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Abstract
As a natural extension to the standard conformal prediction
method, several conformal risk control methods have been
recently developed and applied to various learning problems.
In this work, we seek to control the conformal risk in ex-
pectation for ordinal classification tasks, which have broad
applications to many real problems. For this purpose, we
firstly formulated the ordinal classification task in the con-
formal risk control framework, and provided theoretic risk
bounds of the risk control method. Then we proposed two
types of loss functions specially designed for ordinal classi-
fication tasks, and developed corresponding algorithms to
determine the prediction set for each case to control their
risks at a desired level. We demonstrated the effectiveness of
our proposed methods, and analyzed the difference between
the two types of risks on three different datasets, including
a simulated dataset, the UTKFace dataset and the diabetic
retinopathy detection dataset.

1 INTRODUCTION

In many decision making settings, a black box machine
learning system is no longer adequate. Instead, we expect
our system to not only make the predictions but also to
quantify uncertainties and to control their risks [?]. This is
especially true in certain high risk areas such as medical
diagnosis and automatic driving.

One solution to the problem is conformal prediction [Vovk
et al., 1999], which has gained a lot of attention recently due
to its many advantages. It is distribution-free, rigorous in
statistics, and is easy to integrate with many machine learn-
ing models. The goal of conformal prediction is to create
uncertainty sets for predictions made by these models, so
that a certain coverage or risk requirement can be satisfied.

To extend the notion of error by conformal prediction, re-
cently a new framework called conformal risk control has
been developed [Angelopoulos et al., 2022a]. Compared
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with a traditional conformal prediction method, conformal
risk control generalizes the miscoverage rate to any bounded
non-increasing loss functions, which offers a lot of flexi-
bility to problems where other metrics are valued over the
miscoverage rate. Yet, it still remains a question how to de-
velop proper loss functions and to derive the corresponding
prediction set for specific problems.

In this paper, we focus on the ordinal classification [Mc-
Cullagh, 1980], which is widely applied to many real life
problems. In these problems, there exists a relative ordering
among different classes in their label space. This ordinal
nature brings unique challenges to the measurement of the
prediction errors. For example, in a task of computer-aided
medical diagnosis (CAMD) [Juri Yanase, 2019], it is much
more harmful to mis-diagnose a severe condition than a mild
condition, which indicates that different weights to different
classes should be considered. While in a task of predicting
a company’s revenue range, it is desired that the predicted
revenue range is as close as possible to the actual range,
which indicates that the distance between the actual range
and the prediction set should be considered. Both can be
captured by the conformal risk control framework.

For this purpose, we develop the conformal risk control
method specifically for the ordinal classification problems.
Our goal is to construct proper prediction sets in the ordi-
nal setting so that their expected loss of prediction can be
controlled. Our major contributions are four-fold.

• Formulated the ordinal classification problem in the
risk control framework, along with three conditions for
an ideal prediction set in the ordinal setting.

• Provided the upper and lower bounds of risk for the
proposed risk control method.

• Proposed two different types of risk for constructing
prediction sets in the ordinal classification setting, and
developed corresponding algorithms to find the optimal
prediction sets.

• Demonstrated the effectiveness of the method on both
simulated and real data, and compared the difference
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between the two types of risks.

In addition, in the Supplementary Materials, we present a
general result on the lower bound of the conformal risk,
which is a generalization of Theorem 2 in [Angelopoulos
et al., 2022a]. Except that it is used to prove Theorem 1 in
this paper, this result might be of independent interest.

1.1 RELATED WORK

Conformal prediction was firstly developed by Vladimir
Vovk and collaborators [Vovk et al., 1999] [Vovk et al.,
2005]. Shafer and Vovk [2008], Angelopoulos and Bates
[2021], Fontana et al. [2023] provide a good introduction
and survey to this field of work. Our work is primarily based
on split conformal prediction [Papadopoulos et al., 2002]
[Lei et al., 2015]. Other types of conformal prediction meth-
ods have been developed, such as cross-conformal predic-
tion [Vovk, 2015] [Vovk et al., 2018] and CV+/Jackknife+
[Barber et al., 2021] [Kim et al., 2020]. Recently confor-
mal prediction methods have been extended to the settings
of non-exchangeability [Tibshirani et al., 2019], [Cauchois
et al., 2020], [Podkopaev and Ramdas, 2021], [Gibbs and
Candes, 2021], [Barber et al., 2022], and have improved
conditional coverage [Vovk, 2012], [Lei and Wasserman,
2014], [Barber et al., 2021], [Bian and Barber, 2022].

