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Abstract—A robust data assimilation scheme is presented for
a wave model to predict evolving nonlinear ocean waves. The
Fourier coefficients of the surface elevation and the free surface
velocity potential are chosen for state variables and are propagated
in time by solving numerically a set of nonlinear evolution equa-
tions using a pseudo-spectral method. The numerical solutions are
then updated with noise corrupted measurements of the surface
elevation with the aid of an explicit Kalman filter for which the
time evolution of the error covariance matrix is found explicitly
by solving analytically the linearized wave prediction model. After
presenting an error analysis for this explicit data assimilation
scheme, numerical simulations of the integrated nonlinear wave
prediction model for long-crested waves of varying wave steep-
ness are performed by using synthetic data with different noise
characteristics. It is shown that the estimated surface wave fields
agree well with the true states, and the present data assimilation
scheme based on the explicit Kalman filter improves considerably
the computational efficiency and stability, in comparison with a
standard Kalman filter for which the error covariance matrix is
found numerically.
Index Terms—Data assimilation, Kalman filter, pseudo-spectral

wave model, wave prediction.

I. INTRODUCTION

A CCURATE prediction of evolving ocean waves is impor-
tant for the design and safe operation of ships and off-

shore structures. Recently, there has been a growing concern
regarding the occurrence of so-called “rogue waves,” whose
wave heights are typically greater than twice the significant
wave height of a given wave spectrum [1], [2]. As the number
of offshore structures in deep oceans increases, more structures
are susceptible to damage by these extreme waves. Thus, the
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real-time prediction of ocean wave fields resolving not only
wave amplitude, but also wave phase is required for offshore
structures to avoid being caught in extreme wave conditions.
Unfortunately, these extreme waves appear spontaneously,

without any warning, in spatially isolated locations. Therefore,
their accurate prediction is nontrivial and observed field data
often need to be assimilated into wave models to improve their
prediction. Up until now, ocean wave data assimilation has been
adopted mostly by spectral wave models for statistical descrip-
tions of wave spectral changes [3]–[5]. However, the phase-av-
eraged spectral wave models have limitation in that they fail to
predict the exact location and time of extreme wave events; fur-
thermore, it is troublesome to describe correctly the evolution
of nonlinear waves and their interactions.
An alternative is to choose a deterministic approach using,

for example, a phase-resolving nonlinear wave model, but it has
been considered almost impractical for many decades, due to its
high computational cost and the lack of sensors measuring ac-
curately wave fields to initialize such a model. However, with
the development of high performance computers and more reli-
able measurement sensors such as shipborne radars, it seems to
be feasible to predict the occurrence of extreme waves once an
efficient and robust numerical model is available.
Various numerical models have been developed to describe

the evolution of nonlinear surface waves. However, even under
the idealized potential flow assumption, most phase-resolving
wave models have been found computationally too expensive
to be adopted in practice to simulate three-dimensional ocean
waves in a large computational domain. In recent years, a
formulation based on asymptotic expansion in wave steep-
ness proposed originally by West et al. [6] attracts much
attention since it is found numerically efficient for broadband
short-crested waves when it is combined with a pseudo-spectral
method based on the fast Fourier transform [7]–[9]. Although
the original formulation of West et al. [6] is based on the small
wave steepness assumption, comparisons with laboratory ex-
periments [10], [11] have shown that the pseudo-spectral wave
model describes accurately, up to wave breaking, the nonlinear
evolution of focusing and modulationally unstable wave groups
as well as broad-band irregular wave fields. Furthermore, to
simulate postbreaking waves, an eddy viscosity model de-
scribing energy dissipation due to wave breaking along with a
wind forcing model was incorporated into the pseudo-spectral
wave model [12], [13], which has been validated successfully
with recent laboratory measurements [14]–[16]. Thus, the
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pseudo-spectral wave model seems to be a good candidate in
predicting nonlinear ocean wave fields, with resolving a wide
range of wavelength scales.
While the pseudo-spectral wave model is found effective for

numerical simulations, its prediction capability relies heavily
on accurate wave field measurements to initialize the model.
Although improved greatly, measurement sensors could provide
wave field data that contain both measurement errors and noise,
leading to inaccurate wave predictions. Therefore, a technique
to minimize the effects of such errors and noise is required for
better performance of the wave prediction model.
Here we aim to develop a real-time data assimilation system

