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a b s t r a c t

We present a simple iterative scheme to solve numerically a regularized internal wave
model describing the large amplitude motion of the interface between two layers of differ-
ent densities. Compared with the original strongly nonlinear internal wave model of Miy-
ata [10] and Choi and Camassa [2], the regularized model adopted here suppresses shear
instability associated with a velocity jump across the interface, but the coupling between
the upper and lower layers is more complicated so that an additional system of coupled
linear equations must be solved at every time step after a set of nonlinear evolution equa-
tions are integrated in time. Therefore, an efficient numerical scheme is desirable. In our
iterative scheme, the linear system is decoupled and simple linear operators with constant
coefficients are required to be inverted. Through linear analysis, it is shown that the
scheme converges fast with an optimum choice of iteration parameters. After demonstrat-
ing its effectiveness for a model problem, the iterative scheme is applied to solve the reg-
ularized internal wave model using a pseudo-spectral method for the propagation of a
single internal solitary wave and the head-on collision between two solitary waves of dif-
ferent wave amplitudes.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Recently nonlinear internal solitary waves propagating in density stratified oceans have attracted much attention and the
number of field observations is rapidly increasing [5]. These long internal waves frequently observed in coastal regions are
often strongly nonlinear as the wave amplitude is comparable to the characteristic vertical length scale. Therefore, the well-
known weakly nonlinear models such as the Korteweg-de Vries (KdV) equation for uni-directional waves and the Boussinesq
equations for bi-directional waves commonly used for long surface waves in a homogeneous layer have been found to fail to
describe large amplitude internal solitary waves [2,8].

When the density changes rather abruptly over a thin transition layer (called the pycnocline), the stratified ocean is often
approximated by two fluid layers of different constant densities for which the higher-order nonlinear dispersive effects can
be incorporated into a relatively simple system of nonlinear evolution equations describing the motion of the interface be-
tween the two fluid layers [2,10]. Its solitary wave solutions have been found to agree well with laboratory experiments and
numerical solutions of the Euler equations [1,2]. Since this strongly nonlinear model neglects the effects of viscosity and a
. All rights reserved.
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thin density transition layer between the two layers, the tangential velocities are discontinuous across the interface and its
initial value problem is known to be ill-posed [6,7,9].

To overcome this difficulty, the model has been regularized [3] by changing the short-wave behavior that is insignificant
in the long-wave dynamics and, in fact, is modeled incorrectly in the long wave asymptotic model. An attempt to solve the
regularized model numerically was made in Choi et al. [3], but it was found desirable to develop a more efficient numerical
method due to a more complicated coupling between the upper and lower layers compared with the original strongly non-
linear model.

In this paper, we introduce an iterative scheme to solve the regularized model of Choi et al. [3] and discuss its conver-
gence. After presenting the regularized model in Section 2, we describe the iterative scheme and the result of convergence
analysis in Section 3. With choosing an optimum set of iteration parameters, we solve the regularized model numerically for
the propagation of a single solitary wave and the asymmetric head-on collision between two solitary waves to demonstrate
the effectiveness of the iterative scheme in Section 4.
2. A regularized strongly nonlinear model

A regularized strongly nonlinear internal wave model for a system of two constant-density layers bounded by the upper
and lower rigid boundaries can be written [3], in terms of the local layer thicknesses gi and the horizontal velocities ui eval-
uated at the rigid boundaries in the upper (i = 1) and lower (i = 2) layers, as
gi;t þ gi ui �
1
6
g2

i ui;xx

� �� �
x

¼ 0; ð2:1Þ

ui;t þ uiui;x þ gfx ¼ �
Px

qi
þ 1

2
g2

i ui;xt þ uiui;xx � u2
i;x

� �� �
x

: ð2:2Þ
Here the subscripts x and t represent partial differentiation with respect to space and time, respectively, and the local layer
thicknesses are defined by
g1 ¼ h1 � f; g2 ¼ h2 þ f; ð2:3Þ
where hi are the undisturbed layer thicknesses and f is the displacement of the interface. We remark that the original
strongly nonlinear long wave model of Miyata [10] and Choi and Camassa [2] written in terms of the depth-averaged hor-
izontal velocities suffers from Kelvin–Helmholtz (KH) instability due to a velocity discontinuity across the deformed inter-
face. By introducing the horizontal velocities at the upper and lower walls, ui, it was shown in Choi et al. [3] that the model
given by (2.1) and (2.2) suppresses the KH instability when it is linearized. Since the system is written in a conserved form, it
has the following obvious conservation laws
d
dt

