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• A model is derived for 2D strongly nonlinear internal waves in a two-layer system.
• The model is regularized to remove ill-posedness due to shear instability.
• The dynamics of vorticity described by the regularized model is discussed.
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• Some asymptotic limits including weakly 2D and weakly nonlinear ones are discussed.
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a b s t r a c t

To study the evolution of two-dimensional large amplitude internal waves in a two-layer system with
variable bottom topography, a new asymptotic model is derived. The model can be obtained from the
original Euler equations for weakly rotational flows under the long-wave approximation, withoutmaking
any smallness assumption on the wave amplitude, and it is asymptotically equivalent to the strongly
nonlinear model proposed by Choi and Camassa (1999) [3]. This new set of equations extends the
regularized model for one-dimensional waves proposed by Choi et al. (2009) [30], known to be free from
shear instability for a wide range of physical parameters. The two-dimensional generalization exhibits
new terms in the equations, related to rotational effects of the flow, and possesses a conservation law for
the vertical vorticity. Furthermore, it is proved that if this vorticity is initially zero everywhere in space,
then it will remain so for all time. This property – in clear contrast with the original strongly nonlinear
model formulated in terms of depth-averaged velocity fields – allows us to simplify themodel by focusing
on the case when the velocity fields involved by large amplitude waves are irrotational. Weakly two-
dimensional andweakly nonlinear limits are then discussed. Finally, after investigating the shear stability
of the regularized model for flat bottom, the effect of slowly-varying bottom topography is included in
the model.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Large amplitude internal solitarywaves, excited typically by the
interaction of tidal currents with bottom topography, have been
observed frequently in coastal oceans through in situ measure-
ments and satellite images. The importance of this geophysical
phenomenon has been increasingly appreciated as it is believed to
be responsible for a significant fraction of themixing that must ex-
ist to maintain the observed ocean circulation.
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Weakly nonlinear models have been extensively used to study
internal waves and, among them, the (uni-directional) KdV model
has stood formany years as the ‘‘canonical’’ equation for the evolu-
tion of these waves. Internal solitary waves often have amplitudes
comparable to the thickness of the well-mixed upper layer and,
therefore, the validity of weakly nonlinear models is expected to
be rather limited [1]. Nevertheless, these simplified models have
provided valuable information that helped one characterize such
waves, and have paved the way for more elaborate higher-order
nonlinear models that allow a more accurate description.

Among higher-order nonlinear models, we single out the
strongly nonlinear model first proposed by Miyata [2], and later
by Choi and Camassa [3]. The model not only has a rich mathe-
matical structure, endowed with several ‘‘physical’’ conservation
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laws and a Hamiltonian structure for traveling-wave solutions, but
also describes remarkably well the large amplitude solitary wave
profiles observed in laboratory experiments and predicted by nu-
merical solutions of the Euler equations [3,4]. The model has been
further generalized to include the effects of a top free surface [5,6],
varying bottom topography [7], multiple layers [8,9], background
shear [10], and linear stratification [11].

Unfortunately, the strongly nonlinear two-layer system, al-
though linearly stable around the rest state, suffers from shear
instability due to a velocity jump (even if arbitrarily small) across
the deformed interface. This is also true for the original Euler equa-
tions in the absence of surface tension between the two fluids (see
e.g. [12]) although their critical wave number for instability is dif-
ferent from that for the strongly nonlinear model, as shown in Jo
and Choi [13]. This compromises the applicability of these mod-
els to solve time-dependent internal wave problems (see [13–15]).
This instability is not a mere theoretical artifact of a two-layer
approximation and is also present for continuously stratified flu-
ids with a relatively sharp transition region. In agreement with
field observations [16] and laboratory experiments [17], as they
propagate, large amplitude internal waves induce a shear, which
may trigger Kelvin–Helmholtz (KH) instability characterized by
developing billow roll-ups, often leading to turbulence and wave
breaking.

This stability problem has attracted considerable attention and
has been carefully examined by means of direct numerical simula-
tions (see e.g. [18–22]) and analytical works, such as the studies by
Kataoka [23], providing evidence that only convective instability
occurs for internal waves, and Camassa and Viotti [24] on the
response of these waves to upstream disturbances. It should be
mentioned that even in the non-dispersive limit of shallow-water
equations, characterizing the nonlinear stability of the flow is not
a trivial matter. These are mixed-type problems with both hyper-
bolic and elliptic regions, which, quoting Ovsyannikov [25], im-
pugns (but does not disprove!) the correctness of the Cauchy problem
with arbitrary initial data at t = 0 (see also [26–29]).