by incorporating into the pseudo-spectral wave model a Kalman
filter developed to produce optimal estimated wave fields over
time from noise corrupted measurements with assuming that the
system is linear and the measurement noise is additive, indepen-
dent, and identically distributed Gaussian random process.
Although Kalman filtering is used widely for various appli-

cations, it is found that integrating the wave prediction model
in time with a naive implementation of a Kalman filtering al-
gorithm is problematic mainly for two reasons. One is its extra
computational cost to find numerically the error covariance ma-
trices and the other is numerical instability associated with time
periodic applications of the data assimilation scheme since ob-
served wave field data are available, for example, only after one
full rotation of a shipborne radar antenna, as described later. An
attempt to assimilate field measurements has been previously
made for the pseudo-spectral wave model using a conjugate gra-
dient method [17], but its computational cost is also high due to
numerical evaluations of the gradient of the cost function. It is
therefore useful to develop a data assimilation scheme resolving
these two issues.
The paper is organized as follows. The pseudo-spectral wave

model truncated at the third order in wave steepness is adopted
in Section II for the prediction of evolving nonlinear surface
wave fields while the linearized wave model written in Fourier
space is used in Section III to develop a Kalman filtering system
for data assimilation. As shown in Section IV, this enables one
to evaluate the evolution of the error covariance matrix ana-
lytically, which not only reduces the computational cost, but
also improves the stability of the system. To demonstrate the
performance of the integrated wave prediction model, several
numerical experiments are performed for various measurement
noise characteristics and wave fields of different wave steep-
nesses. Detailed simulation conditions and results are discussed
in Section V.

II. NONLINEAR WAVE MODEL

For inviscid, incompressible, and irrotational flows, the ve-
locity potential satisfies the Laplace equatio

(2.1)

where is the free surface elevation and is the two-dimen-
sional horizontal gradient defined as

(2.2)

The free surface boundary conditions at are given
by

(2.3)

(2.4)

By introducing , the velocity potential at the free surface, de-
fined by

(2.5)

equations (2.3) and (2.4) can be written [18] as

(2.6)

(2.7)

where is the vertical velocity evaluated at the free surface
defined by

(2.8)

Under the small wave steepness assumption, when is ex-
panded as

(2.9)

we can obtain the nonlinear evolution equations for and , by
substituting (2.9) into (2.6) and (2.7), as

(2.10)

where , , and have been assumed to be , with
being the wave steepness, and can be found recursively, as

shown, for example, in Choi et al. [9]. For numerical computa-
tions, depending on the desired accuracy and computational ef-
ficiency, the series on the right-hand sides should be truncated to
a prescribed order of nonlinearity. This system has been further
generalized to include the wave breaking effect [12], as men-
tioned previously, but, as our focus is the development of a data
assimilation scheme for the nonlinear evolution model given by
(2.10), we consider only nonbreaking waves in this paper.
To develop a data assimilation scheme, we use the nonlinear

evolution equations correct to the third order in wave steepness,
which is the minimum order of nonlinearity to describe the res-
onant interaction among four gravity waves. In terms of and
, the third-order system can be written [19] as

(2.11)
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(2.12)

In (2.11)–(2.12), the linear integral operator is defined sym-
bolically as for the case of infinite
depth water, where and represent the Fourier and in-
verse Fourier transforms, respectively.
In the numerical wave prediction model, the free surface ele-

vation and the free surface velocity potential are
expressed in truncated Fourier series

(2.13)

(2.14)

where is the number of Fourier modes for positive wave num-
bers, and and are the complex Fourier coefficients of and
, respectively. Since the surface elevation and the free surface

velocity potential are real, and , where
the asterisks denote the complex conjugates. Then the system
of nonlinear evolution equations given by (2.11)–(2.12) is inte-
grated in time using a fourth-order Runge–Kutta scheme with a
low-pass filter to eliminate aliasing errors introduced by the use
of truncated Fourier series; see, for example, Choi et al. [9] for
a detailed description.
Although the wave prediction model can be solved accurately

with the numerical method described, the reliable deterministic
prediction of wave fields depends on initial conditions for
and , which are difficult to estimate correctly from field mea-
surements by, for example, a shipborne marine radar. Even if
available, such measurements are often noisy. Therefore, to im-
prove its performance, the wave model should be assimilated
with field measurements; otherwise, the prediction might be in-
accurate. Here, using an explicit Kalman filter, we develop an
efficient data assimilation scheme for the wave predictionmodel
given by (2.10) and test its predictive capability.

