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An experimental study of energy dissipation in two-dimensional unsteady plunging
breakers and an eddy viscosity model to simulate the dissipation due to wave breaking
are reported in this paper. Measured wave surface elevations are used to examine the
characteristic time and length scales associated with wave groups and local breaking
waves, and to estimate and parameterize the energy dissipation and dissipation
rate due to wave breaking. Numerical tests using the eddy viscosity model are
performed and we find that the numerical results well capture the measured energy
loss. In our experiments, three sets of characteristic time and length scales are
defined and obtained: global scales associated with the wave groups, local scales
immediately prior to breaking onset and post-breaking scales. Correlations among
these time and length scales are demonstrated. In addition, for our wave groups, wave
breaking onset predictions using the global and local wave steepnesses are found
based on experimental results. Breaking time and breaking horizontal length scales
are determined with high-speed imaging, and are found to depend approximately
linearly on the local wave steepness. The two scales are then used to determine the
energy dissipation rate, which is the ratio of the energy loss to the breaking time
scale. Our experimental results show that the local wave steepness is highly correlated
with the measured dissipation rate, indicating that the local wave steepness may serve
as a good wave-breaking-strength indicator. To simulate the energy dissipation due
to wave breaking, a simple eddy viscosity model is proposed and validated with our
experimental measurements. Under the small viscosity assumption, the leading-order
viscous effect is incorporated into the free-surface boundary conditions. Then, the
kinematic viscosity is replaced with an eddy viscosity to account for energy loss. The
breaking time and length scales, which depend weakly on wave breaking strength, are
applied to evaluate the magnitude of the eddy viscosity using dimensional analysis.
The estimated eddy viscosity is of the order of 10−3 m2 s−1 and demonstrates a strong
dependence on wave breaking strength. Numerical simulations with the eddy viscosity
estimation are performed to compare to the experimental results. Good agreement
as regards energy dissipation due to wave breaking and surface profiles after wave
breaking is achieved, which illustrates that the simple eddy viscosity model functions
effectively.
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1. Introduction
Wave breaking has been of interest since the very beginning of the scientific study

of water waves. Due to its significant role in air–sea interaction and its important
effects on upper ocean dynamics and possibly climate change, wave breaking has
received more and more attention recently. The laboratory study by Rapp & Melville
(1990) provided remarkable insight on wave breaking. Banner & Peregrine (1993)
presented a comprehensive review of both field measurements and laboratory studies
of breaking waves, and wave-breaking-associated secondary effects were discussed in
their study. Later, Melville (1996) focused on the role of surface-wave breaking in
air–sea interaction and presented a thorough discussion on wave breaking dynamics.
More recently, Perlin & Schultz (2000) reviewed capillary effects on surface waves
and discussed breaking onset and breaking models of forced standing waves. Duncan
(2001) provided experimental measurements of the surface profiles of spilling breakers
and revealed important kinematics associated with them.

Although extensive research on breaking waves has been reported, the kinematics
and dynamics of breaking waves remain an open question. For example, a robust wave
breaking criterion remains an enigma; measuring the velocity field during active wave
breaking continues to be a formidable challenge, and robust and reliable methods to
characterize, quantify and simulate the energy dissipation due to wave breaking have
not been developed yet.

As regards wave breaking criteria, the limiting wave steepness, ka ≈ 0.44, has been
used to indicate wave breaking onset since the study by Stokes (1880). However,
this criterion is sensitive to three-dimensional effects (Nepf, Wu & Chan 1998) and
wave directionality (Wu & Nepf 2002). A second type of wave criterion is based
on local wave kinematics and states that wave breaking occurs when the horizontal
crest particle velocity exceeds the linear wave phase speed. Particle image velocimetry
(PIV) measurements by Perlin, He & Bernal (1996) and Chang & Liu (1998) support
this criterion; however, Stansell & MacFarlane’s (2002) study demonstrates that wave
breaking can occur even when the horizontal crest particle velocity is less than the
phase speed. Recently, wave breaking criteria based on local wave energy provided
promising results (Schultz, Huh & Griffin 1994; Banner & Tian 1998). Particularly,
the numerical study by Song & Banner (2002) presents a dimensionless growth rate,
δ(t), based on the local wave energy density and the local wavenumber to predict
the onset of wave breaking. A threshold for δ(t) of (1.4 ± 0.1) × 10−3 is proposed to
distinguish wave groups that lead to breaking from those that do not. Banner &
Peirson (2007) experimentally reproduced the numerical tests by Song and Banner
and provided an experimental validation of the criterion. Tian, Perlin & Choi (2008)
performed experimental measurements of wave groups with different group structure
from that of Song and Banner. They found that the criterion is sensitive to the
choice of local wavenumber, but that a particular wavenumber based on local wave
geometry differentiates wave groups that lead to breaking from those that do not.

Measurement of surface profiles and velocity fields associated with wave breaking
is very important in understanding wave breaking kinematics and in providing
validation of numerical simulations of breaking waves (Longuet-Higgins & Cokelet
1976; Dommermuth et al. 1988; Skyner 1996; Grue et al. 2003; Grue & Jensen 2006).
Duncan et al. (1999) managed to capture breaking crest profile histories of gentle
spillers with high-speed imaging using a thin laser sheet. The profile histories suggest
that the wave breaking process begins with a bulbous formation at the front-face toe of
the breaking crest. Further development of the bulge (a moving pressure disturbance)
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generates capillary waves. Similar parasitic capillary waves were observed previously
on the lower front face of plunging breakers by Perlin et al. (1996), who conducted a
detailed experimental study on deep-water plungers. Their PIV measurements show
that the velocity fields under the breaking crests decay rapidly with depth and
that they are essentially irrotational until incipient breaking occurs. Chang & Liu
(1998) did similar experiments, but focused on velocity, acceleration and vorticity
measurements. They reported that the overturning jet has a horizontal velocity 68 %
greater than the linear phase speed and that its acceleration is as high as 1.1g
as the jet collapses near perpendicularly to the horizontal water surface. Melville,
Veron & White (2002) used digital PIV to measure the velocity field under breaking
waves. Their measurements reveal that wave breaking produces at least one coherent
vortex, which propagates slowly downstream and may suppress short waves. Their
experimental study also confirms that 90 % of the total energy loss occurs within the
first four wave periods, which is consistent with the study by Rapp & Melville (1990).
Although these experiments provide valuable measurements of the velocity field prior
to and/or after active wave breaking, they were unable to measure the velocity field
beneath the breaking crest during active breaking, as the PIV technique is rendered
ineffective due to the opacity of the two-phase flow and the laser sheet scattering by
the entrained bubbles and the free surface.

Estimation of the energy dissipation rate due to wave breaking remains another
challenging problem. The most reliable method to estimate the energy dissipation rate
requires direct measurement of the velocity field and the surface profile over a fairly
large field of view throughout the breaking process, and it has proved impractical
for both laboratory and field measurements. Alternatively, one may first estimate
the energy loss due to wave breaking with surface elevation measurements and
control volume analysis, and then evaluate the dissipation rate with proper breaking
time scale. Lowen & Melville (1991) measured the duration of the acoustic sound
generated by wave breaking; Melville (1994) applied their measurements to deduce
the associated energy dissipation rate. Similarly, Drazen, Melville & Lenain (2008)
estimated the energy loss due to plunging breakers and recorded the acoustic sound
to infer the breaking time scale, based on which the energy loss rate was assessed.
This method implicitly assumes that the dissipation rate is constant throughout
the breaking process. However, wave breaking is unsteady (Melville 1994) and the
dissipation rate may not remain constant. As demonstrated by Lamarre & Melville
(1991), entraining air into water, which occurs within a small fraction of a wave
period, expends 30–50 % of the energy dissipated; on the other hand, 90 % of the
total energy loss is dissipated within the first four wave periods after wave breaking,
and the remainder decays as t−1 (Rapp & Melville 1990; Melville et al. 2002).
Nevertheless, a large amount of energy is dissipated rapidly over a short period so
that a constant dissipation rate assumption may be a reasonable approximation.

Seminal work on characterizing the energy loss rate arose from the experimental
work of Duncan (1981, 1983), who measured the drag per unit length due to quasi-
steady breaking waves generated with a submerged hydrofoil. His measurements
illustrated that the drag per unit width scales with the fourth power of the breaking
crest speed: Fb ∼ u4

br , where ubr is the breaking wave crest velocity. Thus, the energy
dissipation rate was determined to be ε ∼ u5

br (Duncan 1981; Phillips 1985; Thorpe
1993; Melville 1994). Recently, Banner & Peirson (2007) rewrote the proportional
relation as ε = bc5

b , with cb being the breaking wave phase speed and b a proportional
parameter, which is related to wave breaking strength. They argued that the new
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proportional relation is consistent with energy and momentum flux transfers while
the original one is not.

The proportional parameter, b, in the above relation is usually considered as
an indication of wave breaking strength, and hence, it is termed the wave breaking
strength parameter (Banner & Peirson 2007; Drazen et al. 2008). Extensive laboratory
experiments and field measurements have been conducted to quantify this constant
(Duncan 1981, 1983; Phillips 1985; Thorpe 1993; Melville 1994; Phillips, Posner &
Hansen 2001; Melville & Matusov 2002; Banner & Peirson 2007; Drazen et al. 2008;
Gemmrich, Banner & Garret 2008). However, reported results span two orders of
magnitude. In general, field measurements provide a much smaller estimation than
laboratory experiments. This discrepancy remains unresolved (Gemmrich et al. 2008).

A second wave breaking strength parameter, δbr , has been proposed recently by Song
& Banner (2002), whose study suggests that the magnitude of the breaking criterion
parameter, δ(t), just prior to wave breaking, indicates wave breaking strength. Banner
& Peirson (2007) and Tian et al. (2008) performed experiments and demonstrated
that δbr increases as wave breaking intensifies. In addition, an approximately linear
relationship between δbr and b is shown in figure 8(b) of Banner & Peirson (2007).