Our work is most relevant to risk control in expectation [An-
gelopoulos et al., 2022a] and ordinal conformal prediction
[Lu et al., 2022]. The former introduced a general frame-
work of conformal risk control in expectation and discussed
possible applications to several problems such as tumor
segmentation, multi-label classification, hierarchical image
classification and question answering. The latter developed
a general method of ordinal conformal prediction sets with
guaranteed marginal coverage for rating the disease severity
in medical image. In this paper, we use the framework of
conformal risk control in expectation, with the focus on
ordinal classification problems.

Other relevant work includes PAC-type risk control and its
applications [Bates et al., 2021], [Angelopoulos et al., 2021],
[Park et al., 2019], [Park et al., 2021], [Angelopoulos et al.,
2022b], and [Schuster et al., 2022] and conformal prediction
methods for conventional binary or multi-class classification
[Lei, 2014], [Hechtlinger et al., 2018], [Sadinle et al., 2019],
[Romano et al., 2020], [Cauchois et al., 2021], [Angelopou-
los et al., 2020], and [Kuchibhotla and Berk, 2023].

2 METHOD

2.1 PROBLEM FORMULATION

Consider an ordinal classification problem with K classes,
i.e., Y = {0, ...,K − 1}, where there exists an order-
ing among these classes. Let Xtest be an input data and

Ytest ∈ Y be its corresponding ground truth label. In the
context of conformal prediction, since the goal is to produce
a set of possible predictions that satisfy a required confi-
dence level, let C(Xtest) ⊆ {1, ...,K} be the prediction
set for Xtest to quantify the uncertainty associated with
the model’s predictions. Assume we also have a calibration
dataset {(Xi, Yi)}ni=1 that are drawn exchangeably from the
same unknown distribution PXY .

Let L(Ytest, C(Xtest)) be a certain loss function defined as

L(Ytest,C(Xtest)) =

g(Ytest, C(Xtest))1(Ytest /∈ C(Xtest))
(1)

where g is a weight function, and it measures the loss if the
true label Ytest does not fall into the prediction setC(Xtest);
its value decreases as the prediction set C(Xtest) grows.

The choice of the weight function may impact the resulting
prediction sets. In an actual ordinal classification problem,
different classes may have different importance and large
prediction errors are often more concerned. Accordingly,
in our work, we propose two forms of weight functions:
a weight-based loss function and a divergence-based loss
function. The former assigns different weights to different
classes, while the latter incurs a loss proportional to the
divergence between the true label and the prediction set.

Note that for a standard split conformal prediction, it’s hard
to satisfy these requirements, which motivated us to intro-
duce the new set-based loss functions. By leveraging the
conformal risk control framework, it’s easy to extend the
loss function from an indicator type of loss function to a
broad spectrum of loss functions, which suits the ordinal
classification problem well.

Our goal is to construct C(Xtest) so that the expected loss
can be controlled at a specified α level, i.e.,

E[L(Ytest, C(Xtest)] ≤ α. (2)

Aside from the risk control by (2), we argue that an ideal
prediction set C(Xtest) in an ordinal setting should also
satisfy the following three conditions:

C1. C(Xtest) should be a contiguous range of classes on
Y , i.e., C(Xtest) = [l, u], where l ≤ u ∈ Y , and the
interval [l, u] stands for {l, l + 1, ..., u − 1, u}. This
condition is needed because there is no real ordinal
problem where a prediction set covers the neighboring
classes while the one in the middle is skipped.