III. PROBLEM FORMULATION

A. State Space Representation
As the wave prediction model uses a pseudo-spectral method,

the surface elevation and the free surface velocity potential are
computed both in the spatial domain (or at given grid points)
for nonlinear operations and in the spectral domain, in terms of
their Fourier coefficients, for linear operations. Therefore, for
Kalman filtering, the state-space representation can be made ei-
ther in the spatial domain or in the spectral domain. Nonetheless,
as discussed subsequently, it is foundmore convenient to use the
Fourier coefficients of and in the spectral domain as state
variables, from which the state vector can be constructed as

...

...

(3.1)

Since sensors for wave field measurement such as a nonco-
herent marine radar, often detect only the free surface elevation,
the measurement output vector is assumed to be given by

(3.2)

where is the measurement sensitivity matrix that
consists of the identity matrix for the free surface ele-
vation and the zero matrix for the free surface velocity
potential.

B. Linear Approximation of the Evolution Equations
Although the wave prediction model solves a system of non-

linear evolution equations given by (2.11)–(2.12), we develop a
data assimilation scheme based on the linearized wave model,
which improves considerably the efficiency and stability of the
filter. More specifically, the resulting linear system is solved an-
alytically, as shown in this section, and the error covariance ma-
trix required for Kalman filtering is then evaluated analytically.
Otherwise, its evaluation is computationally expensive, in par-
ticular, when the number of state variables is large in a large
computational domain. Therefore, the use of the linear system
improves significantly the computational efficiency. In addition,
as discussed in Sections III-C and V-B, the analytic evaluation
removes the numerical instability associated with a low-order
time-integration scheme, which is often adopted for fast evalu-
ation, but is conditionally unstable.
Although the linear system is adopted to improve numerical

efficiency, its use for data assimilation can be justified from the
fact that the nonlinear wave interaction for gravity waves is a
slow process, whose characteristic time scale inversely propor-
tional to the square of wave steepness for resonant four-wave in-
teractions is much longer than a typical update period of Kalman
filtering, which is the rotation period of a radar. Thus, this non-
linear aspect of gravity waves can be assumed to be insignificant
during a relatively short filtering period. On the other hand, the
effect of nonlinearity cannot be neglected in the long-term evo-
lution of wave fields.
From (2.11)–(2.12), the linear evolution equations for the

Fourier coefficients of and can be written as two coupled
differential equations

(3.3)

(3.4)

where is the wavenumber of the th mode. In the state vector
representation, equations (3.3)–(3.4) can be written as

(3.5)

where is an diagonal matrix whose th diagonal
term is . Notice that is a block diagonal ma-
trix. Then, the evolution equation for each Fourier component
is completely decoupled from other Fourier components when
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the system is written as a second-order differential equation for
one variable. This is an advantage of the spectral state repre-
sentation. If we use the spatial representation where the state
variables are defined at grid points, the evolution equations for
the state variables are coupled through the (nonlocal) integral
operator .

C. Discrete-Time Kalman Filter

A detailed description of the discrete-time Kalman filter
(hereafter referred to as the standard Kalman filter) can be
found in, for example, Kalman [20] and Grewal [21]; therefore,
only the final results are given here.
The discrete-time Kalman filter solves the state vector and

the error covariance matrix in two distinct steps: prediction
and update. The former step is to solve the nonlinear evolution
equations for and while the data assimilation scheme is
applied at every update step.
At every prediction time step, and are determined by

(3.6)

(3.7)

where is the third-order nonlinear transition function (or the
operator correct to the third order in wave steepness) of the wave
model shown in (2.11)–(2.12); is a matrix; the su-
perscript denotes the current time step such that
with being a time step; and Q represents the process noise
matrix that is assumed to be zero. In (3.7), the linearized state
transition matrix is often computed numerically using, for ex-
ample, the forward Euler time-integration scheme, which yields