Along with the difficulties of wave breaking onset prediction, energy dissipation
rate estimation and wave breaking strength quantification, robust numerical studies of
breaking waves in deep water are few. One of the first numerical studies of breaking
waves was completed by Longuet-Higgins & Cokelet (1976) using the boundary
integral method (BIM). Their computation was successful to wave-crest overturning,
but, as expected, failed when the overturning jet collapsed on the water surface. The
success of the volume of fluid method (VoF) provides an alternative way to simulate
wave breaking. Chen et al. (1999) used the VoF method to simulate a two-dimensional
plunging breaker. Their numerical study captured key kinematic characteristics of
wave breaking, including the overturning motion, the gas entrainment and the surface
splash-up phenomena. In addition, 80 % of the pre-breaking energy was dissipated
within the first three wave periods following breaking. More recently, Sullivan,
McWilliams & Melville (2004) developed a stochastic wave breaking model based
on laboratory experiments and field measurements, and employed direct numerical
simulation (DNS) to evaluate the model with an isolated breaking event to estimate
wave breaking effects on the ocean surface boundary layer. With the breaker model,
they reproduced some key dynamic features of a breaking event, such as the mean
kinetic energy decay rate and the coherent vortex structure (Melville et al. 2002).

In this study, we have no intention of developing or using complicated numerical
models of wave breaking to model the breaking process; rather, we apply a simple
eddy viscosity model to simulate energy dissipation in two-dimensional unsteady
plunging breakers. In addition, detailed experiments are performed to determine
wave characteristics associated with wave groups and local breaking waves, further
validate the wave breaking criterion of Song & Banner (2002), measure the time and
length scales of active wave breaking, estimate the energy dissipation and dissipation
rate due to breaking waves and quantify the wave breaking strength. The measured
time and length scales associated with active wave breaking are used to determine the
eddy viscosity using dimensional analysis and/or the turbulence energy dissipation
rate analysis according to Melville (1994).

The remainder of the paper is organized as follows. Subsequent to the Introduction,
we describe the experimental setup and surface profile measurements with wave probes
and high-speed imaging. Detailed experimental results on breaking-wave time and
length scale measurements, energy loss and energy loss rate estimation, and eddy
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Figure 1. Sketch of the experimental setup for the surface elevation measurements. FOV
indicates field of view. (Not to scale.)

viscosity assessment are provided in § 3. Section 4 presents an eddy viscosity model
for weakly damped waves in which the small viscous effect is incorporated into the
inviscid free-surface boundary conditions; in addition, numerical simulations using
the eddy viscosity model to determine energy dissipation due to wave breaking are
presented and compared with experimental measurements. The final section presents
our conclusions.

2. Experiments
2.1. Facilities

Experiments are performed at the University of Michigan in a two-dimensional wave
channel with glass bottom and sidewalls. The tank is 35 m long, 0.7 m wide and has a
water depth as used of 0.62 m. At one end of the wave tank, wave trains are generated
with a servo-controlled wedge-type wavemaker and auxiliary electronics. Two stacks
of horsehair mats are placed at the downstream end to help damp the incident waves
and minimize reflections. A sketch of the facility is presented in figure 1.

The tank is initially filled with tap water; the water surface is cleaned with a
closed-loop system composed of a pump, a reservoir, a filter and connecting hoses.
The system can efficiently remove dirt and floating materials from the water surface.
When a complete drain and refill is required, the tank is allowed to equilibrate
for about one day prior to any measurements to let the water temperature and/or
other uncertain factors (e.g. water ageing, Mei 1983) adjust, thus helping to ensure
the repeatability of the experiments. The water depth is monitored throughout the
experiment and the calm water level variation is limited to less than ±1 mm.

2.2. Breaking wave generation

Following Perlin et al. (1996) and Tian et al. (2008), a similar technique is employed
to produce dispersive focusing wave trains that lead to wave breaking. Individual
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wave steepness during generation remains virtually constant. As demonstrated by
Perlin et al. (1996), this wave train configuration ensures that the phase speed, as
well as the local wave steepness of each wave component in the wave group, changes
accordingly when the gain value (i.e. relative voltage of the signal sent to wavemaker)
is altered. This method can minimize the presence of premature breaking. Details on
the generation of breaking waves using this technique can be found in Perlin et al.
(1996).

Four wave trains with varying components are implemented. In addition,
measurements of the experiments conducted in Tian et al. (2008) are included. Figure 2
provides the different wave train structures. Gains are adjusted for each of the wave
trains to lead to both non-breaking (5 cases) and breaking waves (12 cases). Detailed
wave parameters associated with the wave groups are listed in table 1. Measurements
of the non-breaking wave groups are used to compute the non-breaking loss due to
surface damping, friction on the sidewalls and the bottom of the tank, and contact-line
dissipation (Jiang, Perlin & Schultz 2004), as this non-breaking loss can be important
in the determination of energy dissipation (Rapp & Melville 1990; Banner & Peirson
2007; Drazen et al. 2008; Tian et al. 2008). While it is simple to generate breaking
waves using high gain values, significant effort is necessary to find a proper gain
and group structure to generate a wave group that leads to a single breaker. In this
paper, most of the wave groups that evolve to breaking are characterized with one
single plunging breaker, although, in some cases, very limited spilling occurs either
upstream, or of less importance downstream.

Breaking waves generated with the aforementioned technique demonstrate strong
temporal and spatial repeatability (Tian et al. 2008). Observations with high-speed
imaging and an accurate synchronization system confirm that the horizontal locations
of wave breaking onset vary within only ±2.5 cm, and that the time is within ±0.03 s
(both better than 0.5 %, considering that breaking usually occurs more than 12 m
downstream from the wavemaker and more than 20 s following the initial motion of
the wavemaker). A calm water surface (initial condition prior to wave generation)
is necessary to achieve the high repeatability; therefore, at least 10 min is allowed
between experiments to obtain a near quiescent state, which is also confirmed by
visual inspection before each test.

2.3. Temporal surface elevation measurements

Capacitance wave probes, transducer power supply, low-pass Krohn–Hite filters,
National Instruments data acquisition hardware (i.e. PCI-6034e board and SCB-68
connector block) and Dell PCs are used to record the temporal surface elevations
at desired stations along the wave tank. Wave probes are composed of two 25 cm
long copper wires, one of which is a sensing wire located within a 1.5 mm diameter
glass tube and the other is placed directly in the water. Electronic circuits detect
the capacitance between the sensing wire and the water. The sampling rate for each
probe is chosen as 100 Hz in this experiment. The low-pass filters are set at 25 Hz.
Dynamic calibrations are made before and after each experiment, and are used to
convert the measured electric signal to surface elevation. The calibrations confirm
that the wave probes exhibit long-term stability. In addition, static calibrations are
performed daily to help ensure that no probe malfunction has occurred. To maintain
their measurement accuracy, the wave probes are cleaned with alcohol at least twice
a day.

An in-line set of three capacitance wave probes are mounted mid-stream
(streamwise) from above by a mechanical mount. The distance between adjacent
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Figure 2. Shown are the different wave trains of the various groups. In the figure the
non-breaking wave groups measured at the first wave station are presented. In (a), for clarity,
an increment of 10 cm is applied to separate the measurements vertically. The wave trains
have been time shifted so that they can be shown in the same graph. Shown in (b) are the
amplitude spectra of the wave groups (computed with a 40.95 s measurement, corresponding
to 4096 data points).

probes is adjustable and is maintained between 30 and 55 cm. Visual inspections
confirmed that surface disturbances by the upstream wave probe(s) have little influence
on the downstream one(s). Figure 1(a) provides an illustration of the arrangement of
the wave probes. With accurate repeatability of an experiment, we chose to obtain
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Wave Wave fp Cgs fs ks E0 δmax or kb cb νeddy × 103

group ID (Hz) �f/fp S (m s−1) (Hz) (rad m−1) (Jm−1) �E/E0 δbr × 103 (rad m−1) (m s−1) tbr (s) lbr (m) h(m) bb × 103 (m2 s−1)

W1 W1G1 0.952 0.307 0.315 0.85 1.019 4.223 − − 1.08 − − − − − − −
W1G2 0.381 0.84 1.022 4.247 29.91 0.101 3.39 5.347 1.35 1.11 1.28 0.044 5.91 1.011
W1G3 0.463 0.84 1.026 4.279 41.62 0.154 6.23 5.878 1.29 1.18 1.30 0.055 14.83 1.196

W2 W2G1 0.903 0.351 0.268 0.86 1.024 4.263 − − 0.9 − − − − − − −
W2G2 0.346 0.86 1.021 4.239 21.50 0.084 3.43 5.464 1.34 0.91 1.04 0.038 4.52 0.855
W2G3 0.413 0.86 1.023 4.255 30.57 0.122 6.09 6.283 1.25 0.99 1.05 0.055 12.15 1.174
W2G4 0.468 0.86 1.025 4.271 38.94 0.184 6.7 6.203 1.26 1.07 1.19 0.075 20.94 1.651

W3 W3G1 1.025 0.214 0.293 0.79 1.073 4.662 − − 1.19 − − − − − − −
W3G2 0.356 0.79 1.073 4.662 18.96 0.088 4.14 5.643 1.32 0.95 1.03 0.032 4.36 0.706
W3G3 0.442 0.78 1.080 4.721 28.37 0.129 5.76 6.315 1.25 1.00 1.08 0.052 11.94 1.122
W3G4 0.497 0.78 1.082 4.738 35.16 0.168 6.32 5.911 1.29 1.08 1.15 0.070 15.17 1.499

W4/ W4G1 1.025 0.381 0.277 0.71 1.192 5.727 − − 0.77 − − − − − − −
TPC08 W4G2 0.393 0.71 1.192 5.727 12.32 0.090 3.17 5.502 1.33 0.59 0.55 0.033 4.36 0.615

W4G3 0.544 0.71 1.201 5.813 21.56 0.206 5.06 6.491 1.23 1.08 1.03 0.054 14.4 1.027
W4G4 0.669 0.70 1.210 5.900 31.20 0.251 6.71 6.670 1.21 1.36 1.43 0.059 21.58 1.234

W5 W5G1 1.245 0.196 0.263 0.66 1.282 6.618 − − 0.54 − − − − − − −
W5G2 0.483 0.64 1.295 6.752 10.52 0.186 4.93 7.805 1.12 1.01 0.88 0.031 10.75 0.549

Table 1. Summary of the primary wave parameters. fp: peak wave frequency; �f : frequency bandwidth based on one-half the maximum energy
associated frequencies; S: global wave steepness; Cgs: spectrally weighted group velocity; fs: spectrally weighted wave frequency; ks: spectrally
weighted wavenumber; E0: total energy just prior to wave breaking; �E: energy loss due to wave breaking; δmax : maximum wave breaking
criterion parameter, δ(t), for non-breaking wave groups; δbr : δ(t) immediately prior to breaking for breaking wave groups; kb local wavenumber
just prior to wave breaking; cb: breaking wave phase speed; tbr : breaking time scale; lbr : breaking horizontal length scale; h: falling wave crest/jet
height (breaking vertical length scale); bb: breaking strength parameter; νeddy : estimated eddy viscosity with (3.6).
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surface elevation measurements at 33 stations along the tank. For each station, three
repeated measurements for each of the wave groups considered are used (i.e. a total of
more than 450 runs are achieved). For each measurement, a DC signal synchronized
with the initial motion of the wavemaker is recorded and is utilized to align the
measurements in time from other runs.