We should remark that internal solitary waves of finite ampli-
tude subject to shear instability often propagate without losing
their original shapes except some local disturbances shed down-
stream. Therefore, to remove the unrealistic KH instability that is
present for any arbitrary small wave amplitudes in the strongly
nonlinear model, some regularization is necessary. Low-pass nu-
merical filters have been successfully employedby Jo andChoi [15].
However, this strategy is not systematic and may have issues with
more general time-dependent problems, given that the choice of
the cutoff wavenumber is arbitrary. Recently, Choi et al. [30] have
shown that regularization can be achieved by simply re-writing
the system in terms of the horizontal velocities evaluated at the
top and bottom boundaries, instead of the depth-averaged veloci-
ties (see also [31]). The one-dimensional model proposed by these
authors is asymptotically equivalent to the original strongly non-
linear model and, as it has been shown, changes the dispersive be-
havior of short waves without altering that of long waves.

The same idea is used in this paper to propose a regularized
model for two-dimensional large amplitude internal waves
propagating over variable bottom topography. Two-dimensional
effects may be of great importance in real applications since
important spreading effects can occur [32], as well as obliquewave
interactions, diffraction and refraction, in response to bathymetry,
islands, or other geological features [33].

The paper is organized as follows. After presenting the model
derivation in Section 2 for the flat bottom case from first principles,
under the long-wave approximation and a weak rotational
assumption on the original three-dimensional flow, we study the
vorticity dynamics for the new model and reveal the property
that the flow preserves a zero (scalar) vorticity condition. This

allows us to simplify the model by focusing on the case when the
internal wave motions start from rest. Weakly two-dimensional
and weakly nonlinear limits are then discussed and it is shown,
in particular, that the model contains the well-known KP equation
(see the work by Kadomtsev and Petviashvili [34]). Finally, after
investigating in Section 3 the shear stability of the regularized
model for flat bottom, the model is then further generalized to
include topographic effects in Section 4.

2. A regularized strongly nonlinear model

2.1. The original two-dimensional strongly nonlinear model

The Cartesian coordinates (x, z) = (x, y, z) are introducedwith
origin at the interface of two fluids of different constant densi-
ties, ⇢1 for the upper fluid and ⇢2 for the lower fluid, with ⇢1 <
⇢2 for stable stratification. The velocity components (ui, wi) =
(ui, vi, wi) and the pressure pi for inviscid and incompressible flu-
ids satisfy the Euler equations:

r · ui + wi,z = 0, (2.1)

ui,t + (ui · r) ui + wi ui,z = �rpi/⇢i, (2.2)
wi,t + ui · rwi + wi wi,z = �pi,z/⇢i � g, (2.3)

where g is the gravitational acceleration, r = (@/@x, @/@y), and
subscriptswith respect to coordinates, or time, stand for partial dif-
ferentiation. These equations apply to both upper and lower fluids
for i = 1 and 2, respectively, and are complemented by appropri-
ate boundary conditions. At the interface z = ⇣ (x, t), the following
kinematic and dynamic boundary conditions apply

⇣t + ui · r⇣ = wi, p1 = p2, at z = ⇣ (x, t).

At the upper and lower rigid boundaries, the kinematic boundary
conditions require

w1(x, h1, t) = 0, w2(x, �h2, t) = 0, (2.4)

where h1 and h2 are the undisturbed thicknesses of each fluid layer,
and h2 = O(h1) will be assumed.

By introducing the depth-averaged velocities ui defined by

u1 = 1
⌘1

Z h1

⇣

u1(x, z, t) dz, u2 = 1
⌘2

Z ⇣

�h2
u2(x, z, t) dz,

where ⌘1 = h1 � ⇣ (x, t), and ⌘2 = h2 + ⇣ (x, t) are the layer
thicknesses, and assuming the small long-wave parameter ✏ =
h1/� ⌧ 1, Choi and Camassa [5] derived – under the assumption
that the leading order of the horizontal components of the velocity
fields are z-independent – the strongly nonlinear model

⌘i,t + r · (⌘i ui) = 0, (2.5)

ui,t + (ui · r) ui + gr⇣ = � 1
⇢i

rP + 1
⌘i

r
✓
1
3
⌘i

3 Gi

◆
, (2.6)

which approximates the Euler equations with errors of O(✏4).
In (2.6), P(x, t) is the pressure at the interface, and the system
(2.5)–(2.6) can be thought of as the two-layer shallowwater equa-
tions modified to include nonlinear dispersive effects accounted
for here by

Gi = r · ui,t + ui · r�r · ui
� � �r · ui

�2
. (2.7)

If the upper layer is neglected and P is regarded as the exter-
nal pressure applied to a free surface, (2.5)–(2.6) are precisely the
Green–Naghdi equations for a homogeneous layer (see the works
by Su and Gardner [35], and Green and Naghdi [36]).

The model is the natural extension of the one-dimensional
strongly nonlinear model derived by Miyata [2], and Choi and Ca-
massa [3]. Unfortunately, this model has been known to suffer
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from wave-induced shear instability (see e.g. [13,14]). To over-
come this difficulty and render the model more suitable for gen-
eral time-dependent problems, we follow the strategy employed
in [30] to obtain a regularized model. The key step to regularize
the strongly nonlinear model (2.5)–(2.6), formulated in terms of
the depth-averaged velocity field, is to rewrite the model (in an
asymptotically equivalent way) in terms of the horizontal compo-
nents evaluated at certain preferred vertical levels. As suggested by
Nguyen and Dias [31] and Choi et al. [30], we use the levels placed
at the top and bottom boundaries.