Z 1

�1
fdx ¼ 0;

d
dt

Z 1

�1
uidx ¼ 0: ð2:4Þ
We remark that, for numerical computations, it is convenient to rewrite Eq. (2.2) as
qi ui �
1
2
ðg2

i ui;xÞx
� �

t

¼ �Px � qi
1
2

u2
i þ gf� 1

2
ðg2

i uiui;xÞx þ
1
6
giui;xðg3

i ui;xxÞx
� �

x

; ð2:5Þ
where (2.1) has been used for gi,t. Obviously, the last term on the right-hand side is a asymptotically higher-order term than
the remaining terms and could be dropped for consistency. Nevertheless, it is kept here since we would like to solve (2.2)
exactly. In terms of the well-posedness of the linearized system, the last term makes no difference since it is a nonlinear term
and, therefore, it can be dropped without affecting the well-posedness if one wants to have a model asymptotically equiv-
alent to (2.2).

The system of four equations given by (2.1) and (2.5) for i = 1 and 2 can be reduced to a system of two time evolution
equations. Choosing (2.1) for i = 1 and subtracting (2.5) for i = 1 and i = 2 to eliminate P yields the following two evolution
equations for f and V
ft ¼ g1 u1 �
1
6
g2

1u1;xx

� �� �
x
; ð2:6Þ

Vt ¼
X2

i¼1

ð�1Þiqi
1
2

u2
i þ gf� 1

2
ðg2

i uiui;xÞx þ
1
6
giui;xðg3

i ui;xxÞx
� �

x

; ð2:7Þ
where V(x, t) is defined by
V ¼
X2

i¼1

ð�1Þi�1qi ui �
1
2
ðg2

i ui;xÞx
� �

: ð2:8Þ
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Once the evolution equations given by (2.6) and (2.7) are integrated in time for f and V, the horizontal velocities ui can be
found by solving the following system of coupled differential equations with variable coefficients
g1 u1 �
1
6
g2

1u1;xx

� �
þ g2 u2 �

1
6
g2

2u2;xx

� �
¼ C; ð2:9Þ

q1 u1 �
1
2
ðg2

1u1;xÞx
� �

� q2 u2 �
1
2
ðg2

2u2;xÞx
� �

¼ V : ð2:10Þ
Notice that gi in (2.9) and (2.10) are known since f is already computed at a new time step. Here, while the second equation
is nothing but (2.8), the first Eq. (2.9) is obtained by adding (2.1) for i = 1 and 2 to eliminate ft and integrating once in x with
an integration constant C, which depends on the boundary conditions. Physically (2.9) implies that the volume flux is inde-
pendent of x.

When discretized, the system given by (2.9) and (2.10) could be computationally expensive to solve, in particular, for two-
dimensional problems unless an efficient numerical scheme is found. Even for one-dimensional problem, if one uses a pseu-
do-spectral method, the operator becomes a full matrix which is time-consuming to invert at every time step since the oper-
ator depends on time. In fact, in Choi et al. [3], a direct inversion method with a second-order finite difference scheme to
approximate the operators was adopted to solve (2.9) and (2.10) and found numerically ineffective.
3. An iterative scheme and its convergence

To solve the system given by (2.9) and (2.10) efficiently, we rewrite (2.9) as
g1U1 þ g2U2 ¼ R1; ð3:1Þ
q1U1 � q2U2 ¼ R2; ð3:2Þ
where Ui and Ri are given by
Ui ¼ ui � aih
2
i ui;xx; ð3:3Þ

R1 ¼ C þ
X2

i¼1

1
6
g3

i ui;xx � aigih
2
i ui;xx

� �
; ð3:4Þ

R2 ¼ V �
X2

i¼1

ð�1Þiqi
1
2
ðg2

i ui;xÞx � aih
2
i ui;xx

� �
: ð3:5Þ
In (3.3)–(3.5), notice that terms with constant ai are introduced to write (3.1) and (3.2) as a system of equations for Ui from
which ui can be easily obtained by inverting the linear operators with constant coefficients given by (3.3). Then, as described
in Appendix A, ai are determined for a new iterative scheme to converge fast and are assumed to be positive so that the oper-
ators to be inverted to find ui from known Ui are positive definite.

Once the right-hand sides Ri are evaluated with the results from the previous iteration step, (3.1) and (3.2) are the linear
equations for Ui at the new iteration step, whose expressions in terms of Ri can be found analytically. Then, ui can be com-
puted by inverting independently for i = 1 and i = 2 the linear operators with constant coefficients defined in (3.3), as men-
tioned previously. It is convenient to invert these constant operators, for example, when a pseudo-spectral method is used.
On the other hand, if one uses a finite difference method for spatial discretization, the coefficients do not have to be constant.
Therefore, aihi

2 in (3.3) and (3.5) and ai gihi
2 in (3.4) can be replaced by ai gi

2 and aigi
3, respectively, and an iterative scheme

described below can be applied without any modification. A similar iterative scheme can be used for a system given by (2.9)
and (2.10), but, then, ui have to be solved simultaneously since the terms in the square brackets that appear on the left-hand
sides of (2.9) and (2.10) are all different.