The first station is located 6.81 m downstream of the mean position of the
wavemaker (i.e. the wedge’s front face intersection with the water). Unless specified
otherwise, the distance x is relative to this mean position and time t refers to the initial
motion of the wavemaker. The surface elevation measurements at the first station
are used to generate initial conditions for our numerical simulations (see § 4.2). Based
on linear wave theory (LWT), the measurement is first decomposed into 128 Fourier
components; then the surface elevation is expressed analytically from a summation
of these sinusoidal waves (functions of time and space). Detailed discussions can be
found in Tian et al. (2008).

2.4. High-speed imager measurements

Surface profiles prior to and during active wave breaking are captured by a Phantom
high-speed imager (Model 9.1), which has a full resolution of 1632 × 1200 pixels and
can capture images to 144 000 frames per second (f.p.s.) with reduced resolution (1000
f.p.s. at full resolution).

Surface profile measurement has been achieved with high-speed cameras and thin
laser light sheets in numerous experiments (Perlin, Lin & Ting 1993; Perlin et al.
1996; Duncan et al. 1999; Yao & Wu 2005). We initially attempted to use a thin laser
sheet as an illuminating source for our tests but abandoned it due to two difficulties
encountered. First, laser light sheets usually illuminate a small field of view (to ∼0.5 m)
while our study involves measurement windows of lengths to 1.1 m. Second, laser
light sheet illumination can be rendered useless by the opacity of the two-phase flow
in active wave breaking.

Bonmarin (1989) managed to capture the breaking surface profile with high-power
flash lamps and high-speed cameras with a field of view of 1 m. On the other hand,
Yao & Wu (2005) and Tian et al. (2008) used a backlighting illumination technique
to measure surface wave profiles with relatively large field of views.

In this study, we employ a backlighting illumination technique to facilitate the
surface profile measurement prior to and during active wave breaking. Figures 1(b)
and 1(c) show the experimental setup. Two high-intensity light sources (each has
a maximum output of 2000 W) are seated 30 cm from the corner of the front
sidewall and the tank bottom with their mean beam oriented slightly upwards to
illuminate the water surface. A reflective and translucent, high-density polyethylene
sheet (approximately 6 mm thick) is attached directly to the back sidewall to reflect
the light and thus backlight the liquid–gas interface. The imager, equipped with a
28–80 mm focal length Nikon lens, is positioned about 1.5 m from the front sidewall
of the tank with its axis oriented slightly downwards for a better image of the field
of view (1632 × 304 pixels), recording at 100 f.p.s. With a precise target of known
geometry, the spatial resolution is determined to be 0.683 mm per pixel while the
image distortion is shown to be negligible.

Following Tian et al. (2008), a synchronization system of light emitting diodes
(LEDs) is used to identify simultaneous recorded images and to temporally align
measurements from different field of views. This system functions as follows: a DC
signal is generated and sent to the LEDs to illuminate them at a specific time relative
to the initial motion of the wavemaker. The off–on/on–off status of the LEDs is
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+0.00 s +0.30 s

+0.05 s +0.40 s

+0.10 s +0.50 s

+0.15 s +0.60 s

+0.20 s +0.70 s

Figure 3. Recorded surface profiles during active wave breaking for W4G3. The time sequence
is referenced to the first image in the top left photograph. The vertical black bars on the images
represent the horizontal location of the surface disturbance front, which is used to define the
active breaking time and length scales (see § 3.3.1).

captured with the high-speed imager and applied to determine the start of wave
generation. The analysis (Tian et al. 2008) has shown that the system can provide
sufficient accuracy for our purpose.

As demonstrated by Tian et al. (2008), this backlighting technique works well for
wave surface profile measurement, especially for a large field of view (about 1.1 m
long). A few typical images recorded during active wave breaking are presented
in figure 3. As shown, the water surface is defined clearly (the bright interface)
and the mean wave profile during active breaking can be identified easily in the
recorded images. Careful observations reveal that the amplitude of the capillary
waves and the thickness of the contact line effects generated by the water–sidewall
interactions are too small (generally within two pixels; less than 1.5 mm) to introduce
noticeable perturbations on the recorded surface profiles; therefore, the perturbations
of the water–sidewall interactions on the surface profiles are neglected necessarily,
although their effects on the total non-breaking dissipation are not negligible (see
§ 3.2.2). We also note that the wave profile in the absence of breaking can be
tracked readily with brightness and contrast adjustments and a MATLAB program;
however, when active breaking occurs, the mean profile is extracted manually as a
necessity.
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3. Experimental results
3.1. Characteristic wave parameters

Described below are details of the determination of wave parameters associated with
the wave groups and the breaking waves, such as characteristic group velocity,
characteristic wave frequencies and wavenumbers, global wave steepness, local
breaking wave characteristics and breaking criterion parameter. Unless otherwise
noted, most of the wave characteristics associated with the wave group (rather than
the wave characteristics associated with wave breaking) are determined from surface
elevation measured at the first wave station. Table 1 summarizes these characteristic
parameters of the wave groups considered in this study.

3.1.1. Characteristic group velocity

It is essential to accurately estimate the characteristic group velocity to compute
energy loss from wave probe measurements (Drazen et al. 2008). The linear group
velocity associated with the centre wave frequency in a wave group is frequently used
for this purpose. However, in wave groups with constant wave steepness distribution
(e.g. our wave groups have approximately constant-steepness wave spectra based on
the first wave probe measurements), wave components with low frequencies have
more energy than those with high frequencies. Hence, one may expect that a weighted
group velocity rather than a centre frequency group velocity may better characterize
the wave group.

Drazen et al. (2008) defined a ‘spectrally weighted group velocity’, Cgs , as

Cgs =

∑ (
Cgna

2
n

)
(�f )n∑ (

a2
n

)
(�f )n

, (3.1)

and demonstrated that wave trains propagated at a speed close to this characteristic
group velocity. In (3.1), an and Cgn are the amplitude and linear group velocity
of the nth component of the wave train, respectively, and (�f )n is the frequency
difference between components, which is constant here. We note that in the spectral
weighting, a2

n rather than an is used based on an energy argument (i.e. group
velocity is the speed of wave energy propagation and a2

n is proportional to wave
energy).

To evaluate the effectiveness of this spectrally weighted group velocity, Cgs , we
experimentally measured the group velocity by tracking the wave group maxima.
To achieve this, Hilbert analysis is applied to the surface elevation measurements to
determine their envelopes, and then the maxima are identified. As can be seen in
figure 4, compared with the speed of the wave group maxima, the spectrally weighted
group velocity, Cgs , appears to be slightly smaller. A nonlinear correction to the group
velocity (see Appendix A) is added to Cgn, but is found to be too small to appreciably
change Cgs . Note that Cgs remains virtually constant for wave groups with the same
input time series but different gains, as shown in table 1. This indicates that the
discrepancy should be explained by the nonlinear interaction between different wave
components rather than the nonlinear correction to the linear group velocity of each
wave component. Despite this small discrepancy, as shown in figure 4, the spectrally
weighted group velocity, Cgs , indeed provides a good prediction of the wave group
propagation speed; on the other hand, the group velocity associated with the centre
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Figure 4. Measured time series of surface elevation (W3G3, see table 1 for designations) at
various spatial locations. This graph demonstrates that the wave group propagates closer to
the spectral weighted group velocity, Cgs (solid line); the group velocity associated with the
centre wave frequency, Cgc (dashed line), significantly underestimates wave group travel speed.
fs and ks are the characteristic wave frequency and wavenumber, respectively, as shown in
table 1. For clarity, the surface elevation is exaggerated by a factor of 3 (i.e. 3∗η(t) is shown.
The spatial locations, ksx, retain their original scale on the vertical axis).

wave frequency that has often been used in the literature provides a significantly
smaller and worse prediction, which is consistent with Drazen et al. (2008). The group
velocity associated with the peak frequency is an alternative, but Cgs can be computed
more consistently without ambiguity.

We further note that the spectrally weighted group velocity obtained with surface
elevation measurements at different wave stations along the tank remains virtually
constant for non-breaking wave groups. For breaking wave groups, observations made
upstream and downstream of wave breaking exhibit a jump and about a 5–10 %
increase in the spectrally weighted group velocity after wave breaking is observed.
This increase is caused possibly by the spectral change due to wave breaking, which
often dissipates energy in high-frequency wave components (Rapp & Melville 1990;
Kway, Loh & Chan 1998) and may introduce a frequency downshift (Lake et al.
1977; Melville 1982; Hara & Mei 1991; Trulsen & Dysthe 1997; Dias & Kharif 1999;
Tulin & Waseda 1999). On the other hand, this jump is not reported by Drazen et al.
(2008), who argued that their spectrally weighted group velocity remains unchanged
within their experimental accuracy.
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3.1.2. Wave characteristics associated with the wave group

We now discuss the characteristic wave parameters (i.e. the characteristic wave
frequency and wavenumber) associated with our wave groups. The options we used
to determine the characteristic wave frequency are: (i) the centre frequency, (ii) the
peak frequency and (iii) a spectrally weighted frequency defined in a similar manner
as Cgs . Among these three trial candidates, the ‘spectrally weighted wave frequency’
defined by

fs =

∑(
fna

2
n

)
(�f )n∑ (

a2
n

)
(�f )n

(3.2)

appears to be the best for our wave groups since it provides the best data collapse.
In addition, this definition of a characteristic wave frequency is consistent with that
of the characteristic group velocity (i.e. both are spectrally weighted).

We further note that the spectrally weighted wave frequency is close to the frequency
associated with the spectrally weighted group velocity Cgs (i.e. the frequency that
provides a group velocity that equals Cgs based on LWT and the finite-water-depth
dispersion relation; less than 5 % difference for most of the wave groups) and that
the latter also produces good collapse of the data. However, to be consistent with the
spectral weighting argument (i.e. our wave group’s components with low frequencies
have more energy than those with high frequencies), the spectrally weighted wave
frequency, fs , is chosen as our characteristic frequency. The linear finite-water-depth
dispersion relation is applied to obtain the corresponding characteristic wavenumber
ks and the characteristic wave phase speed cs , which are termed the ‘spectrally
weighted wavenumber’ and ‘spectrally weighted wave phase speed’, respectively. We
remark that both fs and ks remain virtually constant for wave groups with the same
input time series regardless of the gain.