It is worth noting that if the top rigid lid is replaced by a
free surface, this same choice of vertical levels would lead to a
model linearly unstable, even in the absence of background shear
(cf. [37]).

2.2. Derivation of a regularized model

Unlike the one-dimensional case, it is not straightforward to
establish a relationship between the two velocity fields,ui and ûi ⌘
ui(x, ±hi, t), even under the long-wave approximation. To find an
explicit relation between the two velocities, a stronger restriction
on the vorticity of the original three-dimensional velocity field
(ui, wi) needs to be assumed, as discussed below.

As a consequence of the long-wave approximation [3,5], any
component f = (ui, vi, wi) of the original three-dimensional ve-
locity field can be expanded as

f (x, z, t) = f (0) + ✏2f (1) + O(✏4).

Under the condition of weak horizontal vorticity, more specifi-
cally, being O(✏4), the leading-order horizontal components of the
original three-dimensional velocity field are z-independent (i.e.,
u

(0)
i,z = 0), which is consistent with the derivation of (2.5)–(2.6).

Then, by vertically integrating the continuity equation for each
layer and imposing boundary conditions (2.4), the leading-order
vertical velocity wi can be obtained as

w
(0)
i = (±hi � z)r · u(0)

i , (2.8)

where

u

(0)
i = u

(0)
i (x, t). (2.9)

In (2.8), the positive (or negative) sign has to be taken for the up-
per (or lower) layer and this notation will be adopted hereafter.
Since the horizontal vorticity is assumed to be O(✏4), the horizon-
tal vorticity vanishes at O(✏2) and, therefore, we can relate the
second-order horizontal velocity components with the leading-
order vertical velocity component as

u(1)
i,z = w

(0)
i,x , v

(1)
i,z = w

(0)
i,y , (2.10)

from which the second-order horizontal velocity can be obtained
as

u

(1)
i (x, z, t) = u

(1)
i (x, z = ±hi, t)

� 1
2
(±hi � z)2r(r · u(0)

i ). (2.11)

Then, from (2.9) and (2.11), we can finally relate ui with ûi (in di-
mensional variables) through

ui = ûi � 1
6
⌘2
i r(r · ûi) + O(✏4). (2.12)

It should be pointed out that, if we assume the horizontal vortic-
ity is O(✏2) instead of O(✏4), Eq. (2.10) does not hold; therefore,
(2.12) is no longer valid and no simple relationship between ui
with ûi can be found. It is also of interest to estimate an order of
magnitude of the vertical vorticity consistent with our assumption

about the horizontal vorticity. It is shown in the Appendix that the
magnitude of the vertical vorticity should be O(✏2) for the regular-
ized model derived from (2.12) to be valid, opposed to the original
strongly nonlinear model (2.5)–(2.6) where the vertical vorticity
can be O(1).

Here and hereafter, for convenience, we will write ui to denote
ûi, unless clearly stated otherwise in the text. By substituting (2.12)
into the original system given by (2.5)–(2.6) and neglecting any
terms of O(✏4) or higher, we obtain a regularized model for two-
dimensional strongly nonlinear internal waves:

⌘i,t + r ·

⌘i

✓
ui � 1

6
⌘2
i r(r · ui)

◆�
= 0, (2.13)

ui,t + (ui · r) ui + g r⇣ = � 1
⇢i

rP + r
✓
1
2
⌘i

2 Gi

◆
+ fi. (2.14)

In the expression above, Gi are given by (2.7) with ui replaced by
ui, and fi are defined by

fi = 1
6
⌘i

2
h⇣

r(r · ui) · r
⌘
ui + (ui · r) r(r · ui)

� r {
ui · r(r · ui)}

i
.

Notice that fi on the right-hand side of (2.14) disappears in the one-
dimensional case,where it vanishes trivially, and Eqs. (2.13)–(2.14)
reduce to the regularized system obtained in [30].

2.3. A regularized strongly nonlinear model for irrotational flows

Another case of interest where fi vanishes trivially is when the
two-dimensional velocity field represented by ui is irrotational,
meaning that curlui=0. This is a straightforward remark bynoticing
that fi can be rewritten as

fi = 1
6
⌘2
i curl ui ⇥ r(r · ui).

Nevertheless it remains to be proved that this irrotational assump-
tion is compatible with the vorticity dynamics governed by (2.14).