3.1. Iterative scheme

For given gi, the solutions of (3.1) and (3.2) can be obtained by using the following iterative scheme
g1Uðnþ1Þ
1 þ g2Uðnþ1Þ

2 ¼ RðnÞ1 ; ð3:6Þ
q1Uðnþ1Þ

1 � q2Uðnþ1Þ
2 ¼ RðnÞ2 ; ð3:7Þ
where Uðnþ1Þ
i are Ui at the (n + 1)th iteration step and RðnÞi are the right-hand sides of (3.1) and (3.2) evaluated with the results

from the nth iteration step. Then, Uðnþ1Þ
i can be found analytically as
Uðnþ1Þ
1 ¼ q2RðnÞ1 þ g2RðnÞ2

q1g2 þ q2g1
; Uðnþ1Þ

2 ¼ q1RðnÞ1 � g1RðnÞ2

q1g2 þ q2g1
: ð3:8Þ
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Now the equations for the upper and lower layers are decoupled and ui can be found independently for i = 1 and i = 2 as
uðnþ1Þ
i ¼ 1� aih

2
i @

2
x

� ��1
Uðnþ1Þ

i : ð3:9Þ
The operator (3.9) can be easily inverted numerically. For example, for the second-order central difference scheme, a tridi-
agonal matrix solver can be used and, for a pseudo-spectral method, it is simple division since the operator is independent of
space by construction. We emphasize that the operators are rearranged with introducing ai before any numerical discreti-
zation of the original operators is made so that the expressions for Ui can be found analytically, as shown in (3.8). Then, the
resulting linear systems with simple operators given by (3.9) are inverted to find ui without any operator splittings, which
are often required for the well-known iterative schemes such as Jacobi or Gauss–Seidel methods.

This iterative scheme is applied repeatedly until the following condition is met
uðnþ1Þ
i � uðnÞi

��� ���
max

uðnÞi

��� ���
max

< �; ð3:10Þ
where we adopt � = 1 � 10�12 for our computations presented later. Alternatively, we could use a criterion based on the
residuals of the discretized linear system given by (3.1) and (3.2) with which we continue the iteration process until the
residuals reach a certain tolerance level. As will be discussed in Section 3.3, the criterion given by (3.10) is found more sat-
isfactory and is therefore adopted in this paper.

In the followings, we derive a condition under which the iterative scheme converges for fixed physical parameters (hi and
qi), and show how to choose ai such that fastest convergence is achieved.

3.2. Convergence

For Fourier analysis, we first linearize the system of (3.1) and (3.2) with assuming that f/hi� 1
h1 1� a1h2
1@

2
x

� �
uðnþ1Þ

1 þ h2 1� a2h2
2@

2
x

� �
uðnþ1Þ

2 ¼ C þ
X2

i¼1

1
6
� ai

� �
h3

i uðnÞi;xx; ð3:11Þ

q1 1� a1h2
1@

2
x

� �
uðnþ1Þ

1 � q2 1� a2h2
2@

2
x

� �
uðnþ1Þ

2 ¼ V �
X2

i¼1

ð�1Þiqi
1
2
� ai

� �
h2

i uðnÞi;xx: ð3:12Þ
By substituting the following expression into (3.1) and (3.2)
uðnÞi ¼ aðnÞi eikx; ð3:13Þ

where k is the wave number, we have
h1ð1þ a1k2h2
1Þa

ðnþ1Þ
1 þ h2ð1þ a2k2h2

2Þa
ðnþ1Þ
2 ¼ C �

X2

i¼1

1
6
� ai

� �
k2h3

i aðnÞi ; ð3:14Þ

q1ð1þ a1k2h2
1Þa

ðnþ1Þ
1 � q2ð1þ a2k2h2

2Þa
ðnþ1Þ
2 ¼ V þ

X2

i¼1

ð�1Þiqi
1
2
� ai

� �
k2h2

i aðnÞi ; ð3:15Þ
where �f represents the Fourier transform of f. For convergence of our iterative scheme, the behavior for large k is crucial (see
Appendix A) and, as k ?1, (3.14) and (3.15) can be approximated to
a1h3
1 a2h3

