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Internal solitary waves in a system of two fluids, silicone oil and water, bounded
above by a free surface are studied both experimentally and theoretically. By
adjusting an extra volume of silicone oil released from a reservoir, a wide range
of amplitude waves are generated in a wave tank. Wave profiles as well as wave
speeds are measured using multiple wave probes and are then compared with both
the weakly nonlinear Korteweg–de Vries (KdV) models and the strongly nonlinear
Miyata–Choi–Camassa (MCC) models. As the density difference between the two
fluids in the experiment is relatively small (approximately 14 %), but non-negligible,
special attention is paid to the effect of the boundary condition at the top surface. The
nonlinear models valid for rigid-lid (RL) and free-surface (FS) boundary conditions
are considered separately. It is found that the solitary wave of the FS model for a
given amplitude is consistently narrower than that of the RL model and it propagates
at a slightly lower speed. Due to strong nonlinearity in the internal-wave motion, the
weakly nonlinear KdV models fail to describe the measured internal solitary wave
profiles of intermediate and large wave amplitudes. The strongly nonlinear MCC-FS
model agrees better with the measurements than the MCC-RL model, which indicates
that the free-surface boundary condition at the top surface is crucial in describing
the internal solitary waves in the experiment correctly. Leaving the top surface free
in the experiment allows us to observe small and relatively short wave packets on
the top surface, particularly when the amplitude of the internal solitary wave is
large. Once excited, the wave packet is located above the front half of the internal
solitary wave and propagates with a speed close to that of the internal solitary
wave underneath. A simple resonance mechanism between short surface waves and
long internal waves without and with nonlinear effects is examined to estimate the
characteristic wavelength of modulated short surface waves, which is found to be
in good agreement with the observed wavelength when nonlinearity is taken into
account. Using ray theory, the evolution of short surface waves in the presence of
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a background current induced by an internal solitary wave is also investigated to
examine the location of the modulated surface wave packet.

Key words: internal waves, solitary waves, stratified flows

1. Introduction
Oceanic internal solitary waves of large amplitude are often generated by the

action of tidal currents over bottom topography and have been observed frequently
in many coastal regions. The simplest model to describe the propagation of internal
solitary waves is the weakly nonlinear Korteweg–de Vries (KdV) equation (Benjamin
1966), where the effects of nonlinear wave steepening and linear wave dispersion are
assumed to be balanced. Although the KdV model is widely used due to its simple
form, its validity is rather limited to small-amplitude waves. For example, the KdV
solitary wave is too narrow and moves too fast in comparison with laboratory or field
observations (see Grue et al. 1999). Higher-order weakly nonlinear models have also
been proposed by including higher-order nonlinear and/or dispersive terms (see, for
example, Koop & Butler 1981). These models provide improved comparisons with
observations, but, due to the weakly nonlinear assumption in their derivation, fail to
capture a number of characteristics of large-amplitude internal solitary waves.

To take into account strong nonlinearity of large-amplitude internal solitary waves,
for a two-layer system bounded above by a rigid surface, Miyata (1988) and Choi
& Camassa (1999) derived a theoretical model by assuming that the characteristic
wavelength is long compared with the total fluid depth, but the wave amplitude is
comparable to the total fluid depth. This strongly nonlinear long-wave model is often
referred to as the MCC model in the literature and is an unsteady generalization of the
steady long-wave model of Miyata (1985). In comparison with laboratory experiments,
it has been shown that the MCC model derived under the rigid-lid approximation
successfully describes the propagation of large-amplitude internal solitary waves in
two-layer settings (Choi & Camassa 1999; Camassa et al. 2006).

In the majority of previous theoretical studies of internal solitary waves, it is
common to assume that the top surface is rigid under the so-called rigid-lid
approximation. When the density difference between two neighbouring layers is
relatively small, for example as in oceanic conditions, it can be shown that the
ratio between the displacement of the top free surface and that of the interface is
proportional to the density jump (see § 2). In laboratory experiments where fresh
water and brine were used for stratification (Segur & Hammack 1982; Kao, Pan
& Renouard 1985; Grue et al. 1999), the density difference and, therefore, the
displacement of the top free surface were small, so that it was reasonable to compare
the laboratory experiments with a model under the rigid-lid approximation. On the
other hand, in some laboratory experiments (Walker 1973; Koop & Butler 1981;
Michallet & Barthelemy 1998), the density differences were non-negligible, but most
comparisons of their measurements were made with theoretical models under the
rigid-lid approximation and little attention was paid to the free surface. Theoretically,
Moni & King (1995) studied the steady Euler equations for a two-layer system with a
free surface, but computed only surface solitary wave solutions, while Peters & Stoker
(1960) considered weakly nonlinear solitary waves using the KdV model. To the best
of our knowledge, large-amplitude internal solitary waves propagating under the top
free surface in a two-layer system of constant densities have not been investigated
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Internal solitary waves with a free surface 203

systematically yet. In addition, it is important to allow the top surface to be free
when the interaction of internal solitary waves with relatively short surface waves
is investigated to better understand their surface expressions appearing on satellite
images (Liu et al. 1998).

In this paper, free-surface effects on large-amplitude internal solitary waves are
examined experimentally in a system of two immiscible fluids with a non-negligible
density jump, and the measurements are compared with the strongly nonlinear model
valid for the case when the top boundary is free (Choi & Camassa 1996; Barros,
Gavrilyuk & Teshukov 2007), which is the generalization of the MCC model. In
particular, we focus on the change in internal solitary wave profiles in the presence
of the top free surface and the appearance of short surface wave packets above the
internal solitary waves.

This paper is organized as follows. The model equations for internal solitary waves
are presented in § 2. After describing the configuration of laboratory experiments
in § 3, the measured wave profiles and wave speed of the internal solitary waves
are compared with the theoretical solutions in § 4. Short surface wave packets
observed during some of the laboratory experiments are described and their generation
mechanisms are discussed in § 5. Then, concluding remarks are given in § 6.