3.1.3. Global wave steepness

A measure of global wave steepness was first proposed by Rapp & Melville (1990)
to measure wave breaking strength. In their experimental study, they generated
repeatable focusing wave trains with constant amplitude distribution (i.e. a top-hat
wave spectrum) to study breaking waves; their study demonstrated that the global
wave steepness parameter, Skc = kc

∑
an, is strongly correlated with wave breaking

strength. Here, an is the amplitude of the nth wave component (a total of 32 wave
components were specified in their study) and kc is the wavenumber associated
with the centre frequency in their wave group. Subsequent studies (Lowen & Melville
1991; Melville 1994; Drazen et al. 2008) drew similar conclusions, although a different
definition, Skn =

∑
knan, is used for wave groups with constant wave steepness across

their wave amplitude spectra.
In this study, we use the surface elevation measured at the first station and Fourier

decomposition to compute the global wave steepness. To be consistent with our
analysis of the wave group characteristics, the spectrally weighted wavenumber, ks ,
rather than the wavenumber associated with the centre frequency of the wave group
is used in the computation, S = ks

∑
an. Note that

∑
an is the surface elevation at the

focusing point according to LWT. Fourier decomposition is applied to the measured
signal (windowed for 40.95 s corresponding to 212 points); in fact, this S definition
is insensitive to the signal duration as long as all the non-zero surface elevations
of the mechanically generated wave packet are included in the determination of the
amplitude spectrum, a(f ). The computed global wave steepnesses for our groups are
listed in table 1.
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In the computation of S as well as the other wave group characteristics (i.e. Cgs and
fs), we remark that only Fourier components of frequencies in the range [0, 10] Hz (i.e.
the first 410 Fourier components, given the fact that the signal is sampled at 100 Hz
and windowed for 40.95 s in the Fourier transform) are included. Careful observation
of the wave spectra reveals that this frequency range is sufficient to include all
meaningful wave components. We further note that all wave group characteristics (i.e.
Cgs , fs and S = ks

∑
an) remain virtually the same even when all Fourier components

are considered. On the other hand, this is not the case for the global wave steepness
defined as Skn =

∑
knan, for which significant variation is found if higher Fourier

components are included.

3.1.4. Local wave characteristics immediately prior to wave breaking

To characterize the energy dissipation rate due to wave breaking, local wave
characteristics have to be determined. With the surface profile measured just before
wave breaking, we use the ‘local wavenumber’ definition proposed by Tian et al. (2008),
who demonstrated that the wavenumber, kb = π/|xzd − xzu|, based on consecutive
zero-up (xzu) and zero-down (xzd) crossing points spanning the maximum surface
displacement, satisfied Song and Banner’s wave breaking criterion (2002). Since the
wave breaking process is unsteady, xzu and xzd are determined from the elevation
record when the wave crest front becomes vertical. Four to six observations from
repeated experiments are used to minimize error. Then the corresponding angular
wave frequency, ωb, is determined using the linear finite-water-depth dispersion
relation. The wave speed defined by cb =ωb/kb (used to estimate the energy dissipation
rate due to wave breaking in § 3.3.2) is termed the ‘breaking wave phase speed’, cb.
The resulting cb are listed in table 1.

We compared the wave characteristics associated with the wave group (i.e. fs , ks

and cs) to the local wave characteristics just prior to wave breaking (i.e. fb, kb and cb)
to examine the possibility of definite correlations among them. As shown in figure 5,
it is found that the ‘local wave steepness’, Sb, prior to wave breaking defined by
Sb = kb

∑
an is roughly a linear function of S. Any data scatter can be attributed

to the fact that each wave group has different bandwidth since Sb is expected to
be a function of S and bandwidth, although its dependence on bandwidth is found
to be weak (see our discussion in § 3.2.3). For our wave groups, it is found that
Sb =1.237S. This implies that a wave group of relatively large global wave steepness
increases in slope immediately before wave breaking occurs, which might lead to
more violent wave breaking, resulting in larger energy dissipation. In addition, the
local wave speed and the local wavenumber can be approximated as cb/cs =0.9 ± 0.1
and kb/ks = 1.25 ± 0.25, respectively.

3.1.5. Wave breaking criterion parameter

Banner & Peirson (2007) and Tian et al. (2008) reported that their ‘wave
breaking criterion parameter’ immediately prior to breaking onset, δbr , is strongly
correlated with the wave breaking strength. First, a parameter δ(t) is defined as
δ(t) ≡ [D〈µ(t)〉/Dt]/ωc, where ωc is the centre angular wave frequency, 〈µ(t)〉 denotes
the mean of the upper and lower envelopes of µ(t) and µ(t) = [Emax/ρg]k2. Emax is
the local wave energy density at the maximum surface displacement (see Song &
Banner 2002 for details). In this study (including data from Tian et al. 2008), δbr

is set δ(t) at breaking except that in the calculation of δ(t), the characteristic wave
frequency (ωs = 2πfs) instead of ωc is used. This choice reduces data scatter for our
experimental measurements. As illustrated in table 1 and also in Tian et al. (2008),
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Figure 5. Global wave steepness, S, versus local wave steepness, Sb . The solid line represents
a linear least-squares fit: Sb =1.237S.

this parameter with threshold δc = (1.4 ± 0.1) × 10−3 distinguishes wave groups that
lead to wave breaking from those that do not.

It is of interest whether there is any correlation between Sb (or S) and Song
and Banner’s wave breaking criterion parameter, δbr . Banner & Peirson (2007) made
indirect comparisons between S and δbr by correlating both parameters to the total
mean energy loss. They found that both δbr and S increase in general as the total
mean energy loss rises. As Sb measures the local wave slope and µ(t) = S2

b , the wave
breaking parameter of Song & Banner (2002) can be approximated by

δbr = BS2
b

ωb

ωs

, (3.3)

where ωb = 2πfb and B is a proportionality constant. As shown in figure 6, (3.3) is
indeed a good approximation to δbr and, considering that Sb is linearly correlated with
S, the wave breaking parameter δbr can be roughly approximated by δbr ∼ ωbS

2/ωs .
We will further examine the applicability of Sb and δbr as wave breaking strength
indicators and include a detailed discussion in § 3.2.3.

3.2. Energy loss

3.2.1. Estimation of total energy

Following Drazen et al. (2008) and Tian et al. (2008), total energy is estimated
based on surface elevation measurements. The approximate total energy is obtained
by time integration of the linear theory energy flux, F (x, t) = ρgCgsη

2(x, t), at fixed
spatial locations. Here, F (x, t) is the energy flux, ρ is the water mass density, g is the
gravitational acceleration, Cgs is the spectrally weighted group velocity computed with
surface elevation measurements at the first wave station and η(x, t) is the measured
surface elevation.

This simplification based on linear theory in estimating the energy flux is valid
except where nonlinearity becomes significant (e.g. close to wave breaking or focus
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Figure 6. Correlation between Sb and δbr . The solid line represents a linear least-squares fit
and the slope is 8.77 × 10−3.

points), and it is accurate to the second order, O[(ka)2] (Rapp & Melville 1990),
where ‘a’ is the wave amplitude. Since our measurement is initiated from quiescent
conditions (before wave groups arrive) and continues through quiescent conditions
(after wave groups pass), the time integration of the energy flux provides the total
energy, E(x) = {F (x, t)}. Here, E(x) is the total energy and {· · ·} denotes integration
with respect to time.

Figure 7 presents the total energy as a function of position, x. Obvious in the figure
are data oscillations superposed on a general decay trend. Similar observations were
also made in previous studies (e.g. Rapp & Melville 1990; Kway et al. 1998; Banner
& Peirson 2007), but have not been addressed explicitly. The decreasing trend of the
total energy as a function of space is mainly due to surface damping, contact-line
dissipation (Jiang et al. 2004), friction by tank sidewalls and the bottom, and, most
importantly, wave breaking (for breaking wave groups only). On the other hand, the
smaller oscillations in regions far from wave focusing/breaking are mainly due to
measurement error; meanwhile, the oscillations in wave focusing/breaking regions
(where nonlinearity becomes prominent) may be partially attributed to failure of
the linear assumption in estimation of the total energy. (In figure 7, note that the
oscillations of E(x) prior to breaking increase as the initial wave group energy flux
increases.)

Nevertheless, even for the non-breaking case, a significant decrease of the energy is
observed and is likely to be due to viscous dissipation and contract-line dissipation.
Therefore, non-breaking energy loss has to be estimated before energy loss due to
wave breaking is computed.

3.2.2. Non-breaking energy loss

We assess energy loss due to viscous dissipation and contact-line damping with
experimental measurements of non-breaking wave groups and previous theoretical
analysis for viscous losses (Lamb 1932; Mei 1983; Tulin & Waseda 1999),
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Figure 7. Estimation of energy loss due to friction, contact-line damping and wave breaking,
shown only for wave 3. The thick dashed lines are the exponential best fits; the vertical
dashed–dotted lines denote the active breaking length scale. Non-breaking losses are estimated
from the exponential fit of the non-breaking wave measurements (lowest, W3G1). E0 is the
estimated total energy just prior to wave breaking based on the exponential fit; �E is the
estimated energy loss due to wave breaking, both shown only for W3G4.

which demonstrate that the energy decay rate due to viscosity is exponential,
E = Efirstexp(−σx). Here, σ is the spatial decay rate due to bulk viscosity and
boundary layers in the free surface, sidewalls and bottom, and Efirst is the total energy
at the first wave probe location.

An exponential best fit in the least-squares sense is applied to the measured total
energy of the non-breaking case to obtain the decay rate. As shown in figure 7,
the exponential best fit is close to a straight line. Therefore, the decay may be
approximated by a linear decrease (as in figure 15 of Tian et al. 2008) or by a
quadratic least-squares best fit (as in figure 6 of Banner & Peirson 2007) over a
short distance. Also visible in figure 7 is that roughly 15 % of the total energy is
dissipated at a distance of 10 characteristic wavelengths. Significant energy loss was
also reported by Banner & Peirson (2007), who showed 20 % of mean wave energy
loss in 37 wave periods. Therefore, viscous energy dissipation is significant and should
be taken into account while determining energy loss due to wave breaking.