By introducing the vorticity !i = curl ui, we can rewrite (2.14)
into the form

ui,t + r
✓
1
2
|ui|2 + g⇣ + 1

⇢i
P � 1

2
⌘2
i Gi

◆

+ !i ⇥
✓
ui � 1

6
⌘2
i r(r · ui)

◆
= 0,

leading to

!i,t + curl

!i ⇥

✓
ui � 1

6
⌘2
i r(r · ui)

◆�
= 0. (2.15)

Notice that, since ui represent two-dimensional velocity fields,
the only non-trivial component of !i is the vertical one. When
denoting this scalar vorticity by !i, (2.15) is given, in conservative
form, by

!i,t + r ·

!i

✓
ui � 1

6
⌘2
i r(r · ui)

◆�
= 0. (2.16)

Assuming that ui vanish sufficiently rapidly as |x| ! 1, Eq. (2.16)
leads to
d
dt

Z
!i dx = 0.

As a consequence, if !i = 0 at a certain instant of time t0, thenR
!i dx = 0 for all time. This argument, however, is not sufficient

to establish that the vorticity itself remains zero for all time. To
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prove this assertion, it is convenient to consider the following
equation for the potential vorticity

Di (!i/⌘i) = 1
6
⌘2
i r(r · ui) · r (!i/⌘i) , (2.17)

with Di defined as the material derivative Di = @/@t + ui · r .
Assuming enough regularity to ensure the existence and unicity
of solution of this ordinary differential equation along particle
trajectories, we can conclude from (2.17) that the two-dimensional
flow described by the regularized model will remain irrotational
for all time if !i are initially zero everywhere in space.

This is in clear contrast with the original two-dimensional
strongly nonlinearmodel given by (2.5)–(2.6) since the irrotational
assumption for ui is not compatible with the dynamics of the sys-
tem. As shown by Miles and Salmon [38] for the single layer case
(see also [39]), the original system conserves the modified poten-
tial vorticity defined by (!i + !⇤

i )/⌘i so that

Di
⇥
(!i + !⇤

i )/⌘i
⇤ = 0, (2.18)

where !⇤
i = J(Di⌘i, ⌘i)/3 and J(f , g) = @(f , g)/@(x, y) is the

Jacobian operator. Therefore, even if the vorticity !i defined by
(r ⇥ ui)z is initially zero, it does not remain zero – although it
stays weak of O(✏2) – as the wave field evolves.

Since we are interested in large amplitude internal wave mo-
tions starting from rest, we assume hereafter that the original
three-dimensional flow field is irrotational. Then, the correspond-
ing two-dimensional flow field resulting from the regularized
model is also assumed irrotational.

Under the irrotational assumption for ui, Eqs. (2.13)–(2.14) can
be simplified to

⌘i,t + r ·

⌘i

✓
ui � 1

6
⌘2
i r2

ui

◆�
= 0, (2.19)

ui,t + (ui · r) ui + g r⇣ = � 1
⇢i

rP + r
✓
1
2
⌘i

2Gi

◆
, (2.20)

with Gi being now given by

Gi = r · ui,t + ui · r2
ui �

�r · ui
�2

,

where the irrotationality condition has been used to write r(r ·
ui) = r2

ui. Eqs. (2.19) and (2.20), for i = 1, 2, form a complete set
of conservation laws for ⇣ , u1 = (u1, v1), u2 = (u2, v2), and P .

In fact, under the irrotational assumption for the original three-
dimensional velocity field, a relationship between ui and ûi, as the
one given by (2.12), can be easily found from the velocity potential.
From Section 13.11 in Whitham’s book [12], the velocity potential
�i can be expanded, under the long-wave approximation, as

�i(x, z, t) = �i(x, t) � 1
2
(±hi � z)2 r2�i + O(✏4),

where �i(x, t) are the velocity potentials evaluated at the top and
bottom boundaries for i = 1 and 2, respectively. Then, the depth-
averaged velocity ui can be obtained as

ui = r�i � 1
6
⌘i

2 r2(r�i) + O(✏4),

while the velocities evaluated at the top and bottom boundaries
(ui = r�i at z = ±hi) are given by ui = r�i. Therefore, the
relationship between ui and ui can be written as

ui = ui � 1
6
⌘2
i r2

ui + O(✏4),

which is precisely (2.12) with r(r · ui) replaced by r2
ui. After

integrating once, (2.19)–(2.20) can be rewritten, in terms of ⇣ and

�i, as

⌘i,t + r ·

⌘i

✓
r�i � 1

6
⌘2
i r2r�i

◆�
= 0,

�i,t + 1
2
r�i · r�i + g⇣ = �P/⇢i + 1

2
⌘i

2
h
r2�i,t

+ r�i · r2r�i �
�r2�i

�2i
.

It is shown, for the flat bottom case, that if the original
three-dimensional flow is irrotational with the velocity potentials
�i(x, y, z, t), it is also the case for the two-dimensional flow de-
scribed by the present reduced model. As expected, the potentials
�i and �i are related in the simplest way as �i = �i(x, y, ±hi,
t). However, when including the topographic effects, the re-
duced model does not preserve this property even if the three-
dimensional flow is originally irrotational. The system can no
longer be written in terms of the velocity potential, having thus
a more similar structure to (2.19)–(2.20), as discussed in Section 4.