2. Model equation
Consider a system of two fluid layers whose densities and thicknesses are given by

ρi and hi respectively, with i= 1 for the upper fluid layer and i= 2 for the lower layer.
When the characteristic wavelength λ is long compared with the total fluid depth so
that ε = (h1 + h2)/λ� 1, the strongly nonlinear models can be derived when the top
surface is either rigid (Miyata 1988; Choi & Camassa 1999) or free (Choi & Camassa
1996; Barros et al. 2007).

2.1. The MCC-RL model
The MCC model under the rigid-lid assumption can be written, in terms of four
unknowns (ζ , u1, u2, P), as

ηit + (ηiui)x = 0, (2.1)

uit + uiuix + gζx =−Px

ρi
+ 1
ηi

(
1
3
ηi

3Gi

)
x

, (2.2)

where ζ is the elevation of the interface, P is the pressure at the interface, and ui (i=
1, 2) are the depth-averaged horizontal velocities, defined by

ui(x, t)= 1
ηi

∫
[ηi]

ui(x, z, t) dz, (2.3)

with
∫
[ηi] denoting

∫ h1

ζ
or
∫ ζ
−h2

for i= 1 or 2 respectively. Here, g is the gravitational
acceleration, ηi are the local layer thicknesses defined by

η1 = h1 − ζ , η2 = h2 + ζ (2.4a,b)

and Gi are given by

Gi(x, t)= uixt + uiuixx − (uix)
2 =− (Di

2ηi)

ηi
, (2.5)
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where Di ≡ ∂t + ui∂x and we have used (2.1) for the last equality. The kinematic
equations given by (2.1) are exact while the dynamic equations given by (2.2) have
an error of O(ε4). To distinguish it from the free-surface model introduced in the
following section, the system for a top rigid lid given by (2.1)–(2.2) will be referred
to as MCC-RL.

When a solitary wave is assumed to propagate, without change of form, with
constant speed c, one can write ηi and ui, in the frame of reference moving with the
solitary wave, as

ηi = ηi(X), ui = ui(X), X = x− ct. (2.6a−c)

After substituting (2.6) into (2.1), integrating the resulting equation once with respect
to X, and imposing the boundary conditions at infinities (η1→ h1, η2→ h2 and ui→ 0
as X→±∞), ui can be expressed in terms of ηi as

ui = c
(

1− hi

ηi

)
. (2.7)

Then, after eliminating P from (2.2) for i= 1, 2 and substituting (2.7) for ui into the
resulting equation, one can obtain a single nonlinear ordinary differential equation for
ζ (Miyata 1985):

ζX
2 = 3ζ 2[c2(ρ1η2 + ρ2η1)− g(ρ2 − ρ1)η1η2]

c2(ρ1h1
2η2 + ρ2h2

2η1)
. (2.8)

From ζX = 0 when ζ = a, the relationship between the solitary wave speed c and its
amplitude a is given (Choi & Camassa 1999) by

c2

c0
2
= (h1 − a)(h2 + a)

h1h2 − (c0
2/g)a

, (2.9)

where linear long-wave speed c0 is given by

c0
2 = gh1h2(ρ2 − ρ1)

ρ1h2 + ρ2h1
. (2.10)

The solitary wave solution satisfying ζ→ 0 as X→∞ can be found, by integrating
(2.8) numerically, up to the maximum wave amplitude am and its corresponding speed
cm given by

am = h1 − h2
√
ρ1/ρ2

1+√ρ1/ρ2
, cm

2 = g(h1 + h2)
1−√ρ1/ρ2

1+√ρ1/ρ2
. (2.11a,b)

2.2. The MCC-FS model
When the upper layer is bounded above by the top free surface located at z= h1+ ζ1

and below by the interface located at z= ζ2, the strongly nonlinear model (MCC-FS)
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with error of O(ε4) is given (Choi & Camassa 1996; Barros et al. 2007) by

η1t + (η1u1)x = 0, η1 = h1 + ζ1 − ζ2, (2.12a,b)

η2t + (η2u2)x = 0, η2 = h2 + ζ2, (2.13a,b)

u1t + u1u1x + g(η1 + η2)x = 1
η1

(
1
3
η1

3G1

)
x

− 1
η1

(
1
2
η1

2D1
2η2

)
x

+
(

1
2
η1G1 −D1

2η2

)
η2x, (2.14)

u2t + u2u2x + g(
ρ1

ρ2
η1 + η2)x = 1

η2

(
1
3
η2

3G2

)
x

+ ρ1

ρ2

(
1
2
η1

2G1 − η1D1
2η2

)
x

, (2.15)

where ui are the depth-averaged velocities defined by (2.3) with
∫
[ηi] defined as

∫ h1+ζ1

ζ2

or
∫ ζ2

−h2
for i= 1 or 2 respectively.

When the system given by (2.12)–(2.15) is linearized and its dispersive terms on
the right-hand sides are neglected, one can obtain the linear long-wave speed c0 by
solving

c0
4 − g(h1 + h2)c0

2 + g2h1h2

(
1− ρ1

ρ2

)
= 0, (2.16)

which yields the linear long-wave speeds of the faster barotropic (c0
+) and slower

baroclinic (c0
−) modes. The ratio between the free-surface and interface displacements

is given by
ζ1

ζ2
= c0

2

c0
2 − gh1

. (2.17)

As it can be shown that (c0
−)2 < gh1 < (c0

+)2, the free surface and the interface are
in phase (ζ1/ζ2 > 0) for the barotropic mode while they are out of phase (ζ1/ζ2 < 0)
for the baroclinic mode.

