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We perform the stability analysis for stratified shear flows whose density transition layer is much

thinner than, and possibly, displaced with respect to, the velocity shear layer for which Holmboe

instability along with the well-known Kelvin-Helmholtz (KH) instability is known to be present.

Here, we provide a more complete picture of stability characteristics of stratified shear flows

with taking into account the effects of non-negligible density increment for which the classical

Boussinesq approximation is no longer valid. It is shown that, in addition to the Kelvin-Helmholtz

and Holmboe instabilities for which two unstable modes exist, there is another instability with a

single unstable mode so that the unstable waves excited by this instability mechanism propagate

only in one direction. Depending on the physical parameters, this unstable mode may not be

captured by the stability analysis under the Boussinesq approximation. With a better understanding

of the instability mechanisms with including the non-Boussinesq effects, we could validate some of

previous experimental results and provide new evidences to observations that have not been fully

explained. The results are also expected to be useful in designing laboratory experiments to observe

Holmboe waves and estimating their wavelengths and phase speeds. VC 2011 American Institute of
Physics. [doi:10.1063/1.3670611]

I. INTRODUCTION

There has been an active search towards the understand-

ing of the generation of turbulence and mixing in density-

stratified flows since the pioneering works of Taylor1 and

Goldstein2 on the stability of stratified shear flows. When the

thickness of density transition layer between two layers of

different constant densities is comparable to the shear layer

thickness, only Kelvin-Helmholtz (KH) instability, charac-

terized by billows traveling at approximately the average

velocity between the two layers, is expected to occur. How-

ever, the stability characteristics of these flows get more

complicated when the density transition layer is much thin-

ner than the shear layer.

Holmboe3 was the first to point out that a second mode

of instability should be present when the thickness of density

transition layer vanishes. This unstable mechanism consists

of two trains of interfacial waves of equal strength that travel

at the same speed, but in opposite directions with respect to

the mean flow. This theoretical result, known now as Holm-

boe instability, has been validated numerically by Hazel,4

Smyth et al.,5 Smyth and Peltier,6,7 and Alexakis,8 although

very few signs of its existence were found experimentally.

Pouliquen et al.9 have made brief observations of such unsta-

ble features in a tilting tube experiment (based on the classi-

cal work by Thorpe10 on Kelvin-Helmholtz instability).

Browand and Winant,11 Koop and Browand,12 and

Lawrence et al.13 have performed mixing layer experiments

in search of Holmboe instability, but have found no positive

evidences. Instead of Holmboe instability, one-sided instabil-

ities were observed and mixing was confined to one side of

the density interface. This is believed to happen because the

density interface is generally displaced with respect to the

shear layer in mixing layer facilities. For this reason, as

pointed by Lawrence et al.,14 mixing layer experiments are

not an effective mean of studying Holmboe instability. More

recently Holmboe instability was observed successfully

in laboratory experiments by Zhu and Lawrence15,16 and

Tedford et al.17 in exchange flows.

In many of these experiments, two fluids of almost the

same densities have been used, such as salt water and fresh

water. Therefore, for stability analysis, the Boussinesq

approximation has usually been adopted under the assump-

tion that the density jump across the interface is small. Fur-

thermore, for simplicity, the velocity profile has often been

approximated by a piecewise linear function. Then, the sta-

bility characteristics depend on two physical parameters: the

Richardson number and the distance between the density

interface and the center of the linear shear layer. Although

such stability analysis is useful in understanding the experi-

ments where the density jump is really small, it provides

only a limited description of instabilities of the stratified

shear flow of our interest. In the present study, no assump-

tion is made regarding the density jump, allowing us to go

beyond the Boussinesq limit and explore the non-Boussinesq

effects by considering the density increment as an additional

parameter.

After briefly presenting in Sec. II, the equations for the

hydrodynamic stability of an inviscid, incompressible, strati-

fied shear flow, we discuss the Boussinesq limit in the frame-

work of the three-layer configuration originally studied by

Taylor and Goldstein, known to be in good agreement with

the linearized Euler equations even for large density
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increments. We show in Sec. III that this no longer holds if

considered the two-layer configuration proposed by Holm-

boe.3 To examine the experimental results by Lawrence

et al.,13 we include in Sec. IV, the effects of the density inter-

face displacement. A correct explanation of the eigenvalue

problem is given, including a region containing one single

unstable mode, unnoticed previously. The effect of larger

variations of density is also considered in this framework and

it is shown how contrasting the results relative to the Boussi-

nesq limit can be, even for small density increments.