2.4. Weakly two-dimensional waves

If we assume a weak dependence of physical variables on the
transverse direction (or the y-direction) such that

⇣y/⇣x = O(✏), uiy/uix = O(✏),

Py/Px = O(✏), vi/ui = O(✏),

the regularized model under the irrotational assumption given by
(2.19)–(2.20) can be reduced to the weakly two-dimensional (2D)
model:

⌘i,t + (⌘iui)x = �(⌘ivi)y +
✓
1
6
⌘3
i ui,xx

◆

x
, (2.21)

ui,t + uiui,x + g ⇣x + 1
⇢i

Px

= �viui,y +

1
2
⌘i

2
⇣
ui,xt + uiui,xx � u2

i,x

⌘�

x
, (2.22)

vi,t + uivi,x + g ⇣y + 1
⇢i

Py

= �vivi,y +

1
2
⌘i

2
⇣
ui,xt + uiui,xx � u2

i,x

⌘�

y
, (2.23)

where we have moved terms of O(✏2) to the right-hand sides
and have neglected terms of O(✏4). Since the terms with vi in
(2.21)–(2.22) are O(✏2), the leading-order contribution for vi from
(2.23) is asymptotically important and, therefore, the right-hand
side of (2.23) could be neglected with preserving the same order of
approximation. As long as awave field of interest is consistentwith
the weakly 2D assumption, we should remark that (2.21)–(2.23)
are much more convenient for numerical computations than the
fully 2D model given by (2.19)–(2.20). Otherwise, the regularized
fully 2D system could be solved numerically by adopting an
iterative scheme similar to that suggested by Choi et al. [40].

2.5. Weakly nonlinear waves

For weakly nonlinear waves, when assuming that ⇣/h1 =
O(✏2), |ui|/(gh1)

1/2 = O(✏2), and h2/h1 = O(1), the regularized
model given by (2.19)–(2.20) can be further approximated to the
Boussinesq-type system

⌘i,t + r · (⌘iui) = 1
6
h3
i r · r2

ui, (2.24)

ui,t + ui · rui + g r⇣ = � 1
⇢i

rP + 1
2
hi

2 r2
ui,t , (2.25)
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where again we have used the fact that r(r · ui) = r2
ui,

and neglected terms of O(✏4). This system generalizes the one-
dimensional model of Nguyen and Dias [31], who first introduced
the velocities at the top and bottom boundaries to write the evo-
lution equations for a two-layer system. The resulting equations
should also be related to the three-parameter family of weakly
nonlinear systems proposed by Bona et al. (see Section 3.1.3
in [41]).

Under the weakly two-dimensional assumption used to de-
rive (2.21)–(2.22), the regularized weakly nonlinear model (2.24)–
(2.25) can be reduced to

⌘i,xt + (⌘iui)xx = 1
6
h3
i ui,xxxx � hiui,yy, (2.26)

ui,t + uiui,x + g ⇣x = � 1
⇢i

Px + 1
2
hi

2ui,xxt , (2.27)

where we have used the irrotationality condition ui,y = vi,x to
write (2.26). Notice that (2.26)–(2.27) can also be obtained directly
from (2.21)–(2.23) by imposing the weakly nonlinear assumption.

For uni-directional waves, (2.26)–(2.27) can be further reduced
to the well-known KP equation [34], which was first introduced in
the context of internal waves by Ablowitz and Segur [42]:
⇣
⇣t + c0⇣x + c1⇣ ⇣x + c2⇣xxx

⌘

x
+ c0

2
⇣yy = 0. (2.28)

In (2.28), c0 stands for the linear long wave speed:

c02 = gh1h2(⇢2 � ⇢1)

⇢1h2 + ⇢2h1
,

and the coefficients of nonlinearity and dispersion, c1 and c2,
respectively, are prescribed by

c1 = �3c0
2

⇢1h2
2 � ⇢2h2

1

⇢1h1h2
2 + ⇢2h2

1h2
, c2 = c0

6
⇢1h2

1h2 + ⇢2h1h2
2

⇢1h2 + ⇢2h1
.

3. Local instability near the maximal displacement

For one-dimensional waves, the system can be reduced to that
of Choi et al. [30], where it has been shown through local stability
analysis that the dispersive behavior of (2.19)–(2.20) stabilizes the
system, even in the presence of background shear, provided that
the velocity jump 1U across the interface complies with

1U2 6
g(⇢2 � ⇢1)(⇢2h1 + ⇢1h2)

3⇢1⇢2
. (3.1)

A disturbance of an arbitrary wave number k is then found
neutrally stable. This stability criterion has the advantage of being
easily interpreted in terms of the amplitude of propagating internal
solitary waves since these induce a shear (see [3]) given by

1U = ca(h1 + h2)

(h1 � a)(h2 + a)
,

c2

c02
= (h1 � a)(h2 + a)

h1h2 � (c02/g)a
. (3.2)

From (3.1)–(3.2), it can be shown that the critical wave amplitude
below which internal solitary waves are stable is close to the
maximum wave amplitude (front wave solution) for a wide range
of parameters relevant for real oceanic applications (see Fig. 1
in [30]).