For most previous experiments with ∆ = (ρ2 − ρ1)/ρ2 � 1, the long-wave speeds
can be approximated by

(c+0 )
2 = g(h1 + h2)

[
1− h1h2

(h1 + h2)2
∆+O(∆2)

]
, (c−0 )

2 = gh1h2

(h1 + h2)
∆+O(∆2),

(2.18a,b)
where ± represent the barotropic and baroclinic internal-wave modes respectively.
Then, the amplitude ratios for the two wave modes can be approximated, from (2.17),
by(

ζ1

ζ2

)+
=
(

h1 + h2

h2

)
[1+O(∆)],

(
ζ1

ζ2

)−
=−

(
h2

h1 + h2

)
∆[1+O(∆)]. (2.19a,b)

From (2.19), since (ζ1/ζ2)
− =O(∆), the displacement of the top free surface can be

neglected for the baroclinic mode for ∆� 1, which most oceanic conditions satisfy.
On the other hand, in our experiments, ∆ is not negligibly small (approximately
0.14), and the effect of the top free surface could be necessary in the description
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of the internal-wave motions. It should be noticed that this discussion about the
free-surface effect should be applied to internal solitary waves in a two-layer system
of constant densities. For example, it provides no explanation of the role of a top free
surface on the instability of internal solitary waves observed previously in laboratory
experiments (Grue et al. 2000; Carr et al. 2008; Luzzatto-Fegiz & Helfrich 2014)
with linearly stratified fluids, in which recirculating cores could appear as the wave
amplitude increases (Goullet & Choi 2008; Fructus et al. 2009). No internal solitary
waves with such recirculating cores are possible in the two-layer system considered
here.

For travelling solitary waves, in the frame of reference moving with wave speed c
as in (2.6), the system can be reduced to the following nonlinear system of coupled
second-order differential equations (see appendix A for its derivation):

αj1η
′′
1 + αj2η

′′
2 + αj3η

′
1

2 + αj4η
′
2

2 + αj5η
′
1η
′
2 = αj6 for j= 1, 2, (2.20)

where the prime denotes differentiation with respect to X and the nonlinear coefficients
αjk can be found in appendix A. This steady system is identical to that obtained by
Barros & Gavrilyuk (2007) using the Lagrangian formulation. To find its solitary
wave solutions, the system should be solved numerically for a given wave speed
c. While two different linear wave speeds (c+0 for barotropic waves and c−0 for
baroclinic waves) are possible, internal solitary wave profiles are computed by
choosing c→ c−0 in the limit of zero wave amplitude. Unlike the rigid-lid case, no
explicit relationship between wave speed and wave amplitude is known and should
be computed numerically.

2.3. The weakly nonlinear uni-directional model
For uni-directional waves, under the weakly nonlinear assumption, the MCC-RL and
MCC-FS can be reduced to the KdV equation for the interface displacement ζ2 (with
ζ2 = ζ for the rigid-lid case):

ζ2t + c0ζ2x + c1ζ2ζ2x + c2ζ2xxx = 0, (2.21)

where ci are given for the rigid-lid case by

c1 = −3c0

2
ρ1h2

2 − ρ2h1
2

ρ1h1h2
2 + ρ2h1

2h2
, c2 = c0

6
ρ1h1

2h2 + ρ2h1h2
2

ρ1h2 + ρ2h1
, (2.22a,b)

while they are given for the free-surface case by

c1 = 3c0

2h2

1+ (ρ1/ρ2)h1h2
2/(c0

2/g− h1)
3

1+ (ρ1/ρ2)h1h2/(c0
2/g− h1)2

, (2.23a)

c2 = c0h2
2

6
1+ (ρ1/ρ2)(h1/h2)[3+ 3h1/(c0

2/g− h1)+ h1
2/(c0

2/g− h1)
2]

1+ (ρ1/ρ2)h1h2/(c0
2/g− h1)2

. (2.23b)

The solitary wave solution of the KdV equation can be written as

ζ2(X)= asech2(X/λKdV), X = x− cKdV t, (2.24a,b)

where the characteristic length scale λKdV and the wave speed cKdV are given,
respectively, by

λKdV
2 = 12c2/(ac1), cKdV = c0 + c1a/3. (2.25a,b)
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FIGURE 1. Experimental set-up for the internal solitary wave generation in a two-fluid
system with a free surface. The top layer is filled with the silicone oil SF1000NFC150
and the bottom layer is filled with water. The top layer thickness is h1 = 0.05 m while
the lower layer thickness is h2 = 0.25 m. The specific gravities of silicone oil and water
are denoted by ρ1 and ρ2 respectively. Five capacitance-type probes represented by black
vertical lines are installed at a regular interval of 20 non-dimensional lengths. To generate
internal solitary waves of five different wave amplitudes, the interface displacement is
adjusted to di/h1 = 0.6, 1.2, 1.8, 2.4 and 3.0.

3. Laboratory experiments
3.1. Two-fluid system

An immiscible two-fluid system is set up in an approximately 8.5 m long, 0.47 m
wide and 0.35 m deep water tank in the Korea Advanced Institute of Science and
Technology (KAIST). The bottom layer is a 0.25 m thick water layer and the top
layer is a 0.05 m thick silicone oil layer. When necessary, physical variables are
non-dimensionalized with respect to the top layer thickness h1 and the gravitational
acceleration g. A vertical gate is installed 0.35 m away from one end of the tank
in order to generate internal solitary waves by lifting the gate. The profiles of
internal solitary waves are measured using five capacitance-type wave probes. The
experimental configuration is schematically shown in figure 1.

The kinematic viscosity of the silicone oil SF1000NFC150 used in the experiment is
only 1.5 times greater than that of water based on the material safety data sheet, and
we assume that the inviscid assumption can be used in modelling our experiments. The
specific densities of the silicone oil and water are measured using a density meter. The
specific gravity of the oil is 0.856± 0.001 and that of the water is 0.996± 0.002 at
a temperature of 15± 1 ◦C. Therefore, the dimensionless density difference ∆ defined
by ∆= (ρ2− ρ1)/ρ2 is approximately 0.14. The fluctuation of specific density of each
fluid is due to either thermal expansion of the fluid or the measurement error mainly
caused by the meniscus effect on the wall of the density meter.

With the current experimental set-up with the top free surface, the phase speed
of linear long internal waves is given, from (2.16), by c0 = 0.242 m s−1. If the top
boundary is rigid, the phase speed increases to 0.255 m s−1. The difference between
the two phase speeds is approximately 5 % of c0, which cannot be neglected for the
phase speed measurement.