For the wave groups considered in this study, the exponential decay rate, σ ,
estimated with the exponential best fit is O(0.01), which is as much as 40 %
greater than the LWT prediction (Lamb 1932; Mei 1983; Tulin & Waseda 1999).
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This discrepancy is attributed to the nonlinearity and, more importantly, the
highly dissipative capillary waves and contact lines generated by the water–sidewall
interactions (Perlin & Schultz 2000; Jiang et al. 2004).

3.2.3. Energy loss due to wave breaking

The energy loss due to wave breaking is defined as the total energy loss minus
the non-breaking energy dissipation. First, measurements upstream and downstream
of wave breaking are fitted with the dissipation rate of the non-breaking case,
respectively, to account for the non-breaking loss. Then, the energy dissipation due
to wave breaking is determined from the step change between the upstream and
the downstream best fits at the point where wave breaking initiates, as illustrated in
figure 7. Details can be found in Banner & Peirson (2007) and Tian et al. (2008). We
note that the best fits exclude measurements near and in the active breaking region,
where total energy estimation using LWT contains considerable error due to strong
nonlinearity. An alternative approach to estimate energy loss would be the control
volume approach suggested by Rapp & Melville (1990), where the total energy loss
can be determined by the difference of total energy fluxes in and out of the control
volume.

We remark that we use the spectrally weighted group velocity computed at the first
wave station to estimate the total energy and total energy loss due to wave breaking.
This is done for consistency with other wave characteristics even though we observed
an increase in the group velocity after wave breaking, as described in § 3.1.1. By
doing so, the energy loss and energy loss rate may be slightly overestimated since the
post-breaking energy proportional to the group velocity is underestimated.

The energy loss due to wave breaking as a function of S and δbr is presented in
figure 8. When non-dimensionalized by ρg/k3

s , both the estimated total energy prior
to wave breaking, E0, and the estimated energy loss due to wave breaking, �E,
are very well correlated with the global wave steepness, S. Therefore, the normalized
energy dissipation (�E/E0) closely correlates with S, as in figure 8(b). The relationship
can be well approximated with a linear least-squares fit, as illustrated in the figure.
Alternatively, both E0 and �E are well correlated with the local wave steepness, Sb.

Both E0 and �E normalized with respect to ρg/k3
s are expected to be functions of

S and �f/fs from dimensional analysis (Drazen et al. 2008, § 2.1), where �f is the
frequency bandwidth associated with one-half the maximum energy wave frequencies,
as shown in table 1. However, our results indicate that the dependence of the local
energy and the energy loss on the bandwidth �f/fs is weak and will be neglected.
The weakness of the effect might be explained by the fact that wave breaking in
our experiments is achieved mainly by linear superposition rather than a nonlinear
mechanism such as the Benjamin–Feir instability where the bandwidth plays a crucial
role.

On the other hand, �E/E0 is not well correlated with δbr , while the normalized
energy loss due to wave breaking, in general, increases with δbr , as shown in figure 8(c).
A better correlation can be found between �E/E0 and (δbrωs/ωb)

1/2, which is
proportional to Sb, as discussed in § 3.1.5. Our results are somewhat inconsistent
with Banner & Peirson’s study (2007), in which δbr was shown to have a better
correlation with the energy dissipation due to wave breaking. We remark that both S
and δbr defined in this study are different from those of Banner & Peirson (2007).

It is worthwhile to make two additional comments regarding figure 8. The first one
is regarding the global wave steepness threshold, S0, which indicates incipient wave
breaking. Our results in table 1 show that the threshold resides in the range [0.31, 0.35].
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Figure 8. Normalized energy loss versus S and δbr . Banner & Peirson (2007) data (open
symbols in the figure) are reproduced for comparison. The solid lines in (a) and (b)
represent linear least-squares fits. The thick vertical line in (c) illustrates the threshold,
δc = (1.4 ± 0.1) × 10−3, for wave breaking onset, as discussed in Song and Banner (2002)
and Tian et al. (2008).

From figure 8(a), �E can be approximated by �E/(ρg/k3
s ) = 0.445(S−0.339) and,

therefore, S0 is roughly found to be 0.339 for which �E =0. As described in § 3.1.4,
Sb = 1.237S and, therefore, the local wave slope criterion for incipient wave breaking
can be estimated by (Sb)0 = 0.419, which is slightly smaller than the maximum slope
of 0.441 for deep water Stokes’ waves.

Previously, Rapp & Melville (1990) reported that incipient breaking waves are
associated with S0 between 0.22 and 0.25. Banner & Peirson (2007) observed incipient
breaking waves with S0 as small as 0.12, much lower than previously reported even
with viscous damping taken into account. (Note that Banner & Peirson 2007 obtained
S with measurements just prior to breaking onset, and they reported a mean energy
loss of 20 % due to viscous damping. This energy loss translates to an amplitude
loss around 10 %. Therefore, their S could be ∼10 % larger for their upstream
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measurements.) In addition, the measurements by Drazen et al. (2008) show that
wave breaking does not occur until S becomes approximately 0.3. We remark that
this variation in S0 may be mainly due to different definitions of S and may be partially
related to different wave trains (i.e. wave spectrum shape). Although our definition
of S well predicts the total energy loss due to wave breaking, the applicability of S as
a universal indicator of wave breaking onset needs to be further explored due to the
variation of S0 in different laboratory studies. In addition, we need to consider that
the friction on the tank side walls and bottom and contact line dissipation modify
S as wave groups approach breaking. This fact may also limit the application of S
for breaking onset prediction, as S is determined at some arbitrary location prior to
breaking in laboratory experiments.

Alternatively, the local wave steepness, Sb, might be a better parameter to
understand wave breaking. Although the relationship between S and Sb might depend
on particular wave trains, the local wave characteristics prior to breaking might be
more universal. However, Sb may not be known accurately in advance of the actual
breaking event.

The second issue is the different level of total energy loss due to wave breaking.
For a comparable δbr , our energy dissipation level is generally greater than that
reported by Banner & Peirson (2007), whose wave groups commonly have multiple
spilling breakers. Since our wave groups are essentially single plunging breakers,
the discrepancy might be associated with some intrinsic difference between spilling
and plunging breakers. However, a recent study by Drazen et al. (2008, figure 14)
demonstrated that spilling and plunging breakers may have the same breaking strength
(i.e. b). Regardless, the cause of the discrepancy in energy dissipation is not yet well
understood.

3.3. Energy dissipation rate due to wave breaking

3.3.1. Time and horizontal length scales of wave breaking

In this section, we discuss the time and length scales associated with active wave
breaking in laboratory studies. These scales will be used to estimate the energy
dissipation rate under the assumption that the dissipation rate is constant throughout
the breaking process.

Accurate estimation of energy loss rate defined by the energy loss per unit time
during wave breaking undoubtedly requires accurate estimation of the dissipation
time scale, which should be obtained with detailed velocity field measurements during
active wave breaking. However, this measurement proves extremely difficult due to
the two-phase flow opacity, bubble scattering in the active breaking crest (Perlin
et al. 1996) and the large field of view needed. To our knowledge, the dissipation
time scale for energy loss due to active wave breaking based on robust and reliable
measurements has not been reported. Information available for the time scale are the
measurements by Rapp & Melville (1990), who reported that 90 % of the total energy
loss occurs within four wave periods after incipient breaking. In addition, based on
their numerical study, Chen et al. (1999) reported that 80 % of the total energy loss
occurred within three wave periods.

In this study, the ‘breaking time scale’, tbr , used to estimate energy loss rate is
defined as the time from when the wave crest begins to fall to the time when the
surface disturbance front is no longer obvious; the horizontal location of the surface
disturbance front is represented by the vertical bars in figure 3. It is somewhat
subjective when the surface disturbance front is no longer obvious; repeated trials
show that the variation of the measured time scale is limited to within ±0.02 s (i.e. less
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Figure 9. Time scale tbr and length scale lbr associated with active wave breaking. ωb and kb

are the wave frequency and the wavenumber associated with the breaking wave (see § 3.1.4
for details). ωs and ks are the spectrally weighted wave frequency and wavenumber. Solid
lines represent linear least-squares fits. In (c), the dashed line illustrates the characteristic wave
speed, cb , based on local wavenumber, kb , measurement; the solid line represents the estimated
horizontal breaking crest speed as ubr = 0.836cb. And in (d), the dashed line represents the
characteristic wave speed, cs , based on the spectrally weighted wave frequency ωs; the solid
line represents the estimated horizontal breaking crest speed as ubr = 0.750cs .

than 5 % considering this time scale is of the order of 1 s for our wave groups). These
time scales are presented in figure 9(a). The dissipation time scale is of the order of
one characteristic wave period (2π/ωb). For breaking from wave groups with similar
spectral shape and phase, the dissipation duration increases as breaking intensifies,
or, equivalently, as Sb increases. The trend is consistent with that in Drazen et al.
(2008).

Also shown in figure 9 is the ‘horizontal breaking length scale’, lbr , which is defined
as the distance from incipient breaking to where the obvious surface disturbance front
ends. As seen in figure 9(b), lbr increases as wave breaking intensifies. In the short
time, tbr , the ‘whitecap’ coverage (lbr ) can extend as far as one and a half characteristic
wavelengths (2π/kb) for the most violent breaking while other plunging breakers have
length scales around one characteristic wavelength, which is consistent with the dye
patch experiments of Rapp & Melville (1990). In general, both tbr and lbr depend
linearly on Sb when they are non-dimensionalized with respect to ωb and kb. This
indicates that the breaking process is more violent as the local wave slope increases.

Since the horizontal length scale, lbr , is essentially the distance that the apparent
surface-disturbance front travels in tbr , the length and the time scales are expected
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to be related by the ‘horizontal breaking wave crest speed’, ubr = lbr/tbr . Note that
the breaking crest speed is less than the linear phase speed of the breaking wave,
cb, defined as cb = ωb/kb in § 3.1.4. Based on the breaking time and horizontal length
scales, we can estimate the ratio of ubr to cb, represented by the slope of the solid line
in figure 9(c). The estimation of ubr ∼ 0.836cb generally agrees with that reported by
Melville & Matusov (2002), but is greater than that reported by Banner & Peirson
(2007). It is interesting to note from figure 9(d) that ubr can be well estimated in terms
of the spectrally weighted wave phase speed as ubr ∼ 0.750cs .

3.3.2. Rate of energy loss due to wave breaking

Based on dimensional analysis, the ‘energy dissipation rate’, ε, scales to the fifth
power of a characteristic speed, U

ε = bρ U 5/g, (3.4)

where b is a dimensionless ‘wave breaking strength parameter’ (Duncan 1981; Melville
1994; Banner & Peirson 2007; Drazen et al. 2008; Gemmrich et al. 2008), which might
depend on global wave parameters, such as the global wave slope and the bandwidth.
This equation relates the kinematics and the dynamics of wave breaking by using
a wave breaking strength parameter and is expected to approximate the energy
dissipation rate due to wave breaking in spectral modelling of ocean waves (Phillips
1985; Phillips et al. 2001; Melville & Matusov 2002; Gemmrich et al. 2008).