II. PRELIMINARIES

A. Governing equation and jump conditions
at surfaces of discontinuity

The stability of an inviscid, incompressible, stratified

shear flow depends upon the vertical variation of density q(z)

and of the mean horizontal velocity U(z). The behavior of a

small two-dimensional, monochromatic disturbance of wave

number k and wave speed c is governed18 by

/00 þq0

q
/0 � U0

U� c
/

� �
þ � gq0

qðU� cÞ2
� U00

U� c
� k2

" #
/¼ 0;

(1)

where the prime indicates differentiation with respect to z, g
is the gravitational acceleration, and / is the complex ampli-

tude of the stream function. For certain purposes, it may be

convenient to rewrite Eq. (1) as

½q ðU � cÞ/0 � U0/½ ��0 � k2ðU � cÞq/� gq0

U � c

� �
/ ¼ 0:

(2)

To simplify the analysis, piecewise linear velocity and piece-

wise constant density profiles are often adopted so that, in

each subdomain where q¼ constant and U00 ¼ 0, Eq. (1)

reduces to

/00 � k2/ ¼ 0; (3)

whose general solution for an unbounded fluid domain is

given by

/ðzÞ ¼ Aekz þ Be�kz: (4)

Then, at z¼ z0, where U(z), q(z), or U
0
(z) is discontinuous,

the continuity of pressure and normal velocity at this surface

leads to the jump conditions

q ðU � cÞ/0 � U0 þ g

U � c

� �
/

h ih ih i
¼ 0; (5)

/
U � c

� �� �
¼ 0; (6)

respectively. These jump conditions are not only dictated

by physics but also built-in mathematically. For instance,

Eq. (5) can be obtained by integrating directly Eq. (2) across

the discontinuity from z0�Dz to z0þDz, and let Dz! 0.

B. Boussinesq approximation

Further approximations can be made under the Boussi-

nesq approximation where q0/(kq) is assumed to be small,

but g/kU2 is O(kq/q0). Then, after dropping the second term

proportional to q0/q, Eq. (1) can be reduced to the so-called

Taylor-Goldstein equation (named after Taylor1 and

Goldstein2)

/00 þ N2

ðU � cÞ2
� U00

U � c
� k2

" #
/ ¼ 0; (7)

where N(z) is the Brunt-Väisälä frequency defined by N2(z)

¼�g(dq/dz)/q. This amounts to considering the effect of the
change in density on the potential energy of a given deforma-
tion and neglecting its effect on the inertia.2 Similarly to

what we have done in Eq. (2), we can write the Taylor-

Goldstein equation into the equivalent form

ðU � cÞ/0 � U0/½ �0�g
/

U � c

� �
1

q
q0 � k2ðU � cÞ/ ¼ 0:

(8)

For the case of q¼ constant and U00 ¼ 0, Eq. (7) becomes

identical to Eq. (3), but its solution is subject to a jump con-

dition different from Eq. (5)

ðU � cÞ/0 � U0/½ �½ � � g
/

U � c

� �
ln qðzÞ½ �½ � ¼ 0; (9)

which is obtained by integrating Eq. (8) vertically across a

surface of discontinuity, while Eq. (6) remains unchanged.

We might also be interested in a particular case when

qðzÞ ¼ q0 þ ~qðzÞ, where ~qðzÞ is a small deviation of a con-

stant state q0. We may then write a model asymptotically

equivalent to the Taylor-Goldstein equation by approximat-

ing the buoyancy frequency N(z) in Eq. (7) by N0(z) defined

by N2
0ðzÞ ¼ �gðd~q=dzÞ=q0. By doing so, we can integrate

the equation across a discontinuity to obtain a new jump

condition

ðU � cÞ/0 � U0/½ �½ � � g

q0

/
U � c

� �
~qðzÞ½ �½ � ¼ 0: (10)

This jump condition has been used, for example, by Law-

rence et al.13 and many others in their stability analysis.

The aim of this paper is to explore how different the

results can be when the stability analysis is not restricted to

these special limits. Before going to the two-layer configura-

tion leading to the so-called Holmboe instability, we con-

sider the three-layer problem of Taylor1 and Goldstein2 and

compare the two approaches (with and without Boussinesq

approximation) to the problem.

C. Results by Taylor and Goldstein for a sheared
three-layer configuration

When assuming that, in the undisturbed flow, the veloc-

ity varies linearly from one constant value to another while

the density is discontinuous so that the undisturbed flow can

be described as
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UðzÞ ¼

u1 if z > h

u1z

h
if �h < z < h

�u1 if z < �h

8>>><>>>: ;

qðzÞ ¼

q1ð1� eÞ if z > h

q1 if �h < z < h

q1ð1þ eÞ if z < �h

8>><>>: ;

(11)

Eq. (2) can be solved explicitly, as shown in Eq. (4). Then,

by imposing the jump conditions (5)–(6), the eigenvalue

equation is obtained as a quartic equation for the wave speed

c. Following Goldstein,2 we introduce the non-dimensional

variables n¼ c/u1 and a¼ 2kh, and the Richardson number

defined by

J ¼ egh=u2
1; (12)

to write the eigenvalue equation

a0n
4 þ a1n

3 þ a2n
2 þ a3nþ a4 ¼ 0; (13)

where the real coefficients can be read from Eq. (8) in

Ref. 2. Using Fuller’s root location criteria19 (see also Jury

and Mansour;20 Barros and Choi21), it can be shown that the

flow becomes unstable when the discriminant D is negative,

and it is, therefore, characterized by two real and two com-

plex conjugate values of the form c¼ cr1
, cr2

, and cr3
6 ici in

a narrow band on the (a, J)-plane, as shown in Fig. 1 in

Goldstein.2 As a result, there is a single unstable mode

with growth rate aci¼ aIm(c), propagating with speed

cr3¼Re(c). Alternatively, four complex solutions could exist

for the case of D> 0, but this has not been found for

Eq. (13).