, where the linear operator is defined in (3.5).
At every update period of , or at with being

a positive integer, and are updated to minimize the mean-
square error between the measured value vector and the nu-
merical solutions of the nonlinear wave prediction model ,
using the Kalman gain that is optimum in the linear sense. In

other words, in the update step, and are improved to
and as

(3.8)
(3.9)

where is the measurement sensitivity matrix given
by (3.2) and the optimal Kalman gain matrix is
computed as

(3.10)

In (3.10), R is the measurement noise matrix which, in
this paper, is assumed to be an identity matrix.
Although the procedure described here is well-known, com-

puting (3.7) for the error covariance matrix in the prediction
step could be problematic since its computational cost is high
and a simple integration scheme such as the first-order Euler
scheme is only conditionally stable with a relatively small re-
gion of numerical stability. Therefore, in this paper, we attempt
to find amore efficient andmore stable data assimilation scheme
by finding analytically the error covariance matrix , as de-
scribed in the following section.

IV. EXPLICIT DATA ASSIMILATION

A. Analytic Solution for A Continuous-Time Kalman Filter

When the linear model is written in Fourier space as in
(3.3)–(3.4), all Fourier modes are independent of each other,
which implies that all cross-correlations between two different
modes in the error covariance matrix are zeros. Therefore,
we can decompose the total error covariance matrix given
by equation (4.1) at the bottom of the page into a number of
lower-dimensional matrices

(4.2)

where is the reduced error covariance matrix for the th
Fourier mode. Then, the equation for can be found, by re-

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

(4.1)
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placing the discrete time formulation in (3.7) by the continuous
time formulation [21], as

(4.3)

where is the reduced linear transition matrix corresponding
to the th Fourier mode

(4.4)

To find an analytic solution of the prediction equations
for given by (4.3), we first vectorize the reduced error
covariance matrices . As are symmetric matrices, i.e.,

, we can adopt half-vectorization, i.e., the
corresponding error covariance vector can be obtained from the
lower triangular part of . Then, equation (4.3) is reduced to
the following system of linear differential equations:

(4.5)

We should stress again that this simplification is possible since
we develop a data assimilation scheme in Fourier space (in
terms of Fourier coefficients).
The analytic solution of (4.5) can be obtained as

(4.6)

where are the transition matrices, which depend on the up-
date period , but are independent of the choice of initial time
: see equation (4.7) at the bottom of the page, where is

the angular frequency for the th Fourier mode given, from the
linear dispersion relation, by .
There are a few special cases of interest that deserve some

attention. Firstly, for ( ), notice that
become the identity matrix . In other words, if the update

period is an integer multiple of a half of the wave period, the
error covariance matrix is periodic with a period of . Even
for this special case, it should be noticed that, although
return to the original values through the prediction steps from

to , they are modified when the Kalman

filter is applied at . Secondly, for , the transition
matrix is no longer the identity matrix, but becomes

(4.8)

The initial conditions for the reduced error covariance ma-
trices have often been chosen arbitrarily, but the same for
all . In this paper, are set initially to , where is the 2
2 identity matrix; in other words, and

. The choice of initial conditions for will be fur-
ther discussed in Section IV-C.

B. Explicit Update Procedures

Now the analytic solution for the time evolution of the error
covariance matrix is available from (4.6). Since the error co-
variance matrix needs to be evaluated only when numerical so-
lutions are updated with measurements, it is no longer necessary
to compute the error covariance matrix using (3.7) at every
prediction time step. Therefore, one can avoid a large number
of multiplications between time-dependent matrices.
By letting with , the reduced

error covariance vectors at the th update step (or at )
can be found from (4.6) and, from (4.1)–(4.2), can be reassem-
bled to construct the corresponding error covariance matrix with

. Then, from (3.10), the reduced op-
timal-Kalman-gain matrix for the th Fourier component at

(or, equivalently, with ) is
found as

(4.9)

where with represent the ele-
ments of the reduced error covariance vector at right
before they are updated.
Finally, by substituting (4.9) into (3.8)–(3.9), the updated

state variables and the error covariance matrices
are obtained as

(4.10)

(4.7)
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(4.11)

where . Once the update procedures for
are completed, and need to be replaced by
and , respectively, before the next prediction time

step starts. The nonlinear evolution equations given by (3.6) are
then solved numerically to find without updating them with
measurements until the time step reaches the next update time
step of . The update procedure described here will be
referred to as the explicit Kalman filter.
As a special case, when the wave frequencies satisfy
( ), for which the error covariance matrix is pe-

riodic in time, it can be shown that, after the th update, the
updated state variables and error covariance matrix at
can be computed easily from their predicted values as