C2. The prediction set should cover the point prediction
ŷ ∈ Y , i.e., ŷ ∈ C(Xtest). Here ŷ is the class assign-
ment when the classification model predicts a single
label. This condition is needed to ensure that a confor-
mal prediction set provides a consistent result with a
regular point prediction.
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C3. The prediction sets should be nested for different levels
of α, i.e., C1(Xtest) ⊆ C2(Xtest) if α1 ≥ α2, where
Ci is the prediction set corresponding to level αi. This
is a technical assumption but it aligns well with our
intuition that as the risk level increases, the prediction
set should gradually reduce in a smooth way.

2.2 RISK CONTROL

To derive predictions sets for different level of risk, we can
simply split the task as two steps: (1) construct a sequence
of sets Cλ indexed by a threshold λ ∈ Λ; (2) determine the
appropriate value λ̂ of λ such that the risk of the correspond-
ing prediction set Cλ̂ is controlled at a desired risk level
α. In this subsection, we focus on step 2 of this task by de-
veloping a general approach for determining λ̂ with proven
risk control of Cλ̂, whereas in the subsequent subsections
2.3 and 2.4, we develop optimal algorithms for construct-
ing a sequence of prediction sets Cλ specifically tailed to
two different types of loss functions arising in the ordinal
classification.

Specifically, consider that Cλ = [l(λ), u(λ)] and the loss
function L(λ) is defined as in (1). Suppose that l(λ) is de-
creasing and u(λ) is increasing in λ, both right-continuous,
and there exists a value λ0 ∈ Λ such that [l(λ0), u(λ0)] =
Y . We also suppose that the weight function g(Y,C) in (1)
is decreasing in C in the sense that if C1 ⊆ C2 ⊆ Y , we
have g(Y,C1) ≥ g(Y,C2). Based on these assumptions,
it’s easy to check that the Cλ and L(λ) specifically defined
for the ordinal classification satisfy the following proper-
ties: (i) L(λ) is non-increasing in λ, right-continuous; (ii)
infλ L(λ) = 0 and supλ L(λ) ≤ B <∞ almost surely.

Let Li(λ) = L(Yi, Cλ(Xi)) be the loss value of the calibra-
tion observation (Xi, Yi) for i = 1, . . . , n. For any desired
risk level upper bound α, pick the value λ̂ of λ below so
that the risk of Cλ̂ is controlled:

λ̂ = inf{λ :

n∑
i=1

Li(λ) ≤ (n+ 1)α−B}. (3)

Theorem 1. Let λ̂ be the value defined in equation
(3), under the assumptions stated as above, we have
E[L(Ytest, Cλ̂(Xtest)] ≤ α. Specifically, in the settings
of Theorem 4 in the Supplementary Materials, we have
α− (M+2)B

n+1 ≤ E[L(Ytest, Cλ̂(Xtest)], where M is a non-
negative integer given in the discontinuity assumption of
Theorem 4.

Proof. The first part of Theorem 1 directly follows from
Theorem 1 in [Angelopoulos et al., 2022a] and the second
part follows from Theorem 4 in the Supplementary Materi-
als, which is a generalization of Theorem 2 in [Angelopou-
los et al., 2022a].

Remark. The risk control of the algorithm Cλ̂ is estab-
lished by using Theorem 1 of [Angelopoulos et al., 2022a],
however, its lower bound cannot be automatically obtained
by using Theorem 2 therein, since that result is based on
the discontinuity assumption, which is often not satisfied in
the the ordinal classification setting. As one of the reviewers
pointed out, a trick of randomization or interpolation to
transform Li(λ) to be a continuous function can be used to
handle the issue. Instead of using such a tweak, the disconti-
nuity assumption is relaxed here such that it is often satisfied
in the ordinal classification setting. Then, under the relaxed
assumption, Theorem 2 of [Angelopoulos et al., 2022a] is
generalized as Theorem 4 in the Supplementary Materials,
which is proved by using the similar arguments as in that
paper. Although this result is weaker than Theorem 2 of
[Angelopoulos et al., 2022a], it is often applicable in our
ordinal classification setting. This result itself might be of
independent interest to other applications.

2.3 WEIGHT-BASED RISK

For the weight-based risk function, the weight func-
tion g is independent of the choice of C(Xtest), i.e.,
g(y, C(Xtest)) = h(y). This type of functions are partic-
ularly suitable to the cases where we would intentionally
adjust the importance of certain classes. One example of
h(y) is constant for any label y, for which the risk cor-
responds to the conventional mis-coverage rate. Another
example of h(y) is h(y) = y, which assigns a higher weight
to a higher class.