As pointed out by Goldstein,2 Eq. (13) is considerably

simplified as e approaches to zero in such a way that the

Richardson number J remains finite. This observation is

motivated by the fact that both coefficients a1 and a3 in

Eq. (13) are proportional to e and, therefore, Eq. (13) reduces

in this limit to a biquadratic form, which can be solved easily

(see Eq. (9) in Ref. 2). Alternatively, this special limit that

we will refer to as the Boussinesq limit can be obtained with

the jump conditions given by Eqs. (6) and (10), instead of

Eqs. (5) and (6). As a general property for the biquadratic

form obtained in this limit, there exists an unstable mode

with wave speed �c* if c is the complex wave speed of an

unstable mode, which we will refer to as symmetric instabil-
ities. Since there is, in this case, exactly one unstable mode,

the unstable mode has to have a purely imaginary wave

speed. As a result, unstable waves for e¼ 0 travels at the av-

erage velocity between the upper and lower layers, which is

0. For the case of e= 0, it can be shown that unstable waves

travel at approximately constant negative speeds, meaning

that we can find in both cases, a reference frame relative to

which unstable features are stationary, which is a signature

of the KH instability. Therefore, it can be concluded that

Boussinesq and non-Boussineq flows share the common

unstable feature (KH instability) in the three-layer configura-

tion discussed in this section.

III. HOLMBOE INSTABILITY IN A TWO-LAYER
CONFIGURATION

When the middle density layer collapses to zero thick-

ness from Eq. (11), we then have a two-layer configuration

whose stability characteristics are more complicated, as

pointed out by Holmboe3 under the Boussinesq approxima-

tion. Here, we explore non-Boussinesq effects that have not

been fully described in previous studies. (It was only after

submitting this paper that the authors realized that Umurhan

and Heifetz22 have first considered the non-Boussinesq

effects in this setting (where the center of the shear layer and

the density interface coincide). Some of the results in this

section overlap with those presented in Sec. III C in Ref. 22,

including Eq. (19).)

Following Holmboe,3 we consider the following profiles

for background density and velocity:

UðzÞ ¼

u1 if z > h

u1z

h
if �h < z < h

�u1 if z < �h

8>>><>>>: ;

qðzÞ ¼
q1ð1� eÞ if z > 0

q1 if z < 0

�
:

(14)

Taking the advantage of the fact that Eq. (1), or Eq. (2), sim-

plifies greatly in each of the four subdomains, we find

/ðzÞ ¼

Fe�kz if z > h

Dekz þ Ee�kz if 0 < z < h

Bekz þ Ce�kz if �h < z < 0

Aekz if z < �h

8>>>><>>>>: : (15)

Then, by imposing the following jump conditions deduced

from Eqs. (5) and (6) at z¼6 h and z¼ 0,

FIG. 1. Stable and unstable regions on the (a, J)-plane for the two-layer

configuration with e¼ 0.5. The darker shaded region corresponds to the sta-

ble region with four real wave speeds. The fluid is unstable elsewhere, being

characterized by four complex wave speeds in the white region, and two real

and two complex wave speeds in the lighter shaded region.
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/½ �½ � ¼ 0 at z ¼ 6h; z ¼ 0; (16)

ðU � cÞ/0 � U0/½ �½ � ¼ 0 at z ¼ 6h; (17)

q ðU � cÞ/0 � U0 þ g

U � c

� �
/

h ih ih i
¼ 0 at z ¼ 0; (18)

we obtain a linear system composed by six equations for the

six unknowns. Notice that the continuity of U at z¼6 h and

z¼ 0 and the continuity of q at z¼6 h have been used to

obtain Eqs. (16) and (17), respectively. Straightforward cal-

culations lead to a quartic equation for the dimensionless

wave speed n¼ c/u1

a0n
4 þ a1n

3 þ a2n
2 þ a3nþ a4 ¼ 0; (19)

with its coefficients defined by

a0 ¼ e2aa3ð2� eÞ;
a1 ¼ 2ea ea � 1ð Þa2e;

a2 ¼ a
	


e2aða� 1Þ2 � 1
�
ðe� 2Þ � 2Jae2a

�
;

a3 ¼ �2 eaða� 1Þ þ 1½ �2e;
a4 ¼ 2 J eaða� 1Þ þ 1½ �2;

where the nondimensional parameters a and J are defined as

before. When compared with the three-layer configuration dis-

cussed previously, the stability diagram for Eq. (19) shows

two obvious distinctions (see Fig. 1). The domain of stability

is now composed of three distinct regions and a new instability

mechanism of different character appears. Namely, instability

is no longer equivalent to the condition of D< 0, meaning that

this physical system allows not only two real and two complex

but also four complex wave speeds. For convenience, we will

denote by U the unstable region where D< 0.

Before presenting the detailed stability results for non-

zero e, we first discuss briefly the case of e¼ 0.

A. Boussinesq limit

For the Boussinesq limit, we proceed as before by taking

the limit when e goes to zero while J remains finite. The

quartic equation given by Eq. (19) converts to the biqua-

dratic form

e2aa3n4�a
	
e2aða�1Þ2�1þJae2a

�
n2þJ eaða�1Þþ1½ �2¼0;

(20)

which is equivalent to Eq. (4) found in Lawrence et al.13

Their non-dimensionalization is slightly different from ours

and, to recover our result from their expression, it is neces-

sary to replace J by J/2. Alternatively, Eq. (20) can be

obtained directly by imposing the jump condition under

the Boussinesq approximation given by Eq. (10), instead of

Eq. (5).