Both laboratory experiments and field measurements have been conducted to
quantify the breaking strength parameter (Duncan 1981, 1983; Phillips 1985; Thorpe
1993; Melville 1994; Phillips et al. 2001; Melville & Matusov 2002; Banner & Peirson
2007; Drazen et al. 2008; Gemmrich et al. 2008). The reported breaking strength
parameter varies over a wide range (more than two orders of magnitudes), and
generally, estimation based on field data is much less than that from well-controlled
laboratory experiments. The discrepancy remains unresolved (Gemmrich et al. 2008).

It would be beneficial if a universal constant could be found for b, independent of
wave parameters, for a particular choice of U, but it is unlikely that one exists since
for a given wave phase speed, there can be a wide range of breaking intensities. It is
therefore of interest to find a form of b that well correlates with the characteristic wave
parameters. Depending on the choice of the characteristic velocity, different definitions
for b have been proposed. For example, Duncan (1981, 1983) used the breaking wave
crest velocity, ubr , and defined the corresponding wave breaking strength parameter,
bbr . To facilitate its application to the estimation of the energy-dissipation rate of a
wave spectrum, in which wave speed, c, corresponding to Fourier wave components
is employed commonly, Banner & Peirson (2007) proposed to use the breaking wave
phase velocity, cb, for which bb can be determined. As discussed in § 3.1.4, cb exhibits
an almost linear relationship with the breaking wave crest velocity, ubr ∼ 0.836cb, and
bb can be estimated as bb ∼ 0.8365bbr = 0.408bbr . This is consistent with Banner &
Peirson (2007), who showed that bb is approximately one half of bbr .

A straightforward method to evaluate b is based on the estimation of total energy
loss and direct measurements of the active breaking time (Melville 1994; Drazen et al.
2008). First, the energy dissipation rate is estimated as ε = − �E/tbr . The breaking
strength parameter is then evaluated from (3.3) as b = εg/ρU 5. This method involves
only local wave breaking characteristics (e.g. local energy ‘jump’ and active breaking
time) and is adopted here to compute b.

Banner & Peirson (2007, Appendix A) proposed an alternative method to estimate
b based on mean energy loss and mean energy propagation (i.e. temporal and spatial
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Figure 10. Normalized energy dissipation rate versus Sb and δbr . Solid lines represent linear
least-squares fits.

transfer), b = gCg�[Ê]/c5
b . Here, �[Ê] is the mean energy density loss, [· · ·] denotes

average over a wave group and Ê = gη2. This method provides an estimation of b
without evaluating the breaking wave time scale tbr . We note that the application
of Banner & Peirson’s (2007) estimation scheme to our breaking waves is somewhat
arbitrary as there is ambiguity in choosing the average period to obtain the mean
energy loss. Therefore, their method is not adopted here.

Results of our measurements are given in figure 10. Obvious in the figure is the
strong correlation between Sb and bb, which implies that the energy dissipation rate
increases as the local wave slope increases. As shown in figure 10(b), the breaking
strength parameter, bb, is also correlated with δbr , as expected: a larger δbr is associated
with a larger dissipation rate, but the correlation between Sb and bb appears to be
stronger than that between δbr and bb. Figures 8 and 10 imply that Sb is a more
appropriate parameter to predict both energy loss and energy loss rate due to wave
breaking for our wave groups than is δbr . As mentioned before, this is inconsistent with
the results of Banner & Peirson (2007), who observed that δbr is a more fundamental
parameter to characterize both energy loss and energy loss rate due to wave breaking
for their wave groups. The discrepancy is mainly attributed to different wave groups.

Our estimated wave breaking strength parameter is of the same order of magnitude
as Melville (1994), but is about one order of magnitude larger than that of Banner
& Peirson (2007). Therefore, proper comparison with the latter requires additional
attention to the wave group parameters. Typical lengths of our wave group are
O(10 m) and characteristic group velocities are O(1 m s−1), which reduces our wave
breaking strength parameter one order of magnitude if Banner & Peirson’s method
is used for the calculation. Therefore, our results are generally of the same order of
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magnitude as Banner & Peirson’s (2007), subject to proper data interpretation. In
comparison to measurements by Drazen et al. (2008), our energy dissipation rate is
about one third to one half of theirs (for a comparable S–S0). This discrepancy is
mainly attributed to the relative short time scale used in their estimation. Different
wave group structures may also contribute to this disparity. In addition, their data
(figures 13 and 14 in Drazen et al. 2008) appear to have much more scatter than
ours. The scattering may be due to the fact that they used the wave phase speed and
wavenumber based on the centre frequency, cc and kc, rather than cb and kb, in their
dissipation rate parameterization.

3.4. Eddy viscosity

It is our intent to model eddy viscosity to determine the energy dissipation due to deep
water breaking waves. For simplicity, a constant eddy viscosity is assumed throughout
the breaking process. Dimensional analysis served as a simple yet effective way to
obtain the proper time and length scales for the eddy viscosity estimation.

For a plunging breaker, we believe that the active breaking time, tbr , and the
horizontal breaking length, lbr , are the proper time and horizontal length scales,
respectively. As for the vertical length scale, Rapp & Melville (1990) suggested that
the breaking wave penetration depth, D, is comparable with the characteristic length
scale of the turbulence generated by wave breaking; therefore, D may be employed
as the vertical length scale in the analysis. Our experiments provide no measurement
of the penetration depth. However, the penetration is caused mainly by the falling
wave crest/water jet. Therefore, a large falling wave crest/water jet height would
introduce a large breaking penetration depth, which is confirmed qualitatively with
the high-speed imager in our experiments. Thus, the falling wave crest/water jet
height, h, as defined in Drazen et al. (2008), is used as the vertical length scale in this
analysis.

For the turbulent viscous flow in breaking waves, we assume that the energy
dissipation rate can be expressed as in Phillips (1977, § 3.4) by replacing the kinematic
viscosity with eddy viscosity, νeddy , as

dE

dt
= −1

2
ρνeddy

∫ (
∂ui

∂xj

+
∂uj

∂xi

)2

dA ∼ ρνeddy

c2
b

h2
hlbr , (3.5)

where A represents an area over which large vorticity of O(c2
b/h2) is induced by

breaking waves and is estimated by hlbr . In addition, we choose to estimate the
energy dissipation rate, dE/dt , with ρc2

bl
2
br/tbr based on dimensional analysis. When

combined with this estimation, (3.5) yields the following estimation of eddy viscosity:

νeddy = θhlbr/tbr , (3.6)

where θ is a proportionality coefficient and remains to be determined.
Alternatively, the eddy viscosity can be represented by νeddy ∼ ul (Rapp & Melville

1990), where u is an integral velocity scale and l is an integral length scale. Based on
the dye patch experiments by Rapp & Melville (1990), the integral length l is roughly
comparable with the breaking wave penetration depth. However, as mentioned before,
we choose to use the falling wave crest height, h, as the vertical length scale. As for
the integral velocity, u, it is considered to be a fraction of the breaking wave phase
speed, u =χcb (Melville 1994), where χ is a numerical constant in the range [0.1,
0.17] in his analysis, depending on the breaking strength (see Appendix C). Then,
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Figure 11. Eddy viscosity as a function of the wave breaking strength is presented. Solid
symbols denote estimations using (3.6) and open symbols using (3.7). The two equations
provide estimations close to each other. In this study, estimations with (3.6) are used in the
numerical simulations. Solid lines represent linear least-squares fits (only estimations with (3.6)
are included in the best fits).

from νeddy ∼ ul, the eddy viscosity is estimated as

νeddy = θ ′ul = θ ′χcbh, (3.7)

where θ ′ is a proportionality coefficient and remains to be determined. Note that
(3.7) is consistent with (3.6) since lbr/tbr in (3.6) is the horizontal breaking wave
crest speed, ubr , which is found in § 3.3.1 as a fraction of the breaking wave phase
speed, cb.

Eddy viscosities associated with different wave groups are estimated using the
experimental measurements and (3.6) and (3.7) (the proportionality coefficients in the
equations are determined as θ = 0.02 and θ ′ = 0.10 for our wave groups; see § 4.2
for details). As presented in figure 11, the two equations provide similar estimations
that are of the order of 10−3 m2 s−1. We remark that the kinematic viscosity of water
is O(10−6 m2 s−1). Also, as can be seen in the figure, the eddy viscosity increases
as wave breaking intensifies (i.e. Sb and δbr increase). In the following section, the
estimated eddy viscosities are implemented in numerical simulations to model energy
dissipation due to wave breaking.
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4. Eddy viscosity parameterization and numerical simulations
4.1. Eddy viscosity parameterization

Ruvinsky, Feldstein & Freidman (1991) presented a system of coupled equations for
weakly damped surface waves and used them to study capillary-gravity ripples riding
on steep gravity-capillary waves. The derivation of the coupled equations involved
separating the potential and the vortical components of the flow: u = ∇φ + u′ with
u′ = ∇ × (−ψ) j . Here, φ is the velocity potential; u = (u, w), the velocity vector with
u and w being the components in the x- and z-directions, respectively; ψ is a stream
function; u′ =(u′, w′), the vortical velocity vector with u′ and w′ being the components
in the x- and z-directions, respectively. Here, x and z are, respectively, the horizontal
and vertical coordinates with z defined positive upwards from the mean surface. In
addition, a boundary-layer approximation similar to that used in Longuet-Higgins
(1953, 1960) was adopted. When linearized, the resulting governing equations and
boundary conditions can be written (Ruvinsky et al. 1991) as

∇2φ = 0, (4.1)

∂φ

∂t
+ gη + 2ν

∂2φ

∂z2
= 0 on z = 0, (4.2)

∂η

∂t
=

∂φ

∂z
+ w′ on z = 0, (4.3)

∂φ

∂z
→ 0 as z → −∞, (4.4)

∂w′

∂t
= 2ν

∂3φ

∂x2∂z
on z = 0. (4.5)

Here, g is the gravitational acceleration, η is the free surface and ν is the kinematic
viscosity. To derive the free-surface boundary condition (4.2), first linearize the viscous
normal stress condition to p/ρ = 2ν(∂w/∂z) ≈ 2ν(∂2φ/∂z2) on z = 0, where |u′|/|∇φ| =
O(kδ) is assumed (Lamb 1932; Ruvinsky et al. 1991), with δ being the boundary layer
thickness. Then, substitute the linearized Bernoulli equation for the pressure, p, to
obtain (4.2). Equation (4.5) is obtained from the linearized boundary layer equation
for the rotational velocity components combined with the tangential stress condition
on z = 0 (Ruvinsky et al. 1991; see also Appendix B).