2

a1q1h2
1 �a2q2h2

2

 !
aðnþ1Þ

1

aðnþ1Þ
2

 !
¼

� 1
6� a1
	 


h3
1 � 1

6� a2
	 


h3
2

�q1
1
2� a1
	 


h2
1 q2

1
2� a2
	 


h2
2

 !
aðnÞ1

aðnÞ2

 !
; ð3:16Þ
which can be re-written as
aðnþ1Þ
1

aðnþ1Þ
2

 !
¼ Aða1;a2Þ

aðnÞ1

aðnÞ2

 !
; ð3:17Þ
where matrix A depends on ai for fixed physical parameters (hi and qi). For convergence, the absolute values of two eigen-
values of matrix A, k1,2, have to be smaller than 1
jkiða1;a2Þj < 1; ð3:18Þ

which determine the ranges of ai.

For simplicity, the two fluid densities are assumed to be close to each other so that q1/q2 ’ 1 (relevant for oceanic appli-
cations), the matrix A becomes
A ¼ 1
h1 þ h2

� h2
1
2� a1
	 


þ h1
1
6� a1
	 
� �

a1 h3
2

.
ð3a1h2

1Þ

h3
1

.
ð3a2h2

2Þ � h2
1
6� a2
	 


þ h1
1
2� a2
	 
� �

a2

0B@
1CA; ð3:19Þ
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whose two eigenvalues are given by
Fig. 3.1
line, the
indicate
k1;2 ¼ 1� a1ð3h1 þ h2Þ þ a2ðh1 þ 3h2Þ
12a1a2ðh1 þ h2Þ

�
ða1ð3h1 þ h2Þ � a2ðh1 þ 3h2ÞÞ2 þ 16a1a2h1h2

h i1=2

12a1a2ðh1 þ h2Þ
: ð3:20Þ
Then, for convergence of our iterative scheme, we choose ai for which the maximum of the two eigenvalues has to be less
than 1. This happens when the first two terms in (3.20) vanish and the absolute values of the two eigenvalues are the same
and less than 1. This requires ai to satisfy the following relationship
a2 ¼
ð3h1 þ h2Þa1

12ðh1 þ h2Þa1 � ðh1 þ 3h2Þ
: ð3:21Þ
From (3.21), since a2 > 0, as mentioned previously, it can be seen that a1 satisfies the following inequality
a1 >
h1 þ 3h2

12ðh1 þ h2Þ
> 0; ð3:22Þ
under which it can be shown that the condition given by (3.18) is always fulfilled. Finally, for optimum values of ai, we need
to choose ai which makes ki as small as possible and the results are
a1 ¼
h1 þ 3h2

6ðh1 þ h2Þ
; a2 ¼

3h1 þ h2

6ðh1 þ h2Þ
: ð3:23Þ
Then, the iterative scheme is expected to converge fastest and jkij is given by
jk1j ¼ jk2j ¼
4h1h2

ð3h1 þ h2Þðh1 þ 3h2Þ

� �1=2

; ð3:24Þ
which is less than 1/2.
Fig. 3.1(a) shows jk2j, for varying ai, given by (3.20) with a negative sign for the depth ratio of h2/h1 = 3 while Fig. 3.1(b)

shows a region in the (a1,a2)-plane where the iterative scheme converges. In the shaded region, both ja1jand ja2j are less
than 1 while ja2j > 1 in the non-shaded region. For the depth ratio of h2/h1 = 3, the optimum values of ai indicated by the
dot are a1 = 5/12 and a2 = 1/4 from (3.23) and the absolute values of ki are jkij = 1/5.

For the case of arbitrary density ratios, the optimum values of ai are given in Appendix B with including the effect of finite
wave amplitude a, which requires one to change the local thicknesses h1 and h2 to h1 � a and h2 + a, respectively.

3.3. A simple test for convergence

To test the iterative scheme, we consider a model problem similar to (2.9) and (2.10) with h1 = 1, h2 = 3, q1 = 1, and
q2 = 1.003
. (a) jk2j given by (3.20) with a negative sign for h2/h1 = 3. (b) The iterative scheme converges for ai in a shaded region where jkij < 1. On the dashed
absolute values of two eigenvalues are identical (jk1j = jk2j). The minimum eigenvalues occur at optimum values of ai which are given by (3.23) and

d by the dot in the figure.