The stable and unstable regions can be depicted on the

(a, J)-plane and, when compared with the non-zero e case

(see Fig. 1), two main differences can be noticed. First, there

are no signs of the protruding third region of stability for

large values of J. Second, the unstable region U with two

real and two complex wave speeds cannot be captured in the

Boussinesq limit.

Holmboe3 was the first to consider this limit and noticed

that there should be two distinct mechanisms governing sym-

metric instabilities. The unstable region is composed of two

distinct regions I and II that are separated by a dashed line in

Fig. 2. The region I, for smaller Richardson numbers, is char-

acterized by having two pairs of purely imaginary eigenval-

ues, and it is called the Kelvin-Helmholtz mode. Notice that

the maximum value of J for which the KH instability can be

excited is 0.142 for 0< a< 1.28 (see Appendix in Ref. 23).

The region II, for larger Richardson numbers, is character-

ized by having two pairs of conjugate roots of the form

c¼6 cr 6 ici, and it is known as the Holmboe mode, which

moves in both directions.

From Fig. 2, the KH instability dominates for J close

to 0 while the Holmboe instability dominates when J is

greater than 0.142. However, as pointed out by Haigh and

Lawrence,23 it is not obvious from the stability diagram at

what value of J there is an actual transition between the two

instability mechanisms. In reality, the mode that has a

greater growth rate will appear and, therefore, the maximum

growth rate for varying J has to be monitored. Fig. 3 shows a

(thick solid) curve on the (a, J)-plane along which the maxi-

mum growth rates are attained. We can see clearly a discon-

tinuity at JT� 0.092 (see Appendix in Ref. 23). This is the

critical value of J at which we expect the transition from KH

to Holmboe instabilities (equivalently, from two stationary

unstable modes with different growth rates to two counter-

FIG. 2. (Color online) Regions on the (a, J)-plane for

stable (shaded region) and unstable (white) symmetric

waves in the Boussinesq limit. Also shown on the right-

hand side is a close-up view of the curves given by the

vanishing of the discriminant of Eq. (20). The stability

boundaries are indicated by full lines, and the transition

between the regions for KH (I) and Holmboe (II) insta-

bilites is indicated by a dashed line.
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propagating unstable modes with same growth rates), as

shown in Fig. 3. It is worth noticing that the wave number of

the most unstable mode normalized by the shear layer thick-

ness is less than 1 for J< JT (KH) and greater than 1 for

J> JT (Holmboe).

Figure 4 shows how the KH and Holmboe modes com-

pete as J varies. For J¼ 0.08, the KH mode characterized by

zero wave speeds has a higher growth rate than the Holmboe

mode, but, as J increases beyond JT, the Holmboe instability

dominates over the KH instability. Eventually, for J> 0.142,

the Holmboe instability becomes the only unstable mode.

B. The effects of the density increment parameter e

In order to investigate the non-Boussinesq effects on the

instability of a two-layer shear flow, we consider e as an

additional parameter. When compared with the results under

the Boussinesq approximation, a good agreement is expected

FIG. 3. (Color online) (a) Stability diagram on the (a, J)-plane under the Boussinesq approximation with contour lines of constant growth rates (thin lines) and

the maximum growth rate curve (thick line). The middle and right-hand side plots, (b) and (c), respectively, represent the growth rates and phase speeds along

the maximum growth rate curve.

FIG. 4. (Color online) Phase speeds (top panel) and growth rates (bottom panel) for three different Richardson numbers under the Boussinesq approximation.

The diagram shows the competition between the KH and Holmboe instability mechanisms for J close to JT. The former does not manifest for J> 0.142.

124103-5 Holmboe instability in non-Boussinesq fluids Phys. Fluids 23, 124103 (2011)



for small values of e. Indeed, as shown in Fig. 5 for e¼ 0.1,

the stability boundaries do not differ much from those for the

Boussinesq case studied by Holmboe (see Fig. 3). By exam-

ining the curve on the (a, J)-plane along which the maximum

growth rates are attained, we verify that the transition

between the two instability modes occurs at JT� 0.07, which

is smaller than the approximate value of 0.092 for the case of

e¼ 0.

From Fig. 5, in addition to the critical Richardson num-

ber for the transition from the KH instability to the Holmboe

instability, it can be seen clearly that the growth rates and

the wave speeds of KH and Holmboe instabilities are modi-

fied when e= 0. While the growth rate of the KH instability

is almost preserved, that of the Holmboe instability is clearly

amplified by the density increment in the stratification. The

growth rates of the counter-propagating unstable waves

excited by the Holmboe instability are no longer the same.

This asymmetry prevents the existence of Holmboe waves at

exactly same speed for the system, but does not invalidate

the existence of two unstable waves traveling in opposite

directions (although at different relative speeds), provided

that the growth rates of two unstable modes are the same or

at least comparable. The term Holmboe waves will hereafter

be reserved to this special case when two unstable waves

with comparable growth rates exist simultaneously and

travel in opposite directions.