We seek a similar result for the extended two-dimensional
model (2.19)–(2.20). The system is linearized about constant states
⌘1 = h1 � a, ⌘2 = h2 + a, ui = Ui ⌘ (Ui, Vi), and P = P0. Let

⇣ ! a + ⇣ 0, ui ! Ui + u

0
i, P ! P0 + P 0, (3.3)

where primed variables denote infinitesimal perturbations. By
introducing (3.3) in (2.19)–(2.20) and neglecting terms of second

order in each one of these variables, we obtain the linearized
system for the perturbations:

⌥⇣t + hir · ui � 1
6
⌘3
i r · �r2

ui
� ⌥ r⇣ · Ui = 0,

ui,t + (Ui · r)ui + gr⇣ + 1
⇢i

rP

= 1
2
h2
i r ⇥r · ui,t + Ui ·

�r2
ui

�⇤
,

where the prime notation has been dropped, and the minus (plus)
sign is exceptionally chosen for i = 1 (i = 2). Notice that we are
considering the case when a = 0. The result, however, can easily
be generalized to the case when a 6= 0.

We look for particular solutions proportional to exp(ik · x �
i!t) with vector wave number k = (k, l) and wave frequency
!. Moreover, since the propagation of internal solitary waves is
mostly uni-directional, we will assume without loss of generality
that the shear is induced only in the x-direction, so that V1 = V2 =
0. The dispersion relation is then given by the quadratic equation

A!2 � 2kB! + C = 0, (3.4)

where

A = 3 (⇢1h2↵1�2 + ⇢2h1↵2�1),

B = 3 (⇢1h2↵1�2 U1 + ⇢2h1↵2�1 U2),

C = 3k2 (⇢1h2↵1�2 U2
1 + ⇢2h1↵2�1 U2

2 )

� g(⇢2 � ⇢1)h1h2 |k|2�1�2,

↵i = 2 + |k|2h2
i , �i = 6 + |k|2h2

i .

For! to be real, the discriminant of (3.4) has to be non-negative
so that � satisfies the following inequality

� = 12 h1h2�1�2

h
�3⇢1⇢2 k2↵1↵2(U2 � U1)

2

+ g(⇢2 � ⇢1) |k|2(⇢1h2↵1�2 + ⇢2h1↵2�1)
i

> 0.

Hence, this stability criterion can then be written as

(U2 � U1)
2 6

1
3
g(⇢2 � ⇢1)

|k|2
k2

✓
h1

⇢1

�1

↵1
+ h2

⇢2

�2

↵2

◆
, (3.5)

resulting that the flow is linearly stable as long as the shear does
not exceed a certain critical value. Since we have |k|2 > k2, the
whole expression of the right-hand side of (3.5) is bounded from
below by

g(⇢2 � ⇢1)

3

✓
h1

⇢1

�1

↵1
+ h2

⇢2

�2

↵2

◆
.

This is attained precisely when |k|2 = k2, i.e., when only one-
directional perturbations in the x-direction are present. This im-
plies that two-dimensional perturbations are more stable than
one-dimensional ones. We also remark, from (3.1), that the flow
is always stable for any arbitrary disturbance if the shear does not
exceed [g(⇢2 � ⇢1)(⇢2h1 + ⇢1h2)/3⇢1⇢2]1/2 since �i/↵i > 1.

4. Effect of bottom topography

The effect of bottom topography can be easily included in the
long wave model as long as the characteristic length of bottom
variation is as large as the characteristic wavelength. Since the
regularized long wave model becomes more stable as the depth
ratio of the lower layer thickness to the upper layer thickness
decreases [30], the evolution of internal solitarywaves propagating
in water of decreasing depth can be studied effectively with the
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regularized model written in terms of the lower-layer velocity
evaluated at the bottom surface.

When the lower layer (i = 2) is bounded by slowly-varying
bottom topography with |rh2| = O(|r⇣ |) = O(✏), the original
strongly nonlinear model (2.5)–(2.6) for the lower layer i = 2 is
modified (see Appendix1 in [5]) to

⌘2,t + r · (⌘2 u2) = 0, ⌘2 = h2(x) + ⇣ , (4.1)
u2,t + u2 · ru2 + gr⇣

= � 1
⇢2

rP + 1
⌘2

r
✓
1
3
⌘2

3 G2 + 1
2
⌘2

2 F 2

◆

�
✓
1
2
⌘2 G2 + F 2

◆
rh2, (4.2)

where G2 is defined in (2.7) and F 2 is given by

F 2 ⌘ D2
2
h2 = u2,t · rh2 + �

u2 · r�2
h2, (4.3)

with D2 = @/@t + u2 · r .
Assuming the three-dimensional velocity field is irrotational,

the velocity potential for the lower layer �2 satisfying the Laplace
equation and the bottom boundary condition �2,z = �r�2 · rh2
at z = �h2 can be expanded as