Table 3.1
Comparison of the numerical solutions of (3.25) and (3.26) with the exact solutions given by (3.27). Here Niteration is the number of iterations with tolerance
� = 10�12 and ei are defined as ei = j uiexact � uinumericaljmax/juiexactjmax. Notice that the optimum values are a1 = 5/12 and a2 = 1/4 and a second-order finite
difference scheme has been used for spatial discretization. For a = 5/24 and a2 = 1/8, the iterative scheme failed since jk2j > 1.

a1 a2 Niteration e1 � 104 e2 � 104

5/12 1/5 47 2.522198102 2.132061190
5/12 1/4 31 2.522198103 2.132061190
5/12 1/3 39 2.522198101 2.132061191
5/12 1/2 58 2.522198092 2.132061192
4/12 1/4 41 2.522198106 2.132061190
5/12 1/4 31 2.522198103 2.132061190
6/12 1/4 33 2.522198098 2.132061191
5/12 1/4 37 2.522198101 2.132061191
5/24 1/8 failed

Table 3.2
Error estimates for varying Dx with the optimum values of ai given by (3.23).

a1 a2 Dx Niteration e1 � 104 e2 � 104 e1 � Dxm

5/12 1/4 2p/200 31 2.522198 2.132061
5/12 1/4 2p/400 31 0.630483 0.532953 m = 2.00015
5/12 1/4 2p/800 31 0.157616 0.133250 m = 2.00004

Table 4
Average
(1,1.00
method

a1

Nitera

k1

k2

a2

Nitera

k1

k2
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h1 u1 �
h2

1

6
u1;xx

 !
þ h2 u2 �

h2
2

6
u2;xx

 !
¼ r1ðxÞ; ð3:25Þ

q1 u1 �
h2

1

2
u1;xx

 !
� q2 u2 �

h2
2

2
u2;xx

 !
¼ r2ðxÞ; ð3:26Þ
where r1(x) and r2(x) are given by substituting the following exact solutions into the left-hand sides of (3.25) and (3.26),
respectively
u1exactðxÞ ¼ sinðxÞ þ cosð2xÞ; u2exactðxÞ ¼ 2 cosðxÞ þ 3 sinð2xÞ; for 0 6 x 6 2p: ð3:27Þ
To solve (3.25) and (3.26) using the iterative scheme, we use a second-order finite difference method with Dx = 2p/200 for
spatial discretization and � = 10�12. In Table 3.1, the numerical solutions are compared with the exact solutions given by
(3.27). Clearly the least number of iterations is required with the optimum values of ai given by (3.23) and the iterative
scheme fails with ai in a divergent region (the non-shaded region in Fig. 3.1). This indicates that our analysis for k ?1 pre-
sented in Section 3.2 is valid although the maximum wave number resolved in our computations (which is p/Dx) is large, but
finite. Since we use a second-order difference approximation, the errors of our numerical solutions are proportional to Dx2,
as shown in Table 3.2. The maximum residuals of the discretized system of (3.25) and (3.26) for our numerical solutions are
also computed as 1.332978 � 10�11, 5.984191 � 10�11, and 1.962377 � 10�10 for Dx = 2p/200, 2p/400, and 2p/800, respec-
tively. Since the residuals are sensitive to the choice of Dx, a criterion based on the residuals discussed in Section 3.1 seems
to be less useful for our iterative scheme.

4. Numerical solutions of the regularized model

To solve the evolution Eqs. (2.6) and (2.7) numerically, we use a fourth-order Runge–Kutta method for time integration
and a pseudo-spectral method for spatial discretization. As described in Section 2, once f and V are updated at a new time
.1
number of iterations for varying ai for the propagation of a solitary wave with wave amplitude a0 = �0.6 and physical parameters (q1,q2, h1,h2,g) =

3,1,3,1). A pseudo-spectral method is used for spatial discretization with N = 29 and the total domain length is L = 200 while a fourth-order Runge–Kutta
is used for time integration with Dt = 0.01 and tmax = 1000.

0.4 0.6 0.8 0.938053 1.0 1.2

tion with a2 = 0.192153 Failed 15 10.5 10 10 11
0.338 0.395 0.454 0.492 0.447 0.340
1.683 0.959 0.626 0.492 0.509 0.558
0.1 0.15 0.192153 0.2 0.25 0.3

tion with a1 = 0.938053 Failed 12.25 10 10 10 10.5
0.363 0.434 0.492 0.464 0.331 0.253
1.284 0.715 0.492 0.503 0.563 0.613



Fig. 4.1. Numerical solutions of the regularized model for a single solitary wave in a reference frame moving with constant speed c. The initial wave profile
is the solitary wave solution of the model of Miyata–Choi–Camassa and c is its wave speed. (a) a = �0.4 and c = 0.0522; (b) a/h1 = �0.8 and c = 0.0544.