2.3.1 An Oracle Method

Suppose we have the oracle access to the true conditional
probability distribution f(i|x) of Ytest = i givenXtest = x,
where i ∈ Y . By using this weight function, the conditional
risk given Xtest = x can be written as:

E[L(Ytest, C(Xtest))|Xtest = x]

=
∑
i

h(i)f(i|x)−
∑
i∈[l,u]

h(i)f(i|x). (4)

We denote the first term
∑
i h(i)f(i|x) of (4) by D(x),

which is the upper bound of the conditional risk given
Xtest = x, i.e., D(x) ≤

∑
i max{h(i)}f(i|x) =

max{h(i)}. For the simplicity of expression, we normalize
h(y) so that max{h(i)} = 1, in which case D(x) ≤ 1.
Therefore, the range of the risk value is [0, 1].

Clearly, controlling the conditional risk in (4) is equivalent
to ∑

i∈[l,u]

h(i)f(i|x) ≥ D(x)− α, (5)

which suggests the following rule to derive the optimal
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prediction set [l, u] for Xtest = x,

(l, u) =

argmin
0≤l≤u≤K−1

{
u− l :

∑
i∈[l,u]

h(i)f(i|x) ≥ D(x)− α
}
.

(6)

2.3.2 Marginal Risk Control

Due to f(i|x) is unknown in practice, we therefore replace
it by the classification model output as an estimate of the
probability. Thus, we can define a sequence of prediction
set indexed by a threshold value, i.e.,

(l(λ), u(λ)) = argmin
0≤l≤ŷ≤u≤K−1

{
u− l :

1−
∑
i∈[l,u]

h(i)f̂(i|x) ≤ λ
}
,

(7)

where f̂(i|x) is the model score assigned to x on class i and
ŷ = argmaxi{h(i)f̂(i|x)} is the point prediction value.

Remark. We seek to control the marginal risk in this work,
which is weaker than the conditional risk control, since it
holds only on average [Vovk, 2012], [Lei and Wasserman,
2014], and [Barber et al., 2021].

Remark. If h(i) is constant, then (7) will reduce to the one
proposed by Lu et al. [2022]. In other words, Lu et al’s
method is a special case of the weight-based risk control.

Under the conditions C1–C3, we solve the problem of (7)
as proposed by Algorithm 1. Basically, the algorithm works
in a greedy way and runs at a complexity of O(K). It starts
with the point prediction label to grow the prediction set
step by step until the risk requirement is satisfied, therefore
it guarantees that the point prediction ŷ is always covered
within the prediction set. It also ensures that the nested
property holds since it does not shrink the prediction set in
this process.

Theorem 2. The prediction set derived by Algorithm 1
satisfies conditions C1–C3 and is optimal in the sense of
satisfying (7).

Proof. Let Cλ = [l(λ), u(λ)] denote the prediction set de-
rived by Algorithm 1 and C∗λ be the optimal prediction
set satisfying (7) and conditions C1–C3. It’s easy to check
that Cλ satisfies conditions C1–C3. In the following, we
prove by contradiction that Cλ also satisfies (7). Assume
that there exists a value λ0 of λ such that Cλ0 6= C∗λ0

. Let
λ1 = sup{λ : Cλ = C∗λ} and Cλ1

= C∗λ1
= [l1, u1].

Without loss of generality, suppose s(l1 − 1) > s(u1 + 1).
It is easy to see that for λ ∈ (λ1, λ1 + s(u1 + 1)], Cλ =
[l1 − 1, u1] and C∗λ = [l1, u1 + 1], due to the definition of

Algorithm 1: Determine the prediction set for a given λ

Input: λ, h(i), f̂(x|i) for i ∈ {0, ...,K − 1}
Output: l, u

1 s(i)← h(i)f̂(x|i) for i ∈ {0, ...,K − 1}
2 u, l← argmaxi{s(i)}
3 sum← 0
4 while sum < (1− λ) do
5 if s(l − 1) > s(u+ 1) then
6 sum = sum+ s(l − 1), l = l − 1

7 else
8 sum = sum+ s(u+ 1), u = u+ 1

9 return l, u

λ1. However, for λ ∈ (λ1 + s(u1 + 1), λ1 + s(l1 − 1)],
Cλ = [l1 − 1, u1] keeps unchanged, but C∗λ = [l1, u1 + 1]
needs to grow by one class so that it can satisfy (7), which
contradicts the optimality assumption of C∗λ.