�2(x, z, t) = �2(x, t) � 1
2
(z + h2)

2 r2�2

� (z + h2) r�2 · rh2 + O(✏4),

where �2(x, t) = �2(x, z = �h2, t).
Then, the depth-averaged horizontal velocity u2 and the hori-

zontal velocity at the bottom u2 can be expressed as:

u2 = r�2 � ⌘2
2

6
r2(r�2)

� ⌘2

2

h
r2�2 rh2 + r(r�2 · rh2)

i

� (r�2 · rh2)rh2 + O(✏4),

u2 = r�2 � (r�2 · rh2)rh2 + O(✏4), (4.4)

from which the relationship between u2 and u2 can be found as

u2 = u2 � ⌘2
2

6
r2

u2 � ⌘2

2

h
(r · u2) rh2 + r(u2 · rh2)

i

+O(✏4). (4.5)

From (4.4), it can be seen that unlike the flat bottom case, the hor-
izontal velocity evaluated at the bottom is rotational even though
the original three-dimensional flow is irrotational. The vertical vor-
ticity persists relatively weak, or O(✏2):

r ⇥ u2 = �r(r�2 · rh2) ⇥ rh2 + O(✏4). (4.6)

By substituting (4.5) into (4.1)–(4.2) with r ⇥ u2 = O(✏2) from
(4.6) and neglecting all terms smaller than O(✏2), the evolution
equations for the lower layer can be found, in terms of ⌘2 and u2, as

⌘2,t + r ·

⌘2

✓
u2 � ⌘2

2

6
r2

u2 � ⌘2

2
(r · u2) rh2

� ⌘2

2
r(u2 · rh2)

◆�
= 0, (4.7)

u2,t + u2 · ru2 + g r⇣ = �rP/⇢2 + r
✓

⌘2
2

2
G2 + ⌘2F2

◆

� F2rh2, (4.8)

1 We remark that the definition of F 2 in Choi and Camassa [5] is incorrect. The
correct form is given by (4.3) in this paper.

where r ⇥u2 = O(✏2) has been used, and G2 and F2 are defined in
(2.7) and (4.3), respectively, with replacing u2 by u2. When com-
bined with the evolution equations for the upper layer given by
(2.19)–(2.20) with i = 1, (4.7)–(4.8) form a complete set of equa-
tions for the case of uneven bottom.

We remark that it may be convenient to rewrite (4.8) in the
following form:

u2 +

⇣
u2 · rh2

⌘
rh2 � r

✓
⌘2

2

2
r · u2 + ⌘2 u2 · rh2

◆ �

t

+ r
✓
1
2
u2 · u2 + g⇣ + P/⇢2

◆

= r

r ·

⇢
⌘2

2

2
(r · u2)u2 + ⌘2(u2 · rh2)u2

��

�
h
(u2 · r)2h2

i
rh2. (4.9)

While the momentum equation is given in conservative form for
the flat bottom case (rh2 = F2 = 0), an uneven bottom prevents
this property to hold because of the last term on the right-hand
side of (4.9). However, it is interesting to notice that, for one-
dimensional waves, such a feature is preserved since the last term
simplifies to

⇥
(u2 h2,x)

2/2
⇤
x. Then, we are able to obtain an extra

conserved quantity for the lower layer given by
d
dt

Z ⇥�
1 + h2,x

2� u2
⇤
dx = 0.

On the other hand, for weakly nonlinear waves, the system for
the lower layer with bottom variation can be simplified to

⌘2,t + r ·

⌘2u2 � h2

3

6
r2

u2 � h2
2

2
(r · u2) rh2

� h2
2

2
r(u2 · rh2)

�
= 0,

u2,t + u2 · ru2 + g r⇣ = �rP/⇢2 + r

r ·

✓
h2

2

2
u2,t

◆�

� (u2,t · rh2)rh2.

On a final note, we point out that, instead of assuming zero
physical vorticity, a regularizedmodel for uneven bottom account-
ing for weak horizontal vorticity effects could also be easily ob-
tained with replacing r2

u2 in the second term on the right-hand
side of (4.5) by r(r · u2).

5. Discussion

A regularized model for two-dimensional long internal waves
of finite amplitude is proposed in a two-layer system and some of
its asymptotic limits are examined. Weakly two-dimensional and
weakly nonlinear approximatemodels are derived and it is shown,
in particular, that our model extends the classical KP equation.
The new regularized strongly nonlinear model is asymptotically
equivalent to that proposed by Choi and Camassa [5], and reduces
in the one-dimensional case to themodel recently obtained byChoi
et al. [30].