(4.12)

(4.13)

where denote the initial values of at
. Notice that as or while

. This implies that, for these special fre-
quencies of , the error covariance matrix converge to
a steady (constant) state as time increases. For other frequencies,
it is nontrivial to find explicitly the behavior of the error covari-
ance matrix as . However, since the filter system based
on the linearized wave model is observable for the given and
matrices, the error covariancematrix for frequencies different

from is also expected to converge to a steady state
[22].
On the other hand, for the zeroth Fourier component of

, it can be shown, from (4.6) with (4.8), that

(4.14)

(4.15)

It should be remarked that, for conservation of mass, the zeroth
Fourier component for the predicted surface elevation must
remain unchanged after the update steps. From (4.14), one can
see that this requires the zeroth Fourier component of the mea-
sured surface elevation must satisfy if the initial value
of is 0. Therefore, before the update steps, this should be
enforced to the measured data if their mean values are different
from 0.

C. Error Analysis for the Explicit Data Assimilation Scheme

A data assimilation scheme using a standard Kalman filter
could be numerically unstable due to the use of a forward Euler
time integration scheme, which is only conditionally stable, as
demonstrated through numerical simulations in Section V. It is
therefore of interest to examine the stability characteristics of
the explicit data assimilation scheme proposed in this paper.
For linear stability analysis, we consider the true state vectors
as

(4.16)

which are assumed to be governed by the linearized wave pre-
diction model (3.5) so that

(4.17)

where are given by (4.4). When the error vectors are de-
fined by the difference between the true state vectors and the
estimated state vectors

(4.18)

they should satisfy (4.17) since both and are governed by
(4.17). Then, the analytic solution for can be easily obtained,
after elapsed time from , as

(4.19)
where and .
At when the th update is to be made, the predic-

tion error propagated from the previously updated error at
can be found analytically as

(4.20)

Then, with assuming that the measured value vector satisfies
and subtracting from both sides of (3.8), the error

after the update step can be determined by

(4.21)

where are given by (4.9). Notice that, for this error anal-
ysis, the measured state vector has been assumed to be free
from measurement noise so that the error is introduced only
through initial conditions for simplicity. When noise is su-
perimposed to such that , it adds a constant
vector to the right-hand side of (4.21).
Finally, from (4.20)–(4.21), the error propagated from the

th update to the th update can be expressed as

(4.22)
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where is the transition matrix, describing the time evolu-
tion of from to through both the
prediction and update steps, defined by

(4.23)

where and are the values of and at prior to
the update step. Then, after the th update (with ), the
error evolved from the initial error can be found as

, where .
Stability of the explicit data assimilation scheme can there-

fore be determined by the eigenvalues of , which are the
roots of the following quadratic equation:

(4.24)

Notice (4.6)–(4.7) that and depend not only on , but
also on their initial values and . Therefore, for stability of our
data assimilation scheme, the eigenvalues must satisfy the
condition of for all .
(i) For with

Before examining the eigenvalues for all values of , we
consider a special case of ( ),
which simplifies (4.24) to

(4.25)

whose roots are given by

(4.26)

This implies that, as long as , the data assimilation
scheme is always neutrally stable (i.e., ) for
the waves with , or, equivalently,
with being the wave period given by .
Notice that the condition of is fulfilled when
is chosen initially a positive real value, irrespective of
and initial conditions for and .

(ii) For
For frequencies different from with

, the eigenvalues depending on time dependent
and should be found numerically. To understand the
effect of multiple updates, the eigenvalues of

are computed after a large number of
update steps, or, in this paper, are applied.

As shown in Fig. 1, the absolute values of the eigenvalues
of are equal to 1, as expected, when with
being a positive integer; otherwise, they are less than 1 when

at , where . In fact, as
long as is a positive real value, the absolute values of the
eigenvalues are found numerically to be always less than 1.
Therefore, it can be concluded that the explicit data assimila-
tion scheme with this choice of at is neutrally

Fig. 1. Absolute values of the maximum eigenvalues of .

stable and enables one to avoid the instability that might occur
when the prediction equation for the error covariance is solved
numerically with a conditionally stable time integration scheme.
When are chosen initially to be nonzero and, in particular,

greater than the values of and , the eigenvalues are found
numerically greater than 1. Therefore, for stability, this choice
for has to be avoided.