To calculate the actual value of λ, we can do a linear search.
However, for an improved efficiency, we can also do a binary
search as shown in Algorithm 2.

Algorithm 2: Determine the value of λ̂ for a given α
Input: {xi, yi} for i ∈ {0, ..., n}
Output: λ̂
Parameters :precision δ

1 λ0 ← 0, λ1 ← 0.5
2 while ∆λk = |λk − λk−1| > δ do
3 L(λk)← 0
4 for i← 1 to n do
5 Calculate (li, ui) for xi and λk using Algorithm

1
6 Calculate Li(λk) from (li, ui) and yi
7 L(λk)← L(λk) + Li(λk)

8 if L(λk) > (n+ 1)α− 1 then
9 λk+1 ← λk − ∆λk

2

10 else
11 λk+1 ← λk + ∆λk

2

12 return λ̂ = λk+1

2.4 DIVERGENCE-BASED RISK

For the divergence based risk, the loss is proportional to
the distance between the true label and the prediction set,
i.e., g(Ytest, C(Xtest)) = inf{d(y, i) : i ∈ [l, u]}, where
d(·, ·) ∈ Y × Y → R+ is a given distance measure on
the label space. This type of functions are particularly suit-
able for the cases where we are more concerned with large
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prediction errors than the differences among the individual
classes.

There could be different ways to define the difference mea-
sure d(·, ·). For example, d(y, i) = |y − i|p. In this work,
we only consider the case where p = 1. Furthermore, we
normalize the loss value by K − 1, therefore,

g(Ytest, C(Xtest)) =
1

K − 1
inf
{
|y − k| : k ∈ [l, u]

}
.

(8)

Clearly, when l = 0 and u = K − 1, the prediction set cov-
ers the whole label space, we have L(Ytest, C(Xtest)) = 0.
The upper bound of the risk, on the other hand, is 1, which
happens when the true label and the prediction set are ex-
actly on two opposite boundaries of the label space. There-
fore E[L(Ytest, C(Xtest))|Xtest] ∈ [0, 1].

2.4.1 An Oracle Method

Suppose we have the oracle access to the true conditional
probability distribution f(i|x) of Ytest given Xtest = x.
Then the conditional risk for a given Xtest = x can be
written as:

E
[
L(Ytest, C(Xtest))|Xtest = x

]
=

1

K − 1

(∑
i<l

(l − i)f(i|x) +
∑
i>u

(i− u)f(i|x)
)
.

(9)

It is easy to see that the first term of (9) increases as l
increases, while the second term decreases as u increases.
The optimal prediction set [l∗, u∗] forXtest = x is therefore
given by

(l∗, u∗) = argmin
0≤l≤u≤K−1

{
u− l :

∑
i<l

(l − i)f(i|x)

+
∑
i>u

(i− u)f(i|x) ≤ (K − 1)α
}
.

(10)

2.4.2 Marginal Risk Control

Similarly, we use the classification model output as an esti-
mate of f(i|x) and seek to control the marginal risk instead.
Under this setting, we define a sequence of prediction set
[l(λ), u(λ)] indexed by a threshold value λ, i.e.,

(l(λ), u(λ)) = argmin
0≤l≤ŷ≤u≤K−1

{
u− l :

∑
i<l

(l − i)f̂(i|x)

+
∑
i>u

(i− u)f̂(i|x) ≤ λ
}
,

(11)

where f̂(i|x) is the model score assigned to x on class i,
and ŷ = argmaxi{f̂(i|x)} is the point prediction value.