We would like to stress that the idea of writing the model
in terms of the horizontal velocity evaluated at different vertical
levels (thus being able to improve the dispersive behavior of the
model) is not new in the theory of surface waves (see e.g. [43–46]),
but clearly finds a new usage in the context of internal waves.
For surface waves, this flexibility has been used to investigate the
linear well-posedness (around the rest state) of Boussinesq-type
equations and force their dispersion relations to meet the one
given by the original Euler equations. However, choosing preferred
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levels based on the comparison of the dispersion relation with
the Euler equations is irrelevant for internal waves since the Euler
equations already suffer from shear instability. The levels that we
are interested in are those that guarantee stability in the presence
of a background shear between the layers. For the rigid-lid case,
it has been shown [30] that the best possible scenario is attained
when the vertical levels at the top and bottom boundaries are
chosen although a similar result is not known yet for the case of the
top free surface [37]. Here it is shown that this finding for the one-
dimensional case is still valid for the two-dimensional case and the
new system of equations is stable to local transverse perturbations
near the crest, or trough, depending on the wave polarity.

The model derivation puts in evidence that the physical
assumptions behind this new regularized model differ slightly
from the original strongly nonlinear model. The regularized model
is more restrictive as we rely on (2.10) for a relationship between
the two velocities, and is unable to describe of the original three-
dimensional flow with vertical vorticity of O(1). It should also
be pointed out that the regularized model could be less suited
for analytical studies and, in fact, the lack of conservation laws
prevents one from finding exact solitary-wave solutions in the
one-dimensional case [30]. Nevertheless, to study numerically the
time evolution of large amplitude internal solitary waves, the
new regularized model could be of great value. For example, it
could be used to study the oblique interaction of internal solitary
waves beyond the weakly nonlinear or weakly two-dimensional
assumption, and investigate the finite amplitude effects on the
complex patterns predicted by the weakly nonlinear KP equation.
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Appendix. On the magnitude of vertical vorticity

When the incompressible Euler equations (2.1)–(2.3) are non-
dimensionalized with the characteristic length and time scales,
they read
r3 · (ui, wi) = 0,
⇢i Di Ui + r3 pi = �r3

�
⇢i F�2z

�
,

where r3 = (@/@x, @/@y, @/@z), Di are the material derivatives
defined by Di = @/@t + (ui, wi) · r3, F stands for the Froude
number, and Ui are the vector fields defined by Ui = (ui, ✏

2wi)
with ui = (ui, vi). Define the vorticity vector field �i = (✏2wi,y �
vi,z, ui,z � ✏2wi,x, vi,x � ui,y) as the curl of the vector field Ui. Then,
the dynamics of �i is governed by
Di �i = (�i · r3)(ui, wi). (A.1)
Consider for the velocity field (ui, wi) the associated particle-
trajectory mapping 'i(Xi, t) with initial condition 'i(Xi, t0) =
Xi ⌘ (Xi, Yi, Zi). Then, �i satisfy equation (A.1) if and only if (see
e.g. Lemma 1.4 in [47])

�i('i(Xi, t), t) = @

@Xi
'i(Xi, t) �i(Xi, t0), (A.2)

where

�i =
0

@
✏2wi,y � vi,z

ui,z � ✏2wi,x
vi,x � ui,y

1

A ,
@'i

@Xi
=

0

BBBBBB@

@ x
@Xi

@ x
@Yi

@ x
@Zi

@ y
@Xi

@ y
@Yi

@ y
@Zi

@ z
@Xi

@ z
@Yi

@ z
@Zi

1

CCCCCCA
. (A.3)

Suppose the vertical vorticity is of O(1) while the horizontal
vorticity is weak to be of O(✏4). Then, from (A.2)–(A.3), we would
have

@ x
@Zi

= O(✏4),
@ y
@Zi

= O(✏4),
@ z
@Zi

= O(1), 8t. (A.4)

By taking the time derivative of (A.4), we have

@

@t
@ x
@Zi

= O(✏4), 8t,
which, by definition, yields

@

@Zi
ui('i(Xi, t), t) = O(✏4), 8t. (A.5)

Using the chain rule, (A.5) can be written as

ui,x
@ x
@Zi

+ ui,y
@ y
@Zi

+ ui,z
@ z
@Zi

= O(✏4), 8t.

In order for this to hold, we conclude from (A.4) that ui,z = O(✏4)
for all time. Similarly, we can prove that vi,z = O(✏4). This, how-
ever, is not compatible with the imposed horizontal vorticity con-
dition:

ui,z = ✏2wi,x + O(✏4), vi,z = ✏2wi,y + O(✏4), 8t.
The contradiction results from the assumption that the vertical
vorticity is of O(1). Therefore, we conclude that the new regular-
ized model given by (2.13)–(2.14) has a weaker vorticity condition
than its asymptotically equivalent model (2.5)–(2.6), and is valid
when the vertical vorticity is of O(✏2).
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