As mentioned previously, one of unique features that

cannot be captured under the Boussinesq approximation is

the existence of an unstable region defined by D< 0, where

only one unstable mode exists. For this particular value of

e¼ 0.1, we observe that this unstable region that we denote

by U (the shaded regions near the stability boundaries) is

rather narrow and it has no influence on the maximum

growth rate curve. On the other hand, for large values of e,
the role of the unstable region U is no longer negligible, as

shown in Fig. 6. This could ultimately prevent any possibil-

ity for the existence of Holmboe waves for the system (e.g.,

e¼ 0.5).

Figure 6 also reveals that the gap in a at J¼ JT on the

maximum growth rate curve can be strongly reduced (for

e¼ 0.18), and even vanish if larger values of e (for e¼ 0.3

and 0.5) are considered. Our numerical results show that the

maximum growth rate curve on the (a, J)-plane becomes

continuous when e� 0.2, suggesting that a transition from

the KH to Holmboe instability is no longer obvious from the

maximum growth rate curve. Also evident from the figure is

the fact that the difference between the growth rates of two

unstable modes traveling in opposite directions tends to

increase with e and the Holmboe instability eventually disap-

pears. Then, we will be left mainly with one-sided instability

characterized by a single unstable mode propagating to the

left (see the middle panel in Fig. 6) and, in general, we

should not expect finding Holmboe instability for an arbi-

trary range of Richardson number.

IV. LACK OF SYMMETRY DUE TO A DENSITY
INTERFACE DISPLACEMENT

Although Holmboe waves have been predicted since

1962, it was not before 1996 that these were actually found

in laboratory experiments (Zhu and Lawrence15) even if

Pouliquen et al.9 had been able to observe the early onset of

these instabilities. Before their work, only one-sided instabil-

ities had been observed, which was believed to be a result of

the background flow losing its symmetry. As discussed in

the preceding section, the break of symmetry arises when

taken into account the density increment in the stratification.

However, there are at least two other ways for this to happen:

adopting a finite-depth configuration with rigid horizontal

boundaries placed at different distances from the center of

the shear layer,24,25 or by displacing the density interface

away from the middle of shear layer at z¼ 0.13,24,25 The dis-

placed interface is of particular relevance to earlier experi-

ments since it is found in mixing layer facilities that the

density interface is generally displaced from the inflection

point for the background velocity. This has been explored by

Lawrence et al.13 as a key argument to understand why one-

sided instabilities are observed consistently in mixing layer

facilities. As explained by Lawrence et al.,14 this asymmetry

that can be varied, but not eliminated, is caused by the fact

that when the fluids—initially separated by a splitter plate—

merge at the trailing edge of the splitter plate, the point of

FIG. 5. (Color online) (a) Stability diagram on the (a, J)-plane with contour lines of constant growth rates (thin lines) and the maximum growth rate curve

(thick line) for e¼ 0.1. The shaded region indicates the region U containing a single unstable mode. The break of symmetry of the flow is well present in the

plots for (b) the growth rates and (c) the phase speeds along the maximum growth rate curve. The dominant unstable mode is represented in (c) by a thick line.
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maximum vorticity is found on the high speed side of the

density interface. To contemplate this situation, following

Lawrence et al.,13 we consider

UðzÞ ¼

u1 if z > h

u1z

h
if �h < z < h

�u1 if z < �h

8>>><>>>: ;

qðzÞ ¼
q1ð1� eÞ if z > �d

q1 if z < �d

�
;

(21)

where the density interface is placed at the level z¼�d,

with 0< d< h. The linear stability analysis leads to a quartic

equation for the dimensionless wave speed n¼ c/u1

a0n
4 þ a1n

3 þ a2n
2 þ a3nþ a4 ¼ 0; (22)

where the coefficients depend on the wave number a,

Richardson number J, and ratio d¼ d/h (see Appendix).

When d= 0, coefficients a1 and a3 are no longer propor-

tional to e. Therefore, even in the limit case when e goes to

zero, we should not expect to bring the quartic equation

down to a biquadratic form (see Eq. (3) in Ref. 13).

FIG. 6. (Color online) Top panel: Stability diagram on the (a, J)-plane with contour lines of constant growth rates (thin lines) and the maximum growth rate

curve (thick line). The corresponding values of phase speeds (middle panel) and growth rates (bottom panel) along the maximum growth rate curve for

e¼ 0.18, 0.3, and 0.5 (from left to right). The thick lines in the phase speed diagrams represent the dominant unstable mode.
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To isolate the effects of d, we first consider the physical

parameters used in the experiments conducted by Lawrence

et al.,13 where d¼ 0.5 and the modified gravitational acceler-

ation g0(¼ ge) is 0.4 cm/s2, which yields e� 4� 10�4. For

this value of e, the Boussinesq approximation should be per-

fectly valid and the effects of e should be negligible. The

effect of d on the stability diagram is remarkable when Fig. 7

is compared with Fig. 3. In particular, the unstable region U
plays an important role, but its existence presumably has

been unnoticed so far. For example, the following property

has often been used in the literature (see the right-bottom of

page 2362 in Ref. 13)

cþr þ c�r ¼ d; (23)

that would hold for Eq. (22) with e¼ 0, provided that we

divide the equation by a0 and assume the existence of four

complex wave speeds written as c ¼ cþr 6icþi ; c
�
r 6ic�i . How-

ever, the last assumption is not valid everywhere in the

region of instability, since U is a non-empty set, and so there

are solutions of the form c ¼ cr1
; cr2

, and cr3
6ici, for which

cr1
þ cr2

þ 2cr3
¼ 2d: (24)

This implies that, although Lawrence et al.13 have used val-

ues of J as large as 0.6 to seek Holmboe waves experimen-

tally, no Holmboe waves were to be seen as soon as the

maximum growth rate curve enters this region U (about

J� 0.293).