To determine the prediction set for a given λ, it helps to
firstly look into how risk changes when the prediction set
size adjusts by 1. For the simplicity of expression, letR(l, u)
be the risk incurred by a prediction set C(Xtest) = [l, u],
which can be calculated by (9). It’s easy to see that

R(l + 1, u)−R(l, u) =
∑
i<l+1

(l + 1− i)f̂(i|x)

−
∑
i<l

(l − i) ˆf(i|x) =
∑
i≤l

f̂(i|x),
(12)

Similarly,

R(l, u− 1)−R(l, u) =
∑
i>u−1

(i− (u− 1))f̂(i|x)

−
∑
i>u

(i− u)f̂(i|x) =
∑
i≥u

f̂(i|x),
(13)

Therefore, the risk change incurred by every single adjust-
ment of the prediction set boundary can be easily calculated
beforehand at a complexity of O(K). With this insight, we
propose Algorithm 3 below to determine the prediction set
under conditions C1–C3.

Algorithm 3: Determine the prediction set for a given λ

Input: λ, f̂(x|i) for i ∈ {0, ...,K − 1}
Output: l, u

1 Calculate head(j) =
∑
i≤j f(i|x),

tail(j) =
∑
i≥j f(i|x) for i ∈ {0, ...,K − 1}

2 l, u← argmaxi{f̂(x|i)}
3 sum← R(l, u)
4 while sum > λ do
5 if head(l − 1) ≥ tail(u+ 1) then
6 sum = sum− head(l − 1)
7 l = l − 1

8 else
9 sum = sum− tail(u+ 1)

10 u = u+ 1

11 return l, u

Basically, this is a greedy algorithm that runs at a complex-
ity of O(K). The algorithm starts with the class that has the
maximum value of f̂(i|x), therefore it guarantees that the
point prediction ŷ is always covered within the prediction
set. The algorithm grows the prediction set one class a step.
At each step, it adjusts the prediction boundary by maximiz-
ing the risk reduction of that step, until it reaches the set
that satisfies the risk requirement. Since it does not shrink
the prediction set in this process, the nest property is also
ensured.

To calculate the value of λ̂ for a given α, we follow the same
binary search process as used by Algorithm 2.
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Theorem 3. The prediction set derived by Algorithm 3
satisfies conditions C1–C3 and is optimal in the sense of
satisfying (11).

The proof is similar to the one for Theorem 2, therefore is
omitted here.

3 EXPERIMENTS

To demonstrate the effectiveness of the proposed algorithms,
we evaluated them on three ordinal classification tasks, in-
cluding a task to classify a simulated ordinal data, a task to
predict the age group of the person based on their face im-
ages, and a task to predict the severity of patients’ diabetic
retinopathy based on their retina images1.

For the baseline method, we consider the method proposed
by Lu et al. [2022], which can be regarded as a special case
of the weight-based risk, in which all classes have equal
weights. To our knowledge, it is the only existing method
that deals with conformal prediction for ordinal problems.

For all experiments in this work, data are equally split for
validation and for test. The softmax output of the ordinal
classification model is fed as the input to our algorithm, and
the results are averaged over 100 random trials.

3.1 SIMULATED DATA

We simulated a 10-class ordinal data on a 2-D plate. Each
class has 2,000 data points sampled from a Gaussian distri-
bution, where the ith class is centered at the coordination
[i, i], with a randomly generated covariance matrix. Figure
1 displays the distribution of the data.

Figure 1: A simulated 10-class ordinal data

To classify the ordinal labels, we built a two-layer MLP with
50 neurons on the hidden layer. We use 14,000 data points

1Codes for this work can be found at our GitHub repository:
https://github.com/yx8njit/ordinal-conformal-risk-control.

Table 1: Actual risk at different value of α on simulated data

α 0.02 0.08 0.14 0.20

S1 0.0199 0.0807 0.1403 0.1999
S2 0.0201 0.0802 0.1402 0.2001
S3 0.0201 0.0782 0.1406 0.1997
S4 0.0199 0.0463 0.0463 0.0464

for validation and test.

We evaluate the following 4 scenarios:

S1: weight-based risk with equal weights on all classes.

S2: weight-based risk with incremental weights on higher
classes, where class i has a weight i;

S3: weight-based risk, with double weights on class 5∼9;

S4: divergence-based risk.