3.2. Internal solitary wave generation
The method to generate internal solitary waves is the same as that of Michallet
& Barthelemy (1998). By adjusting the interfacial displacement di behind the gate,
internal solitary waves of a wide range of amplitudes are generated (figure 1). Since
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the gate is not fully closed to the bottom before the gate is lifted, the water can flow
freely below the gate. As a result, the surface behind the gate rises to balance the
bottom pressure difference produced by the displaced interface behind the gate. As
long as the system is hydrostatically balanced, the surface elevation ds is estimated
to be

ds =
(
ρ2 − ρ1

ρ1 + ρ2

)
di. (3.1)

The estimation based on the isostasy (3.1) agrees well with the values measured before
the experiments start. Five different interface displacements di/h1= (0.6, 1.2, 1.8, 2.4,
3.0) are chosen and each experiment is repeated five times to reduce random
experimental errors. Then, the wave amplitudes are determined from the measurements
at the fifth wave probe by taking an average over the five repetitions. The emerging
solitary wave amplitudes a/h1 = (0.24, 0.50, 0.77, 0.99, 1.21) are used to name each
experiment. For example, case 0.24 represents the experiment for the solitary wave
whose dimensionless amplitude is 0.24.

The gate is not completely pulled out of the oil layer, but stopped just below the
top free surface to minimize the generation of barotropic surface waves. Nevertheless,
small-amplitude surface waves are always observed. They propagate faster than
the internal waves and are reflected back from the end of the tank. To avoid any
possible contamination of internal solitary wave measurements, the reflection of
fast-propagating small-amplitude surface waves is suppressed by loose nets, as wave
absorbers, placed at the end of the tank.

3.3. Measurement techniques
The generated internal solitary waves are measured by capacitance-type wave probes
with a sampling frequency of 200 Hz. The capacitance-type wave probe was originally
designed to measure the displacement of the air–water interface, and care should be
taken for the oil–water interface. A previous experimental study (Walker 1973) with
Humble oil (Varsol I) and water neglected any influence of the oil on the wave probe
measurement because the wave probe was 550 times less sensitive to the Humble oil
than water. On the other hand, our wave probes are on average only 31 times less
sensitive to the silicone oil than to the water.

To take into account the influence of the silicone oil on the internal displacement
estimation, we use the following formula to determine the interface displacement ζ2
from the output voltage V of the wave probe:

V =Cwζ2 +Co(ζ1 − ζ2), (3.2)

where Cw and Co are the calibration coefficients for water and silicone oil respectively,
and ζ1 is the surface displacement. After using (2.17) to estimate the ratio between
ζ1 and ζ2, the interfacial displacement ζ2 can be determined from (3.2) for the given
output voltage V . The second term on the right-hand side of (3.2) is smaller than
the first term as Co � Cw, as stated above. The resultant difference of the interface
displacement ζ2 is 3.65 % on average when the effect of the upper oil layer is
included.

The accuracy of the measured displacements based on (2.17) and (3.2) is verified
with another independent measurement using a digital camera that is placed in front
of the third wave probe located at x/h1 = 70. The wave amplitude is read from the
images captured by the camera within a possible error of 0.5 mm, or 1 % of the
top layer thickness. A ruler is also positioned inside the tank to take into account
optical refraction by the glass wall. As a result, little discrepancy is found between
the measured amplitudes using the two different methods (figure 2).
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0 0.5 1.0 1.5

FIGURE 2. Comparison between the wave amplitudes measured at x/h1= 70 by a digital
camera, ac, and by a wave probe, aw. The × marks are for case 1.21 in which the internal
solitary waves are perturbed greatly by the Kelvin–Helmholtz instability.

3.4. Measurement errors
Both random noise and bias may contaminate experimental data. The device-originated
mechanical noise is reduced by taking a running average over 20 sample points,
whose time duration is 0.1 s. Other random noise may be produced by imperfectly
set interface levels behind the gate and manual lifting of the gate. The random
noise is reduced by taking the average over five repeated measurements for each
configuration. However, bias is not removed by this averaging process.

Possible factors to produce bias are the thermal expansion of the two fluids during
the experiments and the installed position of the sensing wires. The thermal expansion
mainly influences the internal solitary wave speed. The linear phase speed of internal
waves increases by, at most, 0.99 % when the specific gravity of the oil changes from
0.856 to 0.855 and the specific gravity of the water changes from 0.996 to 0.998. The
position of a sensing wire also has an error of 0.01 m due to technical difficulties in
its installation. The expected error in the phase speed from the installation position
is estimated to be approximately 1 %. Since the error is smaller than the differences
between the various theoretical models used for the comparison, the measurements are
considered to be reliable to determine the validity of the theoretical models.

4. Results
4.1. Wave profiles

As the gate is lifted, the initially displaced interface disintegrates into a leading
solitary wave and a dispersive tail, as shown in figure 3. Comparison between the five
repeated measurements shown in each panel of figure 3 indicates that the experiments
are repeatable. Then, the measured wave profiles are averaged over five repetitions by
specifying the maximum correlation coefficient with one of the five records. Leading
solitary waves are clearly detected even by the first wave probe without any significant
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FIGURE 3. Measured interfacial displacements at the five wave probes, non-
dimensionalized by the top layer thickness h1: (a) case 0.24, (b) case 0.50, (c) case 0.77,
(d) case 0.99 and (e) case 1.21. The dimensionless time for each case is set to zero when
the first wave probe records the largest displacement. The lines represent experimental
data with changing colours from light grey to black for the first to fifth wave probes.

contamination from dispersive tails. The amplitude of the leading solitary wave is
then observed to decrease as it propagates downstream, in particular to the second
wave probe, beyond which it remains approximately unchanged. The initial decrease
of the amplitude implies that the solitary wave needs some time before it reaches a
steady state. Theoretical wave profiles are hence compared with the measurement at
the fifth wave probe to avoid the initially transient effects. As the wave amplitude
increases, the leading solitary wave arrives earlier at wave probes located further
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FIGURE 4. (Colour online) Comparison of internal solitary wave profiles between
experiments and theoretical models: (a) case 0.24, (b) case 0.50, (c) case 0.77, (d)
case 0.99 and (e) case 1.21. The profiles are non-dimensionalized by using the top layer
thickness h1 and each wave speed c measured by the fourth and fifth wave probes. Circles,
experimental data averaged over the five repetitions; black line, MCC-FS; black dashed
line, MCC-RL; blue line, KdV-FS; blue dashed line, KdV-RL.

downstream, as expected. The relationship between the wave amplitude and the speed
will be discussed in detail in the following section.