V. NUMERICAL SIMULATIONS

A. Numerical Method and Parameters
To test the explicit data assimilation scheme proposed in this

paper, a series of numerical experiments are conducted for long-
crested (or unidirectional) irregular waves. We first assume that
the true wave fields follow the system of third-order nonlinear
evolution equations given by (2.11)–(2.12), and obtain
and for the true wave fields by solving numerically the
third-order system. Secondly, with assuming only surface ele-
vation measurements are available from a noncoherent radar,
the measured surface elevation is constructed
by adding a random noise field to so that

. Unless otherwise mentioned, the mean
and standard deviation of the normal random noise field are
chosen and , respectively, for our simula-
tions. No information about the free surface velocity potential
is assumed available. The measured surface elevations are then
used to update once at every -interval numerical solutions of
the third-order system for and . These estimated (i.e., pre-
dicted plus updated) wave fields are in turn compared with the
true wave fields to quantify the difference between the twowave
fields.
To find , the surface wave field is initialized with the

JONSWAP spectrum characterized by two parameters, the sig-
nificant wave height and the peak wave frequency . From
the relationship between the frequency spectrum and the
wavenumber spectrum given by

(5.1)

the JONSWAP spectrum originally written in the frequency do-
main is given, in the wavenumber domain, by

(5.2)
where , , is the peak enhancement, and

is the peak wavenumber corresponding to the peak
frequency.
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Then, from the two independent definitions of the mean en-
ergy density given by

(5.3)

with being the length of the computational domain, the
Fourier coefficients of the free surface elevation at are
estimated as

(5.4)

with normally distributed random phases over a range be-
tween 0 and . On the other hand, the Fourier coefficients of
the initial free surface velocity potential are estimated, using
linear theory, by

(5.5)

where the phase velocities for gravity waves in deep water
are defined as .
For our simulations, the peak enhancement factor and the

peak frequency are fixed to be and ,
respectively, while three different significant wave heights for
the JONSWAP spectrum are considered: , 0.075, and
0.1. The corresponding wave period and wavenumber are

and 4.03 , respectively, while the wave steep-
ness defined by is given by , 0.151,
and 0.202 m for the three different significant wave heights.
The nonlinear evolution equations given by (2.11)–(2.12) are

then solved to obtain a true wave field, and , using a
pseudo-spectral method based on the fast Fourier transformwith
integrating in time using a fourth-order Runge-Kutta scheme
with a time step of .
The length of the computational domain is , which

corresponds approximately to 82 peak wavelengths. The total
number of Fourier modes is chosen to be . However,
to remove aliasing errors due to the use of finite Fourier series,
the highest one-half Fourier modes are filtered out for every time
step for the third-order nonlinear computation [23]. Thus, the
number of physically-effective Fourier modes including both
positive and negative wavenumbers is 512.
To test our data assimilation scheme, we repeat our compu-

tations for and with the same parameters used to compute
and except for initial conditions. Instead of initial-

izing the surface wave fields using equations (5.4)–(5.5), we as-
sume that there is initially no information about the true wave
field and, therefore, the Fourier coefficients of initial wave fields
are set to zero so that

(5.6)

Then, we update the solution using (4.10) with an update period
of or the update frequency of .
Notice that the dimension of the state vector (or the Fourier

Fig. 2. Time evolution of the normalized error defined by (5.7) for the explicit
data assimilation scheme with measurements generated by a true wave field of

m plus normal random noise with and .
Solid line: the explicit Kalman filter; dotted line: the classical Kalman filter;
dashed-dotted line: no filtering.

Fig. 3. Fourier coefficients of the free surface elevation at for the
numerical simulations presented in Fig. 2 with the standard (top) and explicit
(bottom) Kalman filters. Notice that the numerical solution using the standard
Kalman filter is about to become unbounded at this instant. In each panel, the
true free surface elevation (solid line) is compared with the estimated free sur-
face elevation (dotted line).

coefficients of the surface elevation) is 256, a quarter of
, which is the number of positive wavenumber modes.