Even for smaller values of J for which the linear stabil-

ity analysis for d¼ 0.5 predicts two unstable modes, the dif-

ference between their growth rates is so large that one mode

is always dominant and, as a result, the two unstable modes

can hardly be excited simultaneously. Furthermore, the dom-

inant mode always propagates to the right (see the middle

panel in Fig. 7). The linear stability analysis provides a good

explanation for the observed one-sided instabilities in experi-

ments, but not everything can be effectively explained by

FIG. 7. (Color online) Top panel: Stability diagram on

the (a, J)-plane with contour lines of constant growth

rates (thin lines) and the maximum growth rate curve

(thick line). The corresponding values of phase speeds

(middle panel) and growth rates (bottom panel) along

the maximum growth rate curve. The thick lines in the

phase speed diagrams represent the dominant unstable

mode. In both situations, the density increment parame-

ter is e¼ 4� 10�4, and we have considered d¼ 0.14

(left-hand side) and d¼ 0.5 (right-hand side). The curve

along which true Holmboe waves exist is indicated by a

dashed line at the stability diagrams.
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using this linear analysis. Experimentally, Lawrence et al.13

have detected different nonlinear responses of the flow to the

instability about J¼ 0.2; more precisely, for Richardson

numbers greater than 0.2, they have observed the formation

of cusps protruding into the dominant layer, whereas a series

of vortex tubes resembling the Kelvin-Helmholtz billows

were observed for Richardson numbers less than 0.2.

Although Carpenter et al.26 recently examined a criterion on

the formation of cusps using linear theory, it is non-trivial to

obtain such information from the linear stability diagram.

Furthermore, nonlinearity should play a role in the further

development of linearly unstable waves, which is beyond the

scope of the present study.

So far, we have been examining the unstable features along

the maximum growth rate curve. Let us forget the maximum

growth rate curve for a moment and investigate from a mathe-

matical point of view if “true” Holmboe waves can exist for the

system even when d¼ 0.5. Here, we define the true Holmboe

waves as two unstable waves with exactly same growth rates.

For simplicity, divide Eq. (22) by a0 (with a= 0) and write

n4 þ ea1n
3 þ ea2n

2 þ ea3nþ ea4 ¼ 0; (25)

with eai ¼ ai=a0. Assume that the solutions for true Holmboe

waves can be written as c ¼ cr1
6ici and cr2

6ici. Viète’s for-

mulas lead to

FIG. 8. (Color online) Top panel: Stability diagram on the (a, J)-plane with contour lines of constant growth rates (thin lines) and the maximum growth rate

curve (thick line). The corresponding values of phase speeds (middle panel) and growth rates (bottom panel) along the maximum growth rate curve. The thick

lines in the phase speed diagrams represent the dominant unstable mode. The value of d is fixed at 0.2 and different values of e are considered: e¼ 0.01, 0.1,

and 0.2 (from left to right).
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2s ¼ � ea1; s2 þ 2 pþ c2
i


 �
¼ ea2;

2 pþ c2
i


 �
s ¼ � ea3; p� c2

i


 �2þs2c2
i ¼ ea4;

(26)

where s and p are defined by the sum and product of the real

parts of the solutions, respectively, as s ¼ cr1
þ cr2

and

p ¼ cr1
cr2

. Provided that ea1 6¼ 0 (which is true for a> 0 and

e> 0), this overdetermined system can be solved under an

implicit relation of the form

ea1
3 � 4 ea1 ea2 þ 8 ea3 ¼ 0; (27)

constrained by

ea2 �
1

4
ea1

2

� �2

�4 ea4 < 0: (28)

Surprisingly, both conditions (27) and (28) can be satisfied

regardless of the values of d and e considered, and the result

is displayed as a dashed line on the (a, J)-plane in Fig. 7. It

can be seen that, for d¼ 0.5, true Holmboe waves are consid-

erably weaker than the instabilities along the maximum

growth rate curve, and for this reason, we do not expect

them to be particularly relevant from an experimental point

of view.

For small values of d relevant for the asymmetric profile

far downstream of the splitter plate, we are close to the origi-

nal symmetric case and, as a result, we would expect to

observe Holmboe waves. However, this phenomenon has not

been well documented.14 This may be related to the fact that,

even if d is reduced, in general, we cannot expect to observe

Holmboe waves for an arbitrary range of Richardson num-

bers, as discussed earlier in Sec. III B for the non-displaced

case (see Fig. 6). For example, we assume that we conduct

an experiment with d¼ 0.14. When we compute the relative

difference rdiff between the growth rates of unstable modes

along the maximum growth rate curve defined by

rdiff ¼
jaci1 � aci2 j
min
k¼1;2
facikg

; (29)

we can see that, to observe Holmboe waves, the Richardson

number has to be chosen to be J� 0.345 (see Fig. 7) for

which the relative difference attains its minimum (� 0.229).