To find the expression for w′ in terms of η and φ, (4.5) is rewritten, after using the
linearized kinematic boundary condition, as

∂w′

∂t
= 2ν

∂3φ

∂x2∂z
= 2ν

∂3η

∂x2∂t
on z = 0. (4.6)

Now, integrating (4.6) once in time yields

w′ = 2ν
∂2η

∂x2
+ C(x) on z = 0, (4.7)

where, by assuming that the flow is initially inviscid and irrotational, the integration
‘constant’ C(x) is set to zero. Then, the kinematic free-surface boundary condition is
as follows:

∂η

∂t
=

∂φ

∂z
+ 2ν

∂2η

∂x2
on z = 0. (4.8)
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And (4.2) is written as

∂φ

∂t
= −gη + 2ν

∂2φ

∂x2
on z = 0, (4.9)

where −∂2φ/∂z2 is replaced with ∂2φ/∂x2. Equations (4.8) and (4.9) form the closed
free-surface boundary conditions modified with the leading-order viscous effects and,
in fact, are identical to those obtained by Dias, Dyachenko & Zakharov (2008) using
the solutions of the linearized Navier–Stokes equations in the small viscosity limit.

Earlier, Longuet-Higgins (1992) suggested that modified free-surface boundary
conditions similar to (4.8) and (4.9) may be used to represent energy dissipation
due to wave breaking if the kinematic viscosity, ν, is replaced with the turbulent
eddy viscosity, νeddy . This might be a reasonable eddy viscosity model when short-
wavelength scale disturbances, once excited (by wave breaking here), are assumed
to be dissipated in the same manner as energy dissipation by kinematic viscosity.
Therefore, as a first step towards a more comprehensive parameterization for wave
breaking energy dissipation, we simply replace the kinematic viscosity in (4.8) and
(4.9) with the eddy viscosity estimated from experimental measurements, as described
in the preceding section and we conduct numerical simulations to test the validity of
this simple idea.

4.2. Comparison of numerical solutions with laboratory measurements

The numerical model is based on an asymptotic expansion in small wave steepness
(West et al. 1987; Choi 1995) which yields the following nonlinear equations for the
surface elevation, η(x, t), and the velocity potential at the free surface, Φ(x, t). When
the eddy viscosity terms are included, the model can be written as

∂η

∂t
=

∞∑
n=1

Qn [η, Φ] + 2νeddy

∂2η

∂x2
, (4.10)

∂Φ

∂t
=

∞∑
n=1

Rn [η, Φ] + 2νeddy

∂2Φ

∂x2
, (4.11)

where Qn and Rn of O(ka)n represent the nth-order nonlinear terms that can be found
through explicit recursion formulas (for example, Choi, Kent & Schillinger 2005).

In this study, the right-hand sides of the equations are truncated to the third order
and the nonlinear evolution equations (4.10) and (4.11) are solved numerically with
a pseudo-spectral method based on the fast Fourier transform and a fourth-order
Runge–Kutta method to integrate in time. Details of the numerical method can be
found in Choi et al. (2005). This numerical model has been applied to predict surface
wave profiles and local kinetic energy in the breaking criterion study by Tian et al.
(2008), where excellent agreement with their measurements was shown before wave
breaking occurs. In this paper, the applicability of the eddy viscosity model in (4.10)
and (4.11) after wave breaking will be explored by comparing numerical solutions
with laboratory experiments.

Following Tian et al. (2008), initial conditions (i.e. initial surface profile and velocity
potential at z = 0) are generated with the first wave probe measurements and LWT.
Then, numerical simulations are performed in a 48-m-long numerical wave channel,
which is discretized with 211 points. A time step of 1/50 s is employed for the
simulations.

During initial numerical tests, we found that the total potential energy (i.e. {η2}) at
the first wave probe did not match the experimental measurements. The discrepancy
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was due to viscous effects and nonlinearity (i.e. the initial entire surface elevation as
a function of space was generated with the first wave probe measurement and LWT;
then it was propagated back to the first probe with the third-order model). Therefore,
to match the total potential energy measured at the first wave probe, the linear model
without eddy viscosity is solved over the spatial domain from the wavemaker to the
location of the first wave probe. The remainder of the tank is assumed to be viscous
and the third-order model with the eddy viscosity is solved. A transition layer (∼1 m)
between the linear inviscid and the third-order viscous domain is applied to avoid
any transition irregularity of the surface profiles.

In the viscous non-breaking domain, an equivalent kinematic viscosity is applied
to the free-surface boundary conditions (see (4.8) and (4.9)) to account for the free-
surface damping and the friction and contact-line loss due to the side walls and the
tank bottom. For each of the five wave groups, the equivalent kinematic viscosity is
estimated with the surface elevation measurements of the non-breaking trains and
LWT (i.e. exponential decay prediction; Lamb 1932; Mei 1983; Tulin & Waseda
1999).

During active wave breaking (i.e. for tbr ), a breaking region based on experimental
measurements (i.e. lbr ) is defined so that the estimated breaking eddy viscosity can
be applied to the free-surface boundary conditions. To obtain the eddy viscosity
with (3.6) and (3.7), the proportionality coefficients have to be determined. However,
our experimental measurements provide no information on the coefficient estimation.
To determine the coefficients, θ and θ ′, one wave group (W1G3, table 1) is used
for a trial test. The proportionality coefficients are set to 1; then the trial eddy
viscosities estimated with (3.6) and (3.7) are used to run the simulation. Next,
numerical results of the total potential energy as a function of space are compared
to the experimental measurements. The coefficients are adjusted systematically till
good agreement between the numerical and the experimental results are achieved.
As mentioned previously, the proportionality coefficients are determined as θ = 0.02
and θ ′ = 0.10 for wave group W1G3. Finally, these two coefficients are applied to
other wave groups to test their applicability. As shown subsequently, good agreement
between the numerical and experimental results suggests that the proportionality
constants determined from a particular wave group are valid for all our wave groups.
We remark that the proportionality constants may need to be adjusted for other
experiments with significantly different group structures.

As (3.6) with θ = 0.02 and (3.7) with θ ′ = 0.10 provide similar estimations of the eddy
viscosity (see figure 11) and our tests show that numerical simulations with either
eddy viscosity provide virtually the same energy dissipation, we present results of
numerical simulations with the eddy viscosity estimated by (3.6). As shown in figure 12,
both the magnitude and the trend of the total energy measured in the experiments
as a function of space are approximated reasonably well by the numerical results.
Most importantly, the numerical results capture the measured energy loss due to wave
breaking.

The data oscillations in figure 12 are worth mentioning. As discussed in § 3.2.1, these
oscillations in the experimental results are partially due to the failure of the linear
assumption to estimate the total energy using {η2}. We numerically examined the total
energy, E(t), as a function of time for a non-breaking wave group and found that
both the total potential energy, Ep(t), and the total kinetic energy, Ek(t), demonstrate
a general decay trend with oscillations present in wave focusing/breaking regions;
however, the oscillations of Ep(t) and Ek(t) are 180◦ out of phase; therefore, the
total energy decays monotonically. This finding indicates that the oscillations in the
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Figure 12. For legend see page no. 247
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Figure 12. In graphs (a)–(e), comparisons of the total energy as a function of space are
presented. Symbols represent experimental measurements and solid lines represent numerical
results. The vertical dashed lines indicate the wave breaking region.

focusing/breaking regions are mainly due to the failure of the linear assumption in
estimating the total energy, as expected.

The surface elevation comparison downstream of wave breaking is also of obvious
interest. Figure 13 presents the surface elevation measured at three wave stations along
the wave tank: one upstream and two downstream locations relative to wave breaking.
For reference, measurements for a non-breaking wave group are also provided. In the
figure, dimensional variables are used for a straightforward comparison. Note that
our experimental and numerical results show very good agreement not only in the
wave amplitude, but also in phase. Some small local discrepancies also appear in the
comparisons. For example, the second major peak of the numerical surface elevation
at x = 15.42 m (W1G3, figure 13a) is reduced by a significant amount. Although its
cause is not known yet, we believe this is not caused by the eddy viscosity model as
a similar reduction is present in the non-breaking wave group, too.

Our numerical study suggests that the simple eddy viscosity model works reasonably
well for deep-water breaking waves in terms of energy dissipation. The model is based
on simple dimensional analysis, in which a wave breaking time scale, tbr , a horizontal
wave breaking length scale, lbr , and a vertical length scale (breaking wave crest falling
height), h, are used. However, to apply this model to numerical simulation, the eddy
viscosity has to be determined a priori with experimental measurements, and applied
in the proper location and during the correct time with both known in advance.
These requirements are obviously demanding. Fortunately, our study shows that the
local wave steepness Sb and the breaking strength parameter, δbr , proposed by Song &
Banner (2002) demonstrate strong correlation with the energy dissipation rate, bb, and



248 Z. Tian, M. Perlin and W. Choi

(a) 0.10

0.05

0

15 20

W1G1
x = 10.59 m

25

–0.05

–0.10

η
(t

) 
(m

)
0.10

0.05

0

15 20

W1G3
x = 10.59 m

25

–0.05

–0.10

0.10

0.05

0

20 25

x = 12.59 m

30

–0.05

–0.10

η
(t

) 
(m

)

0.10

0.05

0

20 25

x = 12.59 m

30

–0.05

–0.10

0.10

0.05

0

20 25

x = 15.42 m

30

–0.05

–0.10

η
(t

) 
(m

)

0.10

0.05

0

20 25

x = 15.42 m

30

–0.05

–0.10

t (s) t (s)
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the eddy viscosity, νeddy . In addition, based on figure 9, tbr and lbr depend on Sb or δbr ;
and, for a rough estimation, one may infer the breaking time and the horizontal length
based on Sb or δbr . In simulating an individual wave breaking event, for example, the
local wave steepness Sb can be computed and monitored throughout the numerical
simulation. Once Sb approaches (Sb)0, the eddy viscosity may be implemented (i.e.
prior to numerical blow-up).