Fig. 4.2. Numerical solutions of the regularized model: (a) Head-on collision of two solitary waves of the Miyata–Choi–Camassa model with amplitudes
a = �0.8 and a = �0.4. (b) Evolution of an initial profile given by f(x,0) = �0.6 sech2(0.2x) with zero horizontal velocity.
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step, the horizontal velocities u1 and u2 can be found independently by inverting the linear operators with constant coeffi-
cients defined in (3.9). This inversion is a simple division in Fourier space such that the Fourier transform of uðnþ1Þ

i can be
found as ûðnþ1Þ

i ¼ ð1þ aih
2
i k2Þ�1 bU ðnþ1Þ

i .
To test the iterative scheme, we consider the propagation of a single solitary wave of amplitude a0 = �0.6 of the original

model of Miyata[10] and Choi and Camassa [2] with (q1,q2,h1,h2,g) = (1,1.003,1,3,1). It should be emphasized again that
the propagation of a single solitary wave cannot be simulated with the original model which is illposed. For these physical
parameters, the optimum values for ai are found, from (B.10) for finite amplitude waves, as a1 = 0.938053 and a2 = 0.192153.
In Table 4.1, for varying ai, we present the average number of iterations necessary for convergence at each substep of the
Runge–Kutta method with D t = 0.01 satisfying the CFL condition based on the linear long wave speed for 0 6 t 6 1000. Here,
the length of our total computational domain is taken to be L = 200 and the number of grid points (Fourier modes) is N = (5/
2) � 29 among which 29 Fourier modes are meaningful since the rest is used to eliminate aliasing errors with considering
that the regularized model is the fourth-order nonlinear equations. From Table 4.1, we notice that the fastest convergence
is achieved with the optimum values of ai estimated from (B.10), but the iterative scheme is so effective that a small number
of iterations is required even for non-optimum iteration parameters as long as the absolute values of the corresponding
eigenvalues are less than one.

Fig. 4.1 shows the long-term numerical solutions of the regularized model (2.1) and (2.2) initialized with the solitary
wave solution of the original strongly nonlinear model of Miyata [10] and Choi and Camassa [2] for 0 6 t 6 1.2 � 104 and
0 6 x 6 1200 with Dt = 0.1 and N = (5/2) � 210. The initial wave amplitudes are a = �0.4 and a = �0.8 for which the optimum
iteration parameters are, from (B.10), (a1,a2) = (0.7509,0.2130) and (a1,a2) = (1.1332,0.1704), respectively. For these
numerical computations, the average number of iteration per each time integration is approximately Niteration = 9 for
a = �0.4 and Niteration = 10 for a = �0.8. Compared with the numerical scheme used in Choi et al. [3] where the direct inver-
sion of a linear system is required, the new iterative scheme is found more than 4 times faster. The elapsed computing times
for a = �0.8 are measured 0.35 s and 1.54 s per time step for the new and old numerical schemes, respectively. Notice that
small dispersive waves are shed downstream since the initial wave profile is close to, but not the solution of the regularized
model.

To further test the new iterative scheme for more general time-dependent problems, we consider two different initial
conditions with N = (5/2) � 29 and Dt = 0.01. Fig. 4.2(a) shows the asymmetric head-on collision between two solitary waves
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of the Miyata–Choi–Camassa model of amplitudes �0.8 and �0.4. During the collision, the peak amplitude reaches about
�1.263. Here ai are computed based on the initial amplitude of the larger solitary wave which is much less than the local
maximum amplitude of 1.263 during this computation, but the iterative scheme shows no sign of divergence. Fig. 4.2(b)
shows the time evolution of an initial profile given by f(x,0) = �0.6sech2(0.2x) located at the center of the computational do-
main with periodic boundary conditions. With ui = 0 at t = 0, the initial profile is split into two solitary waves, which prop-
agate in the opposite directions to collide symmetrically at the boundaries of the computational domain. Here we compute ai

based on the initial maximum displacement of the interface so that (a1,a2) = (0.938,0.192).

5. Concluding remarks

We propose an effective iterative method to solve a system of coupled nonlinear evolution equations, regularized to sup-
press shear instability, for large amplitude long internal waves in a two-layer system. Through linear analysis, a condition for
iteration parameters for convergence is provided and tested. It is found that the iterative scheme with the optimum values
for fastest convergence is effective in solving the regularized model even when the wave amplitude is large. Although the
one-dimensional model is considered in this paper, a similar iterative model can be used to solve the two-dimensional reg-
ularized model [4] with bottom topography.
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Appendix A. Iterative operator inversion

Consider a simple equation for u(x) given by
L½u� � ð1� @2
x Þu ¼ f ðxÞ; ðA:1Þ
where f(x) is a known slowly-varying function. Although (A.1) can be solved analytically, we attempt to solve it numerically
to explain our iterative scheme.