If J is far different from this value, one growth rate is much

greater than the other and, therefore, only one unstable mode

would be excited experimentally. How close the growth rates

of two unstable modes have to be so that both unstable

modes are excited simultaneously is something that deserves

further investigation, including the effect of nonlinearity.

A. The effects of larger values of e

We explore here the non-Boussinesq effects with con-

sidering larger values of e in the case when the interface is

displaced with respect to the shear layer. In Fig. 8, we

increase the value of e up to 0.2 with a fixed value of d¼ 0.2.

For a small value of e¼ 0.01, the results follow very closely

those obtained for e¼ 0, but distinct features can already be

perceived for e¼ 0.1. The maximum growth rate curve on

the (a, J)-plane is no longer continuous; discontinuities occur

twice (for J� 0.186 and 0.586), as shown in Fig. 8. Remark-

ably, these discontinuities are not associated to a transition

from KH to Holmboe instability, which has been often

observed in the non-displaced case (d¼ 0). As shown in

Fig. 9, at the first discontinuity, there is a passage from the

FIG. 9. Evolution of the eigenvalues along the maximum growth rate curve for d¼ 0.2 and e¼ 0.1.
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unstable region (in white) with four complex wave speeds to

the region U, where only two wave speeds are complex,

associated to a transition from the right-going waves (in the

case when the relative difference rdiff is too large) to the

left-going waves. At the second discontinuity, the reverse sit-

uation takes place. This process evolves as e increases up to

the point where the maximum growth rate curve is entirely

included in the region U. As a final remark, it is worth

emphasizing that the maximum growth rate decreases as e
increases, which is contrary to the case when d¼ 0.

B. In search of Holmboe waves

We intend with this work to bring attention to the impor-

tance of taking into account the density increment in the

stratification in excitation of Holmboe waves. From the

examples described above, we notice that the values of e
should be order of magnitude of 10�1 to see any major dif-

ference from the case of e¼ 0. To our knowledge, no experi-

ments towards the search of Holmboe waves were conducted

with values of e this large; for instance, Lawrence et al.13

FIG. 10. (Color online) Top panel: Stability diagram on the (a, J)-plane with contour lines of constant growth rates (thin lines) and the maximum growth rate

curve (thick line). The corresponding values of phase speeds (middle panel) and growth rates (bottom panel) along the maximum growth rate curve. The thick

lines in the phase speed diagrams represent the dominant unstable mode. The value of d is fixed at 0.1 and different values of e are considered: e¼ 0, 0.045,

and 0.07 (from left to right).
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and Zhu and Lawrence16 have used values of e¼ 4� 10�4

and 1.59� 10�3, respectively. However, Pouliquen et al.9

have used larger values of e, such as e¼ 0.06132, 0.0755,

and 0.08. In all these studies, the Boussinesq approximation

has been used to solve analytically the eigenvalue problem,

but we will show that a more careful study may be needed in

certain conditions.

Holmboe waves have been observed in laboratory

experiments with d¼ 0.1.16 Suppose that we seek experi-

mentally these waves by using a two-layer fluid configura-

tion for which e¼ 0.045. One would think that the

Boussinesq limit is perfectly valid for this value of e (since it

is less than the values used by Pouliquen et al.9). However,

as shown in Fig. 10, this is far from being true. While the lin-

earized Euler equations predict two unstable modes with

comparable growth rates (provided that e is sufficiently

small), neglecting the value of e could have some serious

repercussions on understanding the instability mechanism

and estimating the wavelengths and phase speeds.

Finally, to fully use the results without the Boussinesq

approximation, we would like to propose tailoring the two-

fluid experiment so that the Holmboe waves can be observed

more easily. Here, we have restricted our region of parame-

ters to 0< d< 0.3 and 0< e< 0.2, within the range of previ-

ous experiments.

To obtain the numerical results displayed in Fig. 11, we

proceed as follows. First, we consider for the region of pa-

rameters a grid with 15� 50 points uniformly distributed

along the d and e-axes, respectively. Then, for each grid

point, we compute the maximum growth rate curve on the

(a, J)-plane region limited by 0< a< 4 and 0< J< 1 and

determine at which Richardson number along the curve, the

minimum relative difference of growth rates is attained. Nat-

urally, the results can be improved by considering a more

refined mesh, but our purpose here is solely to reveal what

the general trend is. As d increases, the relative differences

rdiff grow, and the only way of containing this effect—to be

able to observe Holmboe waves—is by increasing also the

value of e. This explains why the idea that Holmboe waves

can be more easily obtained for smaller values of e is false.

Just to give an example, for d¼ 0.14 by picking two fluids

for which e¼ 4� 10�3, we would obtain rdiff� 0.2254,

which is larger than 0.17085 obtained for e¼ 0.06.

V. CONCLUDING REMARKS

We have presented the linear stability results for two-

layer shear flows with and without the Boussinesq approxi-

mation. It is shown how the two results are formally related

through a special limit of small e and their difference

increases with e, as expected. Even for the case of small e,
where the Boussinesq approximation should be a good

approximation, it is shown that great care must be made to

obtain accurate stability results when the interface is dis-

placed relative to the center of the shear layer. In this paper,

we focus primarily on the effects caused by both the density

increment in the stratification and the displacement of

the density interface, which are measured by e and d,

respectively.