For all scenarios, we evaluate the algorithm with different
α values. The actual risks calculated are given in Table
1, which shows that the proposed algorithm produces risk
values very close to the α values for the first three scenarios.

For the last scenario, the actual risk saturates around 0.0463
since α = 0.08. This is due to the fact that the max diver-
gence risk on this data set has been reached. Afterwards,
the prediction set shrinks to a single class, therefore, the
calculated risk no longer changes.

Need to point out that although the divergence-based risk
has the same value range of [0, 1] as the weight-based risk,
it generally has a much smaller max risk value. In fact, the
risk value of 1 can only be reached if every data point in
the dataset has a true label that is on the opposite side of
the predicted set on the label space, which is impossible in
practice.

Figure 2 illustrates the trend of prediction set sizes at differ-
ent values of α for these scenarios. It can be seen that as the
value of α increases, the set sizes reduce. For the divergence-
based risk, the set size shrinks to 1 around α = 0.05, which
aligns with the calculated max risk value 0.0463. The figure
also shows that, for the weight-based risk, both the incre-
mental weights and the double weights scenarios have larger
prediction sets compared with the equal weights scenario
on the same α value. This is because the algorithm needs to
extend the prediction set accordingly to reduce the overall
risk. Therefore, there is a trade-off between the prediction
set size and the risk reduction.

Figure 3 illustrates the risk distribution at a fixed α for
different scenarios, where α is fixed at 0.10 for the first
three scenarios and at 0.02 for the last scenario. It shows
that for all the scenarios, the algorithm controls the risk well
within narrow ranges around the specified α values, which
are shown by the orange dotted lines in the graphs.
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Figure 2: Prediction set sizes at different values of α on
simulated data

(a) equal weights
α = 0.1

(b) incremental weights
α = 0.1

(c) double weights, α = 0.1 (d) divergence, α = 0.02

Figure 3: Risk distributions of different scenarios at a fixed
α on the simulated dataset.

We also looked into the difference between the weight-based
risk and the divergence-based risk. For this purpose, we
compare their predicted class ranges. Due to their risk may
take very different values, for a meaningful comparison,
we carefully choose their α values so that their averaged
prediction sets size are both 3. Then we compare the distri-
bution of the centroids of their prediction sets, which are
shown in Figure 4. It can be seen that compared with the
equal weights-based loss function, the divergence-based
loss function tends to push the centroids toward the center
of the label range. In other words, it is more centripetal than
the weight-base risk. This can be explained by the fact that
the divergence-based loss function punishes more on the
extreme error cases where the true label lies on the opposite
side of the prediction set.

Figure 4: Distributions of prediction centroids on simulated
data.

3.2 AGE RECOGNITION

For this task, we use the UTKFace dataset2, which is a large-
scale face dataset with over 20K images that cover a long
age span (range from 0 to 116 years old). Each image has
been annotated of the person’s age. In our work, we kept
those below age 100, and discretized the age into 20 groups,
where each group covers 5 years in range, i.e., group 0 is for
0 ∼ 4, and group 1 is for 5 ∼ 9 and so on. Here are some
examples of the images and their group labels.

(a) age 8, group 1 (b) age 25, group 5 (c) age 42, group 8

(d) age 67, group 13 (e) age 86, group 17

Figure 5: Image examples in the UTKFace dataset.

We built an ordinal classifier to predict the age group using
ResNet34 [He et al., 2016], where we didn’t particularly
tune the hyper-parameters for a superb classification result.
We use 17K images for validation and test, and evaluate the
following scenarios:

• S1: weighted risk, with equal weights on all classes
• S2: weighted risk, with double weights on class 0∼3
• S3: weighted risk, with double weights on class 16∼19
• S4: divergence risk

2The data is available at https://susanqq.github.io/UTKFace/.
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Table 2: Actual risks at different values of α on UTKFace

α 0.005 0.01 0.025 0.05 0.10 0.20

S1 0.005 0.010 0.025 0.050 0.100 0.201
S2 0.005 0.010 0.025 0.050 0.100 0.200
S3 0.005 0.010 0.025 0.050 0.100 0.169
S4 0.005 0.010 0.016 0.016 0.016 0.016

Here shows in Table 2 the actual risks for different α values
in these scenarios, which shows our algorithm produces the
actual risks very close to the α value. It also shows that as α
increases to certain values, the risks of the last two scenarios
saturate to their max risk values. The trend of prediction set
sizes over different α values and the risk distribution at a
fixed α show similar conclusions as on the simulated data,
and are therefore omitted here due to the length restriction.