All filtered simulations presented here are performed using
the either standard or explicit Kalman filter for the first 10 wave
periods ( ). Then, the update step is turned off and no
update is made afterwards. To monitor the filter performance,
we measure the normalized error between the true and estimated
wave elevations as

(5.7)

B. Comparison Between Different Filters
For a given set of physical parameters, we perform numerical

simulations with three different filters: (i) the standard Kalman
filter based on a numerically-computed , as described in
Section III-C, with zero initial conditions; (ii) the explicit
Kalman filter based on found analytically in Section IV,
with zero initial conditions; (iii) no filter with initial conditions
given by and superimposed with normal random
noise whose mean and standard deviation are and

, respectively.
Errors from the true wave field for three different simulations

are computed using (5.7) and their time evolutions are shown in
Fig. 2. When no filter is applied, the error introduced through
the imposed initial noise grows almost linearly in time and no
reliable prediction can be made. This implies that noisy mea-
surements cannot be used directly without any filtering. When
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Fig. 4. Comparison of the true (solid line), measured (dashed line), and estimated (thick dash-dot line) free surface elevations at , , and
(from top to bottom). The explicit Kalman filter is used and the wave filed is initialized with and (

).

the standard Kalman filter is used, the error oscillates with an
amplitude much larger than the noise level and grows rapidly
in time. Soon the wave prediction model becomes unstable and
blows up in a finite time (less than ) due to the con-
ditionally stable forward Euler time-integration scheme in the
prediction step along with the periodic update with noisy mea-
surements, as discussed in Section III-C. This indicates that the
standard Kalman filter should be used with great care with the
pseudo-spectral wave prediction model. On the other hand, the
simulation using the explicit Kalman filter shows a promising
result where the error is maintained at the level of noise or even
smaller. This observation supports our stability analysis pre-
sented in Section IV-C, where the linearized wave prediction
system is shown neutrally stable.
A more detailed comparison between three simulations can

be found in Fig. 3, where we compare the Fourier coefficients of
the surface elevation at , at which the numerical so-
lution based on the standard Kalman filter becomes unbounded.
Notice that the Fourier coefficient for has grown
to a much higher value than those of any other wave number
modes. The wave frequency corresponding to this dangerous
wave number is approximately , which is
one half of the update frequency so that

. This is the smallest frequency ratio for neutral
stability for which the maximum eigenvalue is one, as described
in Section IV-C. Due to extra perturbations introduced by nu-
merical approximation might produce this instability. The result
in Fig. 3 demonstrates that the wave prediction system with the
explicit Kalman filter is indeed neutrally stable, as predicted in
Section IV-C, and shows no sign of instability at one half the
update frequency.
It should be emphasized again that, in addition to being stable,

the explicit Kalman filter is computationally much more effi-
cient than the standard Kalman filter since it is no longer nec-

essary to compute numerically the error covariance matrix at
every prediction time step. For the two-dimensional wave evo-
lution, the computational efficiency of the explicit Kalman filter
will be much more pronounced.

C. Numerical Simulations With the Explicit Kalman Filter

Here we describe detailed numerical simulation results using
the explicit Kalman filter. For each simulation presented in this
section, the wave field is predicted for with assimi-
lating measurements at every update period and, then, is pre-
dicted for the next after the data assimilation scheme
is turned off.
Figs. 4 and 5 show the time evolution of the estimated free

surface elevation using the explicit Kalman filter compared with
the true and measured free surface elevations at (ini-
tial state), (when the update step is turned off), and

for two different wave steepnesses: and
0.202. As shown in Fig. 4, the estimated free surface elevation
matches well with the true free surface elevation for the case
of . However, it can be seen in Fig. 5 that, as the
wave steepness increases, the difference between the true and
estimated states grows after the filter is turned off. This can be
seen more clearly in Fig. 6, where the time evolution of the nor-
malized error defined by (5.7) is presented. This demonstrates
that the noise introduced by assimilated measurements through
the update steps for makes numerical simulations de-
viate in time from the true states, in particular, when the wave
steepness is no longer small. This behavior is due to the fact that
the explicit Kalman filter is based on the wave model linearized
about zero states. Thus the data assimilation scheme fails to dis-
tinguish (nonlinear) bound waves from free waves, particularly,
in the estimation of the velocity potential. To be discussed later,
this shows clearly a need of a more robust data assimilation
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Fig. 5. Comparison of the true (solid line), measured (dashed line), and estimated (thick dash-dot line) free surface elevations at , , and
(from top to bottom). The explicit Kalman filter is used and the wave filed is initialized with and (

).