In the case when d¼ 0, Holmboe waves are expected to

occur for small values of e, but it is not clear if the phenom-

enon persists as e increases. We show that the possibility of

Holmboe instability to happen is seriously reduced as e
increases, reaching the stage where Holmboe waves simply

cannot exist. This is due to the fact that the maximum growth

rate curve on the (a, J)-plane can enter into an unstable

region, denoted by U, where only one unstable mode exists.

The presence of U is even more relevant in the case

when d= 0, commonly observed in mixing layer facilities.

These were long believed to be an effective mean to study

Holmboe waves. However, although e is small in the experi-

ment of Lawrence et al.,13 it has been known that only one-

sided instability can be observed both near the splitter plate

and at the far downstream of the splitter plate. Near the split-

ter plate where d is relatively large, there exist two unstable

modes for small J, but their growth rates are so different that

only one mode, more unstable than the other, is excited. On

the other hand, as J increases, the mode with the maximum

growth rate appears in U (that had not been detected prior to

this study) and, therefore, only a single unstable mode is

excited, as described earlier. Our results show that most

likely, regardless of the magnitude of e, Holmboe waves can-

not be observed if d is considerably greater than 0.2. Mean-

while, at the far downstream of the splitter plate where d
becomes smaller, two unstable modes have comparable

growth rates over only a small range of J, essential for Holm-

boe instability. This might represent a last hope to this

FIG. 11. (Color online) Minimum rela-

tive difference between the growth rates

of unstable modes in the region

1< a< 4 and 0< J< 1. The region of

parameters considered here is defined by

0< d< 0.3 and 0< e< 0.2. Also shown

on the right-hand side are the optimal

values of e for which the minimum rela-

tive difference is attained.
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experimental apparatus to study Holmboe waves, as long

as J is carefully chosen to fit in that regime at farther

downstream.

With a displaced interface of d¼ 0.1, Holmboe waves

have been observed in exchange flows (cf. Zhu and Law-

rence16) with small e of O(10�3) for which the Boussinesq

approximation should be valid. However, larger values of e
have been also used in previous experiments (e.g., e¼ 0.08

in Ref. 9) and it is then legitimate to ask ourselves to which

extent the Boussinesq approximation can be used in the lin-

ear stability analysis. For this particular value of d, we have

shown that, even for e¼ 0.045, the results based on the Bous-

sinesq approximation are inaccurate. The reduced model

under the Boussinesq approximation cannot capture the

jump along the maximum growth rate curve and, as a result,

substantial discrepancies are found with respect to the wave-

length, and phase speed, of the unstable features of the

system.
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APPENDIX: THE EIGENVALUE EQUATION
FOR THE DISPLACED CASE

The eigenvalue Eq. (22) for the configuration setting

proposed by Lawrence et al.,13 where the density interface is

displaced from the level z¼ 0, is found in dimensionless

form as

a0n
4 þ a1n

3 þ a2n
2 þ a3nþ a4 ¼ 0; (A1)

where the expressions for the coefficients are the following:

a0 ¼ �a3ðe� 2Þeaðdþ2Þ;

a1 ¼ �a2ea
	
2eaðdþ1Þðadðe� 2Þ � eÞ þ eðe2ad þ 1Þ

�
;

a2 ¼ �a½eaðdþ2Þðað2J þ aðd2 � 1Þðe� 2Þ � 2deþ 2e� 4Þ

þ 2� eÞ þ ðe� 2Þead þ eeaðað2dþ 1Þ þ 1Þ

þ eeað2dþ1Þðað2d� 1Þ � 1Þ�;

a3 ¼ 2Jaeað1� e2adÞ þ eea½2� aðadðdþ 2Þ þ 2Þ�

þ eeað2dþ1Þ½2� aðadðd� 2Þ þ 2Þ� þ 2ða� 1Þ2eaðdþ2Þ

� ðadðe� 2Þ � eÞ � 2eadðadðe� 2Þ þ eÞ;

a4 ¼ ða� 1Þ2eaðdþ2Þ½2J þ dðadðe� 2Þ � 2eÞ�

þ ða� 1Þea½e2adð2J þ edðad� 2ÞÞ þ 2J

� edðadþ 2Þ� þ ead½2J � dðadðe� 2Þ þ 2eÞ�:

We remark that when e¼ 0 and J¼ 0, Eq. (A1) can be factor-

ized as

ðnþ dÞ2 1þ e2a a2n2 � ða� 1Þ2
� �h i

¼ 0:

We have always a double real root n¼�d and, depending

on the value of a considered, two additional eigenvalues

could be real or purely imaginary. This fact explains why for

very small values of e, the most unstable modes travel at

approximately speed 0, for J � 1, regardless how large the

parameter d is. To understand the effect of the density incre-

ment e alone, we can set d¼ 0 and J¼ 0 to obtain

n½�e2aa3ðe� 2Þn3 þ 2eaðea � 1Þa2en2 þ ½�1þ e2aða� 1Þ2�
� aðe� 2Þn� 2e½1þ eaða� 1Þ�2� ¼ 0;

that has always a simple real root n¼ 0. Depending on

the value of a considered, we can have three more real,

or one real and two complex conjugate, roots. This infor-

mation can be used to understand the combined effects of

the displacement of the density interface relative to the

center of the shear layer and the density increment in the

stratification at the very earliest stage of the instability

mechanism.
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