For the smallest-amplitude case shown in figure 4(a), the averaged wave profile
agrees well with the solitary wave solutions of the weakly nonlinear KdV-RL model
and the strongly nonlinear MCC-FS model. On the other hand, the KdV-FS equation
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(a)

(b)

FIGURE 5. (Colour online) An internal solitary wave recorded by a digital camera during
the experiment of case 1.21 for (a) the front half and (b) the rear half (i.e. the solitary
wave propagates to the left). The pictures are taken just in front of the third wave probe
located at x/h1 = 70. The ruler in cm shown in the figure shows the spatial scale of the
internal-wave motion. The appearance of short surface waves on the top free surface can
also be observed on the top of snapshot (a) and is discussed in § 5.

underestimates the interfacial displacement while the strongly nonlinear MCC-RL
model overestimates it. As the amplitude increases (figure 4b–d), the measured wave
profiles consistently show good agreement only with the MCC-FS model. The solitary
wave profiles from both the KdV-RL equation and the KdV-FS equation are narrower
than the measured wave profiles, while the wave profiles from the MCC-RL model
are broader. Therefore, it can be concluded that an internal solitary wave propagating
under a top free surface is always narrower than that under a rigid lid, which has
not been confirmed experimentally before. In addition, when the internal solitary
wave propagates, it is observed that the top free surface is clearly displaced in the
opposite direction to the interfacial displacement (see figure 5). Thus the free-surface
boundary condition at the top surface is important to correctly describe the profiles
of the internal solitary waves observed in our experiments even though the density
difference (∆= 0.14) is relatively small.

The wave profiles are almost symmetric for small and intermediate wave amplitudes
in figure 4(a–c), but show some asymmetry, in particular, when the amplitude is
almost comparable to the top layer thickness (figure 4d,e). The asymmetry could be
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caused in part by the slight unsteadiness of the experiment, but it is pronounced in
figure 4(e), where the internal solitary wave suffers from the Kelvin–Helmholtz (KH)
instability excited by the large shear across the interface. Figure 5(b) for case 1.21
captures unstable short internal waves that appear on the rear part of the leading
internal solitary wave, while the front part shown in figure 5(a) is smooth. A similar
observation was made in the salt water experiment of Grue et al. (1999). It should
be pointed out that the surface tension between the two immiscible fluids (oil and
water) is non-negligible and plays a stabilizing role when the KH instability is excited.
Therefore, in contrast to previous experiments with salt water, no overturning KH
billows are observed. This implies that the shear induced across the interface by an
internal solitary wave is finite, but is not large enough to overcome the surface tension
effect. While three-dimensional disturbances are observed, as shown in figure 5(b),
the wave probe measurements are taken along the centreline of the tank. We should
also remark that, while short-wavelength disturbances on the interface are excited
initially when the gate is lifted, they are hardly observed as the internal solitary
waves of small or intermediate wave amplitude propagate downstream.

4.2. Wave speed
The wave speed of the leading internal solitary wave is determined based on the time
interval between its arrival at two adjacent wave probes. The interval is determined
to maximize the cross-correlation between the two time series. Since there are five
wave probes, the wave speed is estimated at four locations (i.e., x/h1 = 40, 60, 80
and 100). The amplitudes at the four locations are determined as an average of
the amplitudes measured by two adjacent wave probes. The relationship between
wave speed and wave amplitude is shown in figure 6 for five different cases. As
observed previously from the wave profile measurements, figure 6 again shows that
the leading solitary wave is significantly attenuated after it is released from the
gate, but remains almost unchanged after it passes the third wave probe. The initial
decrease of wave amplitude over the first two wave probe locations is greater than
the standard deviation of the five repeated measurements, but, after the leading wave
passes the third wave probe, the variation of wave amplitude and wave speed is
comparable to the standard deviation.

The measured relationship between wave speed and wave amplitude is compared
with various theoretical models in figure 6. The weakly nonlinear models obviously
overestimate the wave speeds of large-amplitude internal solitary waves. As the
experimental data for intermediate wave amplitudes lie between the two strongly
nonlinear MCC models, it is difficult to draw a conclusion on the validity of the two
strongly nonlinear models in terms of wave speed measurements. For our experimental
set-up, the difference in wave speed between the rigid-lid and free-surface cases is
theoretically as large as 5 % for small-amplitude waves, but decreases to approximately
1.5 % for large-amplitude waves, which is comparable to the possible measurement
error, which was estimated to be at most 2 % in § 3.4. Nevertheless, a significant
discrepancy from the rigid-lid model can be clearly observed for smaller-amplitude
cases, for example case 0.26. Since its agreement with the wave speed measurements
along with our observation of wave profiles is noticeable for a wide range of wave
amplitudes, the strongly nonlinear MCC-FS model is relevant for our experiments
with the top free surface.

5. Short surface waves above internal solitary waves
When the amplitude of an internal solitary wave is relatively large (a/h1 > 0.77),

short surface waves are often observed on the top free surface, approximately right
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FIGURE 6. (Colour online) Measured wave speed c versus wave amplitude a of internal
solitary waves, non-dimensionalized by

√
gh1 and h1 respectively: ♦, data from the first

and second wave probes; ×, data from the second and third wave probes;1, data from
the third and fourth wave probes; E, data from the fourth and fifth wave probes. The
error bars denoted by the short horizontal and vertical lines on top of symbols represent
the standard deviations of five repeated measurements for the wave amplitude and the
wave speed respectively. Black line, MCC-FS; black dashed line, MCC-RL; blue solid
line, KdV-FS; blue dashed line, KdV-RL.

above the front half of the internal solitary wave, not right above or behind
the trough of maximal displacement. The short surface waves form a wave
packet with a representative wavelength of 3–4 cm, as shown in figure 5(a), The
corresponding dimensionless wavelength and wavenumber are λobs/h1 = 0.6∼ 0.8 and
kobsh1 = 7.85 ∼ 10.47 respectively. No noticeable surface waves are detected on the
free surface above the rear half of the solitary wave (figure 5b). The propagation of
the short surface waves is recorded by a camcorder placed at x/h1= 70. It is difficult
to measure the propagation speed of the surface wave packet precisely, but its speed
is found to be approximately close to the wave speed of the internal solitary wave,
as indicated by the straight line in figure 7. Therefore, one can imagine that the short
surface waves are possibly generated by some action of the internal solitary wave.