5. Conclusions
An experimental study of the kinematics and the dynamics of two-dimensional

unsteady plunging breakers has been reported. In addition, an eddy viscosity model
is proposed to simulate the energy dissipation due to wave breaking and the model
is validated with our experimental results.
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In our experiments, wave surface elevations are measured with both wave probes
and high-speed imaging. With the wave probe measurements, wave characteristics
associated with the wave group (i.e. S, fs , ks , cs and Cgs) are defined and determined.
While the centre wave frequency and the associated linear group velocity in a wave
group are commonly considered to be the group characteristics, our study illustrates
that the spectrally weighted wave frequency (and wavenumber) and group velocity
better represent the characteristic properties for wave groups (with constant wave
steepness distribution across their amplitude spectra). Based on surface profiles (just
prior to wave breaking onset) measured with high-speed imaging, local breaking
wavenumber, kb, local wave steepness, Sb, and breaking wave phase speed, cb, are
determined. We find a strong connection between our wave group characteristics
and the local breaking wave parameters (i.e. Sb/S = 1.237, cb/cs =0.9 ± 0.1 and
kb/ks = 1.25 ± 0.25). To our knowledge, these links have not been reported before.
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Surface elevation measurements with wave probes are also used to estimate the total
energy and the total energy loss. We find that energy loss due to surface damping,
contact-line dissipation and friction by the tank sidewalls and the bottom is non-
negligible as compared to energy loss due to wave breaking that ranges from 8 % to
25 % of the total pre-breaking energy. More interestingly, both estimated total pre-
breaking energy and energy loss due to wave breaking are found to scale accurately
with the wave group characteristics (i.e. E0k

3
s /(ρg) versus S and �Ek3

s /(ρg) versus S).
Good correlations are also observed when both the energy and the energy loss are
scaled with local wave characteristics (i.e. E0k

3
b/(ρg) versus Sb and �Ek3

b/(ρg) versus
Sb). Based on a linear least-square fit between �Ek3

s /(ρg) and S, the threshold of S
that predicts wave breaking onset is estimated as S0 = 0.339, and hence, (Sb)0 = 0.419
for the same purpose. However, the application of S or Sb as a universal indicator
to predict wave breaking and breaking strength needs to be explored further due
to the variation of S0 in different laboratory studies. While the local wave steepness
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Figure 13. For legend see page no. 252

parameter, Sb, seems to be a more universal wave breaking indicator, its performance
needs to be further investigated.

Surface profile measurements using high-speed imaging are utilized to determine
the breaking criterion parameter, δ(t), and its magnitude just prior to wave breaking.
Our study justifies Song & Banner’s (2002) wave breaking criterion which states that
δ(t), with threshold 1.4 ± 0.1 × 10−3, distinguishes wave groups that lead to breaking
from those that do not. The breaking parameter immediately before wave breaking
(i.e. δbr ) increases in general as the energy loss due to wave breaking increases. In
addition, δbr can be expressed analytically with the local wave slope Sb; and the
relationship is supported by our experimental results.

Breaking time scale and breaking horizontal length scale are defined and
obtained with high-speed imaging measurements. The time and length scales depend
approximately linearly on Sb, indicating that the breaking process is more violent as
Sb increases. The two scales are then used to determine the horizontal breaking wave
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Figure 13. (a)–(e) The comparison of surface elevations measured from three wave stations.
Solid line: experimental measurements; dashed line: numerical results. In each of the five sets
of graphs, figures in the left column are from the non-breaking wave groups; figures of the
most violent breaking wave groups are in the right column. Breaking regions are: [11.28 m,
12.57 m] for W1G3 in (a), [12.53 m, 13.71 m] for W2G4 in (b), [13.09 m, 14.24 m] for W3G4
in (c), [14.11 m, 15.54 m] for W4G4 in (d) and [11.72 m, 12.59 m] for W5G2 in (e).

crest speed, ubr , which is shown to strongly correlate with the breaking wave phase
speed, cb, and the spectrally weighted wave phase speed, cs .

The energy dissipation rate in the plunging breakers is determined as the ratio of the
total energy loss due to wave breaking to the measured breaking time. This estimation
method assumes a constant dissipation rate and involves only local wave parameters.
The normalized energy dissipation rate (i.e. bb) is of the order of 10−3, which in general
is consistent with previous results, subject to proper data interpretation. Although
both Sb and δbr well correlate with bb, indicating that both parameters can be used
to indicate wave breaking strength, Sb appears to have a stronger correlation.
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An eddy viscosity model obtained from the viscous free-surface boundary conditions
for weakly damped surface waves is adopted and tested numerically with laboratory
measurements for energy dissipation due to wave braking. The eddy viscosity is
estimated by both dimensional analysis and turbulent energy dissipation rate analysis
with measured breaking time and length scales. The two estimations are very close,
both of the order of 10−3 m2 s−1. The estimated eddy viscosity also illustrates close
correlation with the energy dissipation rate, bb, and the wave breaking strength
parameters, Sb and δbr . The estimated eddy viscosity is employed in simulations
that aim to reproduce the experimental tests numerically. Good agreement in
energy dissipation obtained from the numerical simulations and the experimental
measurements is found and this indicates that the eddy viscosity model could be
an effective tool in simulating the energy dissipation in plunging breakers and post-
breaking wave profiles.

This work was supported by the US Office of Naval Research through grant
no. N00014-05-1-0537. W. C. also gratefully acknowledges support from the Korea
Science and Engineering Foundation through the WCU programme (grant no. R31-
2008-000-10045-0).

Appendix A. Nonlinear group velocity
The rate of change of total energy, dE/dt , inside a control volume between two

vertical planes bounded by a free surface and a flat bottom is given (Wehausen &
Laitone 1960, § 8) by

dE

dt
= F1 − F2 with F = −ρ

∫ η

−h

∂φ

∂t

∂φ

∂x
dz, (A 1)

where F1 and F2 represent the energy fluxes per unit length through two vertical
planes at x1 and x2 = x1 + �x, the left- and right-hand side boundaries, respectively.
By substituting into (A.1) Stokes’ wave solutions correct to the third order in wave
steepenesss (Wehausen & Laitone 1960, § 27):

φ = ac0 ekz sin kx + · · · ,

η = a

[
cos(kx) +

1

2
ka cos(2kx) +

3

8
(ka)2 cos(3kx) + · · ·

]
,

c = c0

[
1 +

1

2
(ka)2 + · · ·

]
,

the energy flux averaged over a wavelength 2π/k, F̄ , can be expanded as

F̄ = ρc

∫ η

−h

(
∂φ

∂x

)2

dz =
1

4
ρgc0a

2

(
1 +

5

2
k2a2 + · · ·

)
,

where c2
0 = g/k and a is the wave amplitude. The averaged energy flux can also be

written as the product of the total energy density and the (nonlinear) group velocity,
F̄ = e Cg , where the total energy density averaged over a wavelength is

e =
1

2
ρgη2 +

1

2
ρ

∫ η

−h

[(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
]

dz =
1

2
ρga2

(
1 +

3

4
k2a2 + · · ·

)
.
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Then, from the two different expressions of F̄ , the group velocity Cg correct to
O(k2a2) can be found as

Cg =
1

2
c0

(
1 +

7

4
k2a2 + · · ·

)
.

Notice that, when the effect of nonlinearity is included, this nonlinear group
velocity measuring the speed at which energy propagates is different from the classical
nonlinear definition of the group velocity (from the kinematic consideration), which
can be written as

∂ω

∂k
=

1

2
c0

(
1 +

5

2
k2a2 + · · ·

)
.

Appendix B. Derivation of (4.5)
When linearized, the tangential stress condition at z =0 is given by

∂u

∂z
+

∂w

∂x
= 0 on z = 0. (B 1)

After writing u = ∇φ + u′ and assuming that |u′|/|∇φ| =O(kδ) (Lamb 1932; Ruvinsky
et al. 1991) and |w′|/|u′| =O(kδ) from boundary layer scaling, the leading-order
approximation in kδ of the linearized tangential stress condition yields

∂u′

∂z
= −2

∂2φ

∂x∂z
on z = 0. (B 2)

On the other hand, the rotational horizontal velocity satisfies the following (linearized)
boundary layer equation:

∂u′

∂t
= ν

∂2u′

∂z2
. (B 3)

By differentiating (B.3) with respect to x and using the continuity equation ∂u′/∂x +
∂w′/∂z = 0, we have

∂

∂z

(
∂w′

∂t

)
= ν

∂3w′

∂z3
, (B 4)

which can be integrated to obtain (4.5):

∂w′

∂t
= ν

∂2w′

∂z2
= −ν

∂2u′

∂z∂x
= 2ν

∂3φ

∂x2∂z
on z = 0, (B 5)

where the continuity equation for u′ and the tangential stress condition (B.2) have
been used for the last two expressions, respectively.

Appendix C. Integral velocity estimation based on the turbulent energy
dissipation analysis by Melville (1994)

Based on the analysis by Melville (1994), the total energy loss rate, ε, in the assumed
triangular turbulent region due to wave breaking can be approximated by

ε = ρu3lbr/2, (C 1)

where lbr is the length of turbulent ‘whitecap’, and is comparable to one characteristic
wavelength (see § 3.3.1 and figure 9b); therefore, lbr ∼ c2

b/g. Hence, the dissipation rate
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Figure 14. Normalized integral speed (χ = u/cb) as a function of wave breaking strength, bb .
As expected, the integral speed increases as wave breaking intensifies.

can be rewritten as

ε = ρ (χcb)
3
(
γ c2

b/g
)

=
(
γχ3

)
ρc5

b/g. (C 2)

Here γ is a constant and can be deduced from experimental measurements and
u = χcb has been used. Recognizing that the term (γχ3) represents bb, we can evaluate
the coefficient χ = (bb/γ )1/3. Figure 14 provides the estimation versus wave breaking
strength, bb. As expected, χ increases as wave breaking intensifies and it agrees well
with the estimations by Melville (1994). Therefore, eddy viscosity can be roughly
estimated as νeddy ∼ χcbh (see (3.7)).

With the inertial scaling analysis by Drazen et al. (2008), who proposed that
bb = α(kbh)5/2, one may write the eddy viscosity as a function of b by substituting
χ =(bb/γ )1/3 and h = (bb/α)2/5kb into the above equation; further manipulation gives
the eddy viscosity as

νeddy = βb
11/15
b cb/kb, (C 3)

where β is a proportionality coefficient. With a least-squares analysis, the
proportionality constant, β , is determined to be 0.13 for our wave groups. In addition,
this power law relationship between νeddy and bb can be approximately replaced with
a linear one (figure 11b).
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