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A A GENERALIZATION OF THEOREM 2 IN Angelopoulos et al. [2022]

In the Supplementary Material, we will present a generalization of Theorem 2 in Angelopoulos et al. [2022] on the lower
bound of conformal risk control, which is needed in the proof of Theorem 1 in our paper. This result itself might be of
independent interest to other applications. For convenience, we use the same notations as in Angelopoulos et al. [2022] in
the following discussion.

Suppose that Cλ : X → 2Y is a given sequence of functions of an input X ∈ X that outputs a prediction set C(X) ⊆ Y ,
which is indexed by a threshold λ ∈ Λ, and L(Y, Cλ(X)) ∈ (−∞, B] be a given loss function of any observation (X,Y ) and
the corresponding prediction set Cλ(X). For the calibration observations (Xi, Yi)

n
i=1 and the test observation (Xn+1, Yn+1),

let Li(λ) = L(Yi, Cλ(Xi)) for i = 1, . . . , n + 1 and R̂n(λ) = (L1(λ) + . . . + Ln(λ))/n. The value of λ is determined
according to the following algorithm:

λ̂ = inf
{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
,

where α ∈ (0, B) is the given desired risk level upper bound. Let D = {λ : J(R̂n+1, λ) > 0} denote the set of
discontinuities in R̂n+1, where J(L, λ) is the jump function defined below,

J(L, λ) = lim
ϵ→0+

L(λ− ϵ)− L(λ),

which quantifies the size of the discontinuity in the loss function L at a point λ. For any λ ∈ D, define

s(λ) = |{i : J(Li, λ) > 0}|,

the number of Li(λ) which are discontinuous at λ. Regarding s(λ), we assume that

sup
λ∈Λ

s(λ) ≤ M, almost surely,

where M is a non-negative integer. Specifically, if M = 0, this assumption implies that for any λ, P (J(Li, λ) > 0) = 0 for
i = 1, . . . , n+ 1, which is the exactly original discontinuity assumption in Theorem 2 of Angelopoulos et al. [2022].

Under the above relaxed assumption, we generalize Theorem 2 in Angelopoulos et al. [2022] as follows. This result is
applicable to the ordinal classification setting.

Theorem 4. In the settings of Theorem 1 of Angelopoulos et al. [2022], further assume that Li are i.i.d, Li > 0 and

sup
λ∈Λ

s(λ) ≤ M, almost surely,

*Corresponding author

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<wenge.guo@njit.edu>?Subject=Your UAI 2023 paper


where M is a non-negative integer. Then,

E[Ln+1(λ̂)] ≥ α− (M + 2)B

n+ 1
.

Specifically, if M = 0, the above result reduces to Theorem 2 in Angelopoulos et al. [2022]. To show Theorem 4, we need to
generalize Lemma 1 of Angelopoulos et al. [2022] as follows and then use the similar arguments as in the proof of Theorem
2 therein along with this lemma.

Lemma 1. In the settings of Theorem 4, any jumps in the empirical risk are bounded, i.e.,

sup
λ∈Λ

J(R̂n, λ) ≤
(M + 1)B

n
, almost surely.

This lemma can be proved by using the similar arguments as in the proof of Lemma 1 of Angelopoulos et al. [2022].
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