To study the propagation of the short surface waves, we consider an internal solitary
wave of a/h1= 1.21, for which the appearance of short surface waves is most evident.
For an internal solitary wave of this wave amplitude travelling to the left, the wave
speed is c/(gh1)

1/2' 0.450 from the MCC-FS model, while its linear long-wave speed
is c0/(gh1)

1/2 ' 0.340. It should be noticed that the solitary wave speed of the MCC-
RL model is c/(gh1)

1/2 ' 0.456.
One possible scenario is a (linear) resonance mechanism between long internal

waves and short surface waves, where the following condition is met:

c−0 = c+g . (5.1)
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5 cm

FIGURE 7. (Colour online) Combined snapshots of short surface waves recorded by a
camcorder placed at x/h1 = 70 for case 1.21. The snapshots were taken at every 4/60 s
and the first snapshot is placed at the top of the picture. The straight line whose slope
is the same as the internal solitary wave speed is added to show that the surface wave
packet is propagating with the internal solitary wave.

Here, c−0 is the linear long-internal-wave speed given by (2.16) and c+g is the group
velocity of (relatively) short surface waves, which can be found as described below. In
a two-layer system with a top free surface, the wave frequency Ω for gravity–capillary
waves can be found from

(ρ1 + ρ2 coth kh1 coth kh2)Ω
4 − k [ρ1ĝ1 coth kh1 + ρ2ĝ1 coth kh2

+ (ρ2 − ρ1)ĝ2 coth kh1]Ω2 + (ρ2 − ρ1)ĝ1ĝ2k2 = 0, (5.2)

where k is the wavenumber and ĝi are given by

ĝ1 = g
(

1+ γ1

ρ1g
k2

)
, ĝ2 = g

[
1+ γ2

(ρ2 − ρ1)g
k2

]
, (5.3a,b)

with γ1 and γ2 being the surface tension coefficients on the top free surface and the
interface respectively. For the silicone oil used in the experiment, the surface tension
coefficient at the top free surface is γ1= 0.018 N m−1 (compared with 0.0728 N m−1

for water) and the surface tension effect on short surface waves can be estimated as

γ1k2/ρ1g' 0.053, (5.4)

where k = 2π/4 cm−1, corresponding to the observed surface waves, has been used.
Since this dimensionless parameter, or the inverse of the Weber number, is relatively
small, the surface tension effect can be neglected. Then, the wave frequency for
surface waves can be found from

(ρ1+ ρ2 coth kh1 coth kh2)Ω
4− ρ2gk(coth kh1+ coth kh2)Ω

2+ (ρ2− ρ1)g2k2= 0, (5.5)

whose solutions yield the following linear dispersion relations:

Ω±2 = gk
2(1+ ρT1T2)

[
T1 + T2 ±

√
(T1 + T2)2 − 4T1T2(1− ρ)(1+ ρT1T2)

]
, (5.6)
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where ρ = ρ1/ρ2 < 1, T1 = tanh(kh1) and T2 = tanh(kh2). Here, the plus and minus
signs correspond to the barotropic and baroclinic modes (or the surface-wave
and internal-wave modes) respectively. With the group velocity of surface-mode
waves cg

+ = ∂Ω+/∂k, the wavenumber kres and the corresponding wavelength
λres satisfying the linear resonance condition (c−0 = c+g ) in (5.1) can be found as
kresh1 ' 2.163 and λres/h1 ' 2.904 respectively. Alternatively, as it is relatively large,
this resonant wavenumber can be estimated as kresh1≈ gh1/(2c−0 )2 from the dispersion
relation for surface waves in deep water, for which the group velocity is given by
c+g = (1/2)(g/k)1/2. Compared with the observed wavelength (λobs/h1 = 0.6 ∼ 0.8),
the resonant wave is too long, and, therefore, the linear resonance mechanism is
apparently unable to describe the appearance of short surface waves.

As the large-amplitude internal solitary wave induces a significant surface current us,
the resonance condition accounting for the leading-order nonlinear effect might need
to be modified to

c= c+g + us. (5.7)

It should be noticed that the linear long-wave speed c−0 on the left-hand side of
(5.1) is replaced by the speed of the solitary wave of MCC-FS, while the Doppler
effect is included in estimating the group velocity of short surface waves. Under
this modified resonance condition, the resonant wavenumber kres is approximated by
kresh1 ≈ gh1/[2(c − us)]2. As the upper-layer horizontal velocity u1 induced by the
internal solitary wave varies in space, us is estimated as the upper-layer horizontal
velocity at the location of the maximum displacement of the interface (at X = 0),
so that us/(gh1)

1/2 ' 0.261. Even for the top free-surface case, as can be seen from
(2.12)–(2.13), u1 can be computed from (2.7), although the definition of η1 should be
modified to η1 = h1 + ζ1 − ζ2, where ζ1/ζ2 '−0.131 from (2.17). Then, the resonant
wavenumber and wavelength can be found as kresh1 ' 6.998 and λres/h1 ' 0.898
respectively. In comparison with the observed wavelengths (λobs/h1 = 0.6 ∼ 0.8),
the wavelength estimated by the modified resonant condition (5.7) gives a much
better agreement. Nevertheless, it should be remarked that this result is based on a
particular choice of us, which is the horizontal velocity of the upper layer at the
maximal displacement (X = 0). For example, if the resonance condition is satisfied
away from X = 0 where us is found to be smaller, a longer wave could be excited.
Therefore, it remains to be explained how the surface waves possibly excited by the
resonance mechanism evolve as they propagate with the internal solitary wave.