Since u(x) is expected to be a slowly varying function and the second term on the left-hand side of (A.1) is supposed to be
small compared with the first term, we assume to use the following simple iterative scheme.
uðnþ1Þ ¼ f ðxÞ þ uðnÞxx ; ðA:2Þ
where u(n) is the estimate at the nth iteration step and u(0) is an initial guess.
In Fourier space, by writing u(n) = a(n)eikx, (A.2) yields an equation for a(n+1)
aðnþ1ÞðkÞ ¼ �f ðkÞ � k2aðnÞ ¼ �f ðkÞ � k2 �f ðkÞ � k2aðn�1Þ
h i

¼ 1� ð�k2Þnþ1

1� ð�k2Þ
�f ðkÞ þ ð�k2Þnþ1að0ÞðkÞ: ðA:3Þ
For large k, a(n+1) can be approximated by
aðnþ1ÞðkÞ � ð�k2Þn�f ðkÞ þ ð�k2Þnþ1að0ÞðkÞ; ðA:4Þ
which implies that a(n+1)(k) for large k grows as the number of iteration n increases and the iteration scheme would fail no
matter how small a(0)(k) is. This conclusion also holds even for the case of a(0)(k) = 0 which is identical to an iteration scheme

given by uðnþ1Þ ¼ �2uðnÞxx with u(0) = f(x).
To overcome this difficulty, we first replace the iteration scheme, after subtracting auxx from both sides of (A.1), by
uðnþ1Þ � auðnþ1Þ
xx ¼ f ðxÞ þ ð1� aÞuðnÞxx ; ðA:5Þ
where a is a constant to be determined, and then a(n+1) can be found as
aðnþ1ÞðkÞ ¼ 1� ½ða� 1Þk2
=ð1þ ak2Þ�nþ1

1� ½ða� 1Þk2
=ð1þ ak2Þ�

�f ðkÞ
1þ ak2 þ

ða� 1Þk2

ð1þ ak2Þ

" #nþ1

að0ÞðkÞ; ðA:6Þ
whose behavior for large k is found to be
aðnþ1ÞðkÞ ¼ a� 1
a

� �nþ1

að0ÞðkÞ: ðA:7Þ
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Then, for convergence, we have the following condition for a
a� 1
a

���� ���� < 1; ðA:8Þ
which yields a > 1
2. Notice that the case of a = 1 corresponds to direct inversion of operator L.

Appendix B. Iteration parameters for arbitrary wave amplitudes and density ratios

We first linearize the system of (3.1) and (3.2) about the maximum displacement from the mean interface (or about f = a)
g1 1� a1h2
1@

2
x

� �
uðnþ1Þ

1 þ g2 1� a2h2
2@

2
x

� �
uðnþ1Þ

2 ¼ C þ
X2

i¼1

1
6
g2

i � aih
2
i

� �
giu

ðnÞ
i;xx; ðB:1Þ

q1 1� a1h2
1@

2
x

� �
uðnþ1Þ

1 � q2 1� a2h2
2@

2
x

� �
uðnþ1Þ

2 ¼ V �
X2

i¼1

ð�1Þiqi
1
2
g2

i � aih
2
i

� �
uðnÞi;xx; ðB:2Þ
where g1 and g2 should be understood as h1 � a and h2 + a. Then, by substituting into the linearized system
uðnÞi ¼ aðnÞi eikx; ðB:3Þ
we have
g1ð1þ a1k2h2
1Þa

ðnþ1Þ
1 þ g2ð1þ a2k2h2

2Þa
ðnþ1Þ
2 ¼ C �

X2

i¼1

1
6
g2

i � aih
2
i

� �
k2gia

ðnÞ
i ; ðB:4Þ

q1ð1þ a1k2h2
1Þa

ðnþ1Þ
1 � q2ð1þ a2k2h2

2Þa
ðnþ1Þ
2 ¼ V þ

X2

i¼1

ð�1Þiqi
1
2
g2

i � aih
2
i

� �
k2aðnÞi ; ðB:5Þ
where �f represents the Fourier transform of f. For convergence of the iterative scheme, the behavior for large k is crucial and,
as k ?1, this system can be approximated to
a1g1h2
1 a2g2h2

