m,
∑m

j=1 gij = 1 and gii = 0. Thus, by (6), we have that for any

k,

FWERk = 1− Pr
(
Dk

)
≤ α. (14)

Since Vk is non-decreasing in k, the events {Vk ≥ 1}k≥1 is an increasing sequence of

events. Then

FWER = Pr(∪∞k=1{Vk ≥ 1})

= lim
k→∞

Pr (Vk ≥ 1) = lim
k→∞

FWERk ≤ α, (15)

the desired result. �
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Proof of Theorem 2

Using the same notations Vk, Dk and FWERk as in the proof of Theorem 1, the

global FWER of the two-layer Bonferroni-based gatekeeping procedure with retest-

ing option is still expressed as FWER = Pr (∪∞k=1 {Vk ≥ 1}). By using the same

argument as in the proof of (6), we have

FWERk = Pr (Vk ≥ 1) = 1− Pr
(
Dk

)
.

To show FWERk ≤ α, it is enough to show

1− Pr
(
Dk

)
≤ α.

Let pijs denote the p-value corresponding to the null hypothesis Hijs in family Fij,

i = 1, 2, j = 1, . . . ,mi and s = 1, . . . , nij. Define Tij the set of true null hypotheses

within Fij with the cardinality |Tij|. By using the same argument as in the proof of

(7), we have

Pr
(
Dk

)
≥ Pr


m1⋂
j=1

⋂
H1js∈T1j

{
p1js >

α∗1j(k)
n1j

}⋂
{

m2⋂
l=1

⋂
H2ls∈T2l

{
p2ls >

α∗2l(k)
n2l

}} ,

where

α∗1j(k) = α1j +

m2∑
l=1

(
1− |T2l|

n2l

)
g2l1jα2l,

α∗2l(k) = α2l +

m1∑
j=1

(
1− |T1j|

n1j

)
g1j2lα

∗
1j(k)

.
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Thus,

1− Pr
(
Dk

)
≤

m1∑
j=1

Pr

 ⋃
H1js∈T1j

{
p1js ≤

α∗1j(k)
n1j

}
+

m2∑
l=1

Pr

{ ⋃
H2ls∈T2l

{
p2ls ≤

α∗2l(k)
n2l

}}

≤
m1∑
j=1

|T1j|
n1j

α∗1j(k) +

m2∑
l=1

|T2l|
n2l

[
α2l +

m1∑
j=1

(
1− |T1j|

n1j

)
g1j2lα

∗
1j(k)

]

=

m1∑
j=1

[
α1j +

m2∑
l=1

(
1− |T2l|

n2l

)
g2l1jα2l

]
+

m2∑
l=1

|T2l|
n2l

α2l

=

m1∑
j=1

α1j +

m2∑
l=1

(
1− |T2l|

n2l

)
α2l +

m2∑
l=1

|T2l|
n2l

α2l

=

m1∑
j=1

α1j +

m2∑
l=1

α2l = α.

The first inequality follows from Bonferroni’s inequality and the second follows from

the assumption that true null p-values follow U(0, 1). The first and second equalities

hold due to the conditions of the transition coefficient set. Therefore, we have

FWERk = 1− Pr
(
Dk

)
≤ α. (16)

By using the same argument as in the proof of (15), we have

FWER = lim
k→∞

FWERk ≤ α,

the desired result. �
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