Here, as in Donato, Peregrine & Stocker (1999), ray theory is adopted to study the
evolution of surface waves in a slowly varying current induced by an internal solitary
wave. In the frame of reference moving with the internal solitary wave speed c, the
background surface current is given, as the leading-order approximation, by U(X)=
u1(X)− c, so that

U(X)=−c
h1

η1
, (5.8)

where X = x− ct. Then, the wave frequency of surface gravity waves in the moving
frame is given by

ω(k, X)=U(X)k±Ω+(k), (5.9)

where the plus (or minus) sign corresponds to the right-going (or left-going) waves
in the absence of surface current. Due to the presence of non-uniform current, the
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wavenumber k no longer remains constant. Instead, from ∂k/∂t + ∂ω/∂X = 0, the
evolution of the local wavenumber k of surface gravity waves is governed by

∂k
∂t
+ (U ± c+g )

∂k
∂X
+ k

dU
dX
= 0. (5.10)

Alternatively, along a ray path defined by

dX
dt
=U(X)± c+g =

∂ω

∂k
, (5.11)

equation (5.10) can be rewritten as

dk
dt
=−kU′(X)=−∂ω

∂X
. (5.12)

Then, as ∂ω/∂t= 0 from (5.9), the following holds for wave frequency ω:

dω
dt
= ∂ω
∂k

dk
dt
+ ∂ω
∂X

dX
dt
= 0, (5.13)

where (5.11) and (5.12) have been used. This implies that ω remains unchanged along
any ray. Thus, if it is initially uniform in space, the wave frequency must be uniform
in space at a later time. In such a situation, the frequency is therefore constant in
both space and time. Then, the variation of the local wavenumber k in X for given
U(X) can be seen along the level curves of ω, or the curves of constant ω, given by
(5.9), from which one can understand how short surface waves are modulated by the
non-uniform background current U(X).

In figure 8, the level curves of ω given by (5.9) are shown for the right- and
left-going surface waves. For the right-going waves (propagating in the direction
opposite to that of the solitary wave in the fixed frame), they are shortened as they
propagate through the current field induced by the solitary wave, but recover their
original wavelengths as they propagate away from the internal solitary wave. On the
other hand, for the left-going waves (propagating in the same direction as the internal
solitary wave in the fixed frame), the change of the wavenumber is more substantial.
The level curves originating from x=−∞ in the moving frame show a sharp increase
of the wavenumber as they approach the internal solitary wave, while the surface
waves of small wavenumbers propagate much faster than the internal solitary wave
so that they propagate to the left even in the moving reference frame with little
interaction. It should be noticed that there are closed contours whose centres are
located at X/h1 = 0 and kh1 ' 6.998, the critical points of (5.11) and (5.12). In fact,
this is exactly the resonance condition at X= 0 given by (5.7). The existence of such
closed contours implies that, once surface waves are excited possibly through the
resonance mechanism and located above the internal solitary wave, the wavenumber
increases rapidly in the front half of the internal solitary wave where U′(X) < 0. This
shows the importance of the gradient of the surface current on the emergence of
short surface wave packets.

As the wavenumber increases, the surface-wave amplitude is also expected to grow
and, therefore, steep surface waves could be observed on the top surface located
above the front half of the internal solitary wave, not right above or behind the wave
trough, as mentioned previously. The location of a packet of short surface waves is
consistent with our observation, but has not been clearly identified. Nevertheless, the
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(a) (b)
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FIGURE 8. The level curves of ω given by (5.9) with the surface current induced by a
solitary wave of a/h1= 1.22. (a) Right-going surface waves, (b) left-going surface waves.

appearance and the evolution of short surface waves still need to be investigated more
systematically, but it should be remarked that the observed location of short surface
waves is close to where the wavenumber increases rapidly. Moreover, if the surface
waves become too steep, linear ray theory becomes invalid and the nonlinear effects
have to be included for a complete explanation.

6. Conclusion
Internal solitary waves of large wave amplitudes have been studied experimentally

in a system of two fluids, silicone oil and water, where the free-surface effects cannot
be neglected due to a small but non-negligible density difference between the two
fluids. The measured wave profiles and wave speeds using multiple wave probes are
averaged over five repeated experiments to reduce measurement errors and are then
validated with independent measurements using a digital camera. The measurements
are also compared with both weakly nonlinear and strongly nonlinear long-internal-
wave models with and without the rigid-lid assumption for the top surface. The weakly
nonlinear KdV models show poor comparison for intermediate- and large-amplitude
waves, while the strongly nonlinear MCC model with a rigid lid, often used for large-
amplitude internal waves in a two-fluid system, predicts wider wave profiles. This
discrepancy has been resolved by the MCC model with a free surface. As the density
difference between the two fluids is non-negligible, it can be concluded that the top
free surface has to be modelled correctly even for internal-wave motion.

When the wave amplitude is large, the rear half of the internal solitary wave suffers
from the Kelvin–Helmholtz instability due to large shear across the interface, while
the front half of the interface is smooth, as observed in previous experiments where
the top surface is bounded by a rigid lid or the density difference between the two
fluids is small. As the length scale of unstable internal waves on the interface is small,
the baroclinic shear instability seems to be confined locally and little influenced by
the presence of the top free surface. Nevertheless, the finite depth effect on baroclinic
shear instability should be addressed with care (Barros & Choi 2014), and the stability
characteristics of internal solitary waves under a free surface should be examined
cautiously.

The propagation of fast barotropic surface waves is observed before the internal
solitary wave is fully formed, but its reflection is greatly reduced by a wave absorber

at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.510
Downloaded from http:/www.cambridge.org/core. New Jersey Institute of Technology, on 09 Sep 2016 at 23:39:11, subject to the Cambridge Core terms of use, available



Internal solitary waves with a free surface 219

at the end of the tank. Therefore, we should remark that the barotropic surface
disturbances are reasonably well controlled, at least visually, in the experiment.
Nevertheless, short surface wave packets have been observed as intermediate- or
large-amplitude internal solitary waves are fully developed. This shows that the initial
amplitude of surface disturbances is too small to be observed, but such disturbances
could grow, by a certain mechanism, to form a localized packet propagating with
the internal solitary wave. As the short surface waves are detected in cases 0.77
and 0.99, where no obvious KH instability is observed, it is assumed that the KH
instability is not a direct cause of the appearance of such short surface waves.
The resonance mechanism between long internal and short surface waves and the
steepening mechanism due to slowly varying currents induced by internal solitary
waves using ray theory are discussed to explain the appearance of the short surface
wave packets on the top surface.