2

a1q1h2
1 �a2q2h2

2

 !
aðnþ1Þ

1

aðnþ1Þ
2

 !
¼

�g1
1
6 g2

1 � a1h2
1

� �
�g2

1
6 g2

2 � a2h2
2

� �
�q1

1
2 g2

1 � a1h2
1

� �
q2

1
2 g2

2 � a2h2
2

� �
0B@

1CA aðnÞ1

aðnÞ2

 !
; ðB:6Þ
which can be written as
aðnþ1Þ
1

aðnþ1Þ
2

 !
¼ Aða1;a2Þ

aðnÞ1

aðnÞ2

 !
; ðB:7Þ
where matrix A depending on ai and physical parameters such as hi, qi, and the characteristic wave amplitude a is given by
A ¼ 1
K

�a2h2
2 q1g2

1
2 g2

1 � a1h2
1

� �h
þ q2g1

1
6 g2

1 � a1h2
1

� �i
q2h2

2g3
2a2=3

q1h2
1g3

1a1=3 �a1h2
1 q2g1

1
2 g2

2 � a2h2
2

� �h
þq1g2

1
6 g2

2 � a2h2
2

� �i
0B@

1CA; ðB:8Þ
with K ¼ a1a2h2
1h2

2ðg1q2 þ g2q1Þ. The eigenvalues of matrix A can be found as
k1;2 ¼ 1� a1h2
1g2

2ð3q2g1 þ q1g2Þ þ a2h2
2g2

1ðg1q2 þ 3g2q1Þ
12a1a2h2

1h2
2ðg1q2 þ g2q1Þ

�
ða1h2

1g2
2ð3q2g1 þ q1g2Þ � a2h2

2g2
1ðq2g1 þ 3q1g2ÞÞ

2 þ 16a1a2q1q2h2
1h2

2g3
1g3

2

h i1=2

12a1a2h2
1h2

2ðg1q2 þ g2q1Þ
: ðB:9Þ
The minimum of maxi2{1,2}jkij occurs when
a1 ¼
g2

1ðq2g1 þ 3q1g2Þ
6h2

1ðq2g1 þ q1g2Þ
; a2 ¼

g2
2ðq1g2 þ 3q2g1Þ

6h2
2ðq2g1 þ q1g2Þ

; ðB:10Þ
and the corresponding eigenvalue becomes
jkij ¼
4q1q2g1g2

ðq2g1 þ 3q1g2Þðq1g2 þ 3q2g1Þ

� �1=2

; ðB:11Þ
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which can be shown to be less or equal to 1/2. Therefore, the iterative scheme should converge with the values of ai given by
(B.10) for any wave amplitudes and density ratios. As a ? 0 and q2/q1 ? 1, notice that (B.10) and (B.11) can be reduced to
(3.23) and (3.24), as expected.

References

[1] R. Camassa, W. Choi, H. Michallet, P. Rusas, J.K. Sveen, On the realm of validity of strongly nonlinear asymptotic approximations for internal waves, J.
Fluid Mech. 549 (2006) 1–23.

[2] W. Choi, R. Camassa, Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech. 396 (1999) 1–36.
[3] W. Choi, R. Barros, T. Jo, A regularized model for strongly nonlinear internal solitary waves, J. Fluid Mech. 629 (2009) 73–85.
[4] A. Goullet, R. Barros, W. Choi, Two-dimensional evolution of internal solitary waves: a model and its numerical solutions, 2010, in preparation.
[5] K.R. Helfrich, W.K. Melvill, Long nonlinear internal waves, Ann. Rev. Fluid Mech. 38 (2006) 395–425.
[6] T.-C. Jo, W. Choi, Dynamics of strongly nonlinear solitary waves in shallow water, Stud. Appl. Math. 109 (2002) 205–227.
[7] T.-C. Jo, W. Choi, On stabilizing the strongly nonlinear internal wave model, Stud. Appl. Math. 120 (2008) 65–85.
[8] C.G. Koop, G. Butler, An investigation of internal solitary waves in a two-fluid system, J. Fluid Mech. 112 (1981) 225–251.
[9] R. Liska, L. Margolin, B. Wendroff, Nonhydrostatic two-layer models of incompressible flow, Comput. Math. Appl. 29 (1995) 25–37.

[10] M. Miyata, Long internal waves of large amplitude, in: H. Horikawa, H. Maruo (Eds.), Proceedings of the IUTAM Symposium on Nonlinear Water Waves,
1988, pp. 399–406.


	An iterative method to solve a regularized model for strongly  nonlinear long internal waves
	Introduction
	A regularized strongly nonlinear model
	An iterative scheme and its convergence
	Iterative scheme
	Convergence
	A simple test for convergence

	Numerical solutions of the regularized model
	Concluding remarks
	Acknowledgements
	Iterative operator inversion
	Iteration parameters for arbitrary wave amplitudes and density ratios
	References