We also fixed the prediction set size to be 3 and compared
the distributions of the prediction set centroids for the dif-
ferent scenarios, which are shown in Figure 6. From the
distributions, we can see that by doubling the weights of the
group 0 ∼ 3, it pushes the distribution towards the lower age
end, while by doubling the weights of the group 16 ∼ 19,
it pushes the distribution towards the higher age end. Sim-
ilarly, the divergence loss function tends to be centripetal
compared with other loss functions.

Figure 6: Distributions of prediction centroids on UTKFace

3.3 DIABETIC RETINOPATHY DETECTION

For this task, we use the diabetic retinopathy detection
dataset3. It is a large set of over 35K retina images taken
under a variety of imaging conditions. Each image has a
clinician rating on the presence of diabetic retinopathy (DR)
using a scale of 0 to 4, where 0 means no DR while 4 means
a proliferative DR. Figure 7 shows some examples of the
image along with their labels.

3The data is available at https://www.kaggle.com/
competitions/diabetic-retinopathy-detection/data.

(a) 0 - No DR (b) 1 - Mild (c) 2 - Moderate

(d) 3 - Severe (e) 4 - Proliferative

Figure 7: Image examples in the DR dataset.

Table 3: Actual risk on different value of α on the DR dataset

α 0.02 0.08 0.14 0.20

S1 0.0198 0.0794 0.1402 0.1499
S2 0.0199 0.0801 0.1401 0.1485
S3 0.0200 0.0430 0.0428 0.0428

Similarly, we build an ordinal classifier to predict the age
group using ResNet34, and do not particularly tune the
hyper-parameters for a superb classification result. We use
19K images for validation and test, and evaluate the follow-
ing scenarios:

• S1: weighted risk, with equal weights on all classes
• S2: weighted risk, with double weights on class 3 & 4
• S3: divergence risk

We show the expected risk for different alpha values of
these scenarios in Table 3. The trend of prediction set sizes
over different α values and the risk distribution at a fixed α
show similar conclusions as on the simulated data, and are
therefore omitted here due to the length restriction.

We also fixed the prediction set size to be 2 and compared
the distribution of the prediction set centroids for the differ-
ent risk functions, as shown in Figure 8. Similarly, compared
with the equal weights, doubling weights pushes the distri-
bution slightly towards the higher end, while divergence risk
pushes the distribution slightly towards the center.

4 CONCLUSION & DISCUSSION

We formulated the ordinal classification task within the
recently developed framework of conformal risk control
in expectation, and introduced two types of loss functions
specifically tailored to the learning task. Based on these
two loss functions, we developed two conformal prediction
algorithms, which are shown controlling the corresponding
conformal risk at a desired level and are optimal in some
sense. Simulation study and real data analysis showed effec-
tiveness of the proposed algorithms.
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Figure 8: Distributions of prediction centroids on DR data

With the proposed method, we can design appropriate
weight functions accordingly to ensure the desired coverage
for the specific task. Between the two types of the proposed
loss functions, the weight-based risk is more suitable to the
cases where we want to adjust the importance of certain
classes, while the divergence-based risk is more suitable to
the cases where we are more concerned with large prediction
errors than the differences among the individual classes. By
comparison, the divergence-based risk is more centripetal
since it pushes the centroids of the prediction sets toward
the center of the label range, while the weight-based risk
pushes the centroids toward the classes where they have
higher weights.

There are a few important questions remaining. Firstly, in-
stead of the marginal coverage, how the choice of weight
functions impacts the conditional coverage for each single
class. Secondly, how to choose the weight function and the
risk threshold that are fit to the specific problem. We will
investigate these questions in our future work.
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