Fig. 6. Time evolution of the normalized error defined by (5.7) for the explicit
data assimilation scheme. Solid line: ( ); cross symbol:

( ); dashed line: ( ). The mea-
surements for data assimilation are generated by true wave fields plus normal
random noise with and .

Fig. 7. Time evolution of the normalized error defined by (5.7) for a wave field
initialized with ( ). Solid line: normal random noise
with , ; dashed line: normal random noise with

; cross symbol: Weibull random noise with ;
dotted line: Weibull random noise with , ; circle symbol:
Weibull random noise with .

scheme for the prediction of highly nonlinear wave fields when
only noisy measurements are available.
To examine the performance of the explicit Kalman filter

for different noise characteristics, a number of synthetic mea-
surements are generated by adding to true states random noise
with three different statistical characteristics: normal distribu-
tion, Weibull distribution with the shape parameter , and

Weibull distribution with . In addition, two different stan-
dard deviations, and are used for the
first two distributions. Fig. 7 compares the error between true
and estimated wave elevations for five different statistical char-
acteristics of random noise. There is a slight increase in error
when the standard deviation becomes , but the error does
not significantly affect the overall performance of the assimila-
tion scheme, including the case of the biased Weibull random
noise. In Fig. 7, we can observe a jump in the error at each up-
date, but this error is filtered out just after the next time step.

VI. CONCLUSION
In this paper, we have presented an explicit data assimilation

scheme for a deterministic wave prediction model for nonlinear
gravity waves. The nonlinear wave prediction model is based on
asymptotic expansion originally proposed byWest et al. [6] and
is solved numerically using a pseudo-spectral method, where the
Fourier coefficients of the surface elevation and the free surface
velocity potential are computed at every time step. It is shown
that the time evolution of the error covariance matrix for each
Fourier mode is independent from other modes and can be found
explicitly by solving analytically the linearized wave prediction
model. Through both an error analysis and nonlinear numerical
simulations, it is demonstrated that this explicit Kalman filter is
not only numerically efficient, but also stable when noisy mea-
surements are assimilated with the wave prediction model.
The explicit data assimilation scheme developed for the

wave evolution in infinitely deep water can be easily applied
to the case of finite-depth or shallow water when the integral
operator in (2.11)–(2.12) is redefined as

, where is the water depth. It is assumed
that only surface elevation measurements are available from
a noncoherent radar. When one uses a coherent radar from
which radial velocity measurements are also available, the
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measurement sensitivity matrix can be modified without
difficulty. A generalization to the two-dimensional wave evo-
lution is also straightforward when the Fourier coefficients
of state variables in the two-dimensional Fourier space are
rearranged as a vector. One issue for two-dimensional wave
fields might be the increase of dimension of the state vector,
in particular, when the physical domain of interest is large.
Since all Fourier modes are decoupled in the determination of
the error covariance matrices, it should be of little concern.
Nevertheless, if needed, the dimension of the state vector to
be updated can be reduced by applying the explicit Kalman
filter to a subset of Fourier modes (typically, of wave periods
between 5 s and 20 s) that have relatively significant energy
and could affect offshore structures.
A couple of nontrivial improvements should be topics of fu-

ture study. The explicit data assimilation scheme is shown reli-
able for most not-so-severe oceanic conditions and, when com-
bined with the nonlinear wave model, would therefore serve as
an efficient daily operational tool for the prediction of ocean
waves. Nevertheless, the explicit Kalman filter considered here
is based on linearization about zero states. For the prediction of
more severe sea states, the scheme should be modified, without
losing its efficiency, to take nonlinearity into account not only
for prediction steps, but also for update steps. Another improve-
ment should be made to handle temporal measurements of the
surface elevation. Here it is assumed that spatial measurements
of the surface elevation are available from a marine radar at
every update period, but it is common to have only temporal
measurements of the surface elevation from wave buoys only at
a few spatial locations. Then, one should convert them to snap-
shots of the corresponding wave fields. This conversion can be
made easily for linear wave fields using Fourier analysis, but
must be done with care for nonlinear wave fields.
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