Figures 1, 2, and 3 replace figures 9, 11, and 12, respectively, in Choi (2022).

REFERENCES

Сног, W. 2022 High-order strongly nonlinear long wave approximation and solitary wave solution, J. Fluid Mech. 945, A15.

(a)

(b)

(c)

Figure 1. Numerical solution of the second-order system (6.1) initialized with a solitary wave of $a / h=0.4$, or $a_{s} / h \simeq 0.443$. The initial condition for ζ is given by the second-order solitary wave solution (4.11) while that for v is found by solving numerically (6.16). (a) Time evolution of the surface elevation ζ is shown for $0 \leqslant t(g / h)^{1 / 2} \leqslant 200$ in a frame of reference moving with the solitary wave speed $c=c_{0}+c_{2}$ with c_{0} and c_{2} defined by (4.10) and (4.18), respectively. (b) Truncated total energy E versus time t. (c) Comparison between the numerical solution (solid line) for ζ at $t(g / h)^{1 / 2}=200$ and the initial condition (circles).

Figure 2. Numerical solution of the second-order system (6.1) for the head-on collision of two solitary waves. The system is initialized with two second-order solitary wave solutions (4.11). The right-going wave of $a_{s} / h=0.4(a / h \simeq 0.366)$ is located at $x / h=-8.23$ while the left-going wave of $a_{s} / h=0.39(a / h \simeq 0.356)$ is located at $x / h=8.15$.

Figure 3. Comparison of numerical solutions (solid: second-order; dashed: first-order; dot-dahsed: SG/GN) with the experimental data (symbols) of Chen \& Yeh (2014) (a) $\left(t-t_{c}\right)(g / h)^{1 / 2}=-7.42 ;(b)-2.69 ;(c)-0.64 ;(d) 0 ;(e) 1.02 ;(f) 1.79 ;(g) 6.14 ;(h) 10.10$. Here, t_{c} is the time when the maximum peak is observed during the collision. The red dotted lines represent the numerical solutions presented in Choi (2022).