Nevertheless, the description of short surface wave packets should be improved
and a more complete theory for the coupled surface- and internal-wave system
should be developed, in particular including strong nonlinearity of the internal-wave
motion. Unfortunately, no systematic measurements have been made here to find
the relationship between the internal solitary wave amplitude and the characteristic
amplitude and wavelength of short surface waves, including the critical amplitude
of internal solitary waves beyond which short surface waves should be observed. In
addition, no periodic surface waves are generated mechanically in our experiments.
Considering an increased interest in surface signatures of internal solitary waves,
an improved theoretical model along with systematic laboratory experiments on the
interaction between periodic surface waves and internal solitary waves would be
valuable.
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Appendix A. Derivation of the steady MCC-FS model
The horizontal momentum equations for the upper and lower layers given by (2.14)–

(2.15) can be written in the following conserved forms:

v1t + (u1v1)x +
[
g(η1 + η2)− 1

2 u1
2 − 1

2(D1η1 +D1η2)
2
]

x = 0, (A 1)[
v2 + ρ

(
1
2η1D1η1 + η1D1η2

)
x

]
t
+ [u2v2 + ρ u1

(
1
2η1D1η1 + η1D1η2

)
x

]
x

+ [g(ρη1 + η2)− 1
2 u2

2 − 1
2(D2η2)

2 − ρ ( 1
2(D1η1)

2 + (D1η1)(D1η2)
)]

x = 0, (A 2)

where ρ = ρ1/ρ2, and v1 and v2 are given by

v1 = u1 + 1
η1

(
1
3
η1

2D1η1 + 1
2
η1

2D1η2

)
x

+
(

1
2

D1η1 +D1η2

)
η2x, (A 3)
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v2 = u2 + 1
η2

(
1
3
η2

2D2η2

)
x

(A 4)

respectively. It is interesting to notice that (A 1)–(A 2) can also be expressed in
different forms. For example, (A 2) can be written as either(

u2 + 1
6η2

2u2xx

)
t
+ [ 1

2 u2
2 + g(ρη1 + η2)

]
x

= [ 1
2η2

2
(
u2xt + 2

3 u2u2xx − u2x
2
)]

x
− ρ [ 1

2η1(D1
2η1)+ η1(D1

2η2)
]

x (A 5)

or

v2t + (u2v2)x +
[
g(ρη1 + η2)− 1

2 u2
2 − 1

2(D2η2)
2
]

x + ρ
[

1
2η1(D1

2η1)+ η1(D1
2η2)

]
x = 0.

(A 6)
Equation (A 1) can be written similarly.

In addition, equations (2.14)–(2.15) yield physical conservation laws of linear
momentum P and energy E (Barros & Gavrilyuk 2007):

(ρ1η1u1 + ρ2η2u2)t + (ρ1η1u1
2 + ρ2η2u2

2 +P)x = 0, (A 7)(
1
2ρ1η1u1

2 + 1
2ρ2η2u2

2 + E
)

t +
[
u1
(

1
2ρ1η1u1

2 +F1
)+ u2

(
1
2ρ2η2u2

2 +F2
)]

x = 0,
(A 8)

where P , E and Fi are given by

P = g
(

1
2ρ1η1

2 + ρ1η1η2 + 1
2ρ2η2

2
)

(A 9)

+ ρ1
(

1
3η1

2D1
2η1 + 1

2η1η2D1
2η1 + 1

2η1
2D1

2η2 + η1η2D1
2η2
)

+ 1
3ρ2η2

2D2
2η2, (A 10)

E = 1
2 g(ρ1η1

2 + 2ρ1η1η2 + ρ2η2
2)

+ 1
2ρ1η1

[
1
3(D1η1)

2 + (D1η1) (D1η2)+ (D1η2)
2
]+ 1

6ρ2η2(D2η2)
2, (A 11)

F1 = ρ1η1
[
g(η1 + η2)+ 1

6(D1η1)
2

+ 1
2(D1η1)(D1η2)+ 1

2(D1η2)
2 + 1

3η1(D1
2η1)+ 1

2η1(D1
2η2)

]
, (A 12)

F2 = ρ2η2
[
g(ρη1 + η2)+ 1

6(D2η2)
2 + 1

3η2(D2
2η2)

+ ρη1(D1
2η2)+ 1

2ρη1(D1
2η1)

]
. (A 13)

For travelling waves, from (2.12)–(2.13) with (2.6), we have

uiX = c
(

hi

ηi

)(
ηiX

ηi

)
, uiXX = c

(
hi

ηi

)(
ηiX

ηi

)
X

− c
(

hi

ηi

)(
ηiX

ηi

)2

, (A 14a,b)

Gi =−c2

(
hi

ηi

)2 (
ηiX

ηi

)
X

, Di
2ηj = c2hi

(
hi

ηi

)(
ηjX

ηi

)
X

. (A 15a,b)

Then, by using these relationships, the four conservation laws given by (A 1), (A 2),
(A 7) and (A 8) can be integrated in X once with imposition of zero boundary
conditions at infinities, which yields the following four second-order differential
equations:

αj1η
′′
1 + αj2η

′′
2 + αj3η

′
1

2 + αj4η
′
2

2 + αj5η
′
1η
′
2 = αj6 for j= 1, 2, 3, 4, (A 16)

where the prime denotes differentiation with respect to X. It should be noticed
that equations (A 16) for j = 1, 2, 3 and 4 result from (A 1), (A 2), (A 7) and (A 8)
respectively. In (A 16), the coefficients αjk that depend on ηi are given by
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α11 = 1
3

c2h1
2

η1
, α12 = 1

2
c2h1

2

η1
,

α13 =−1
6

c2h1
2

η1
2
, α14 = 1

2
c2h1

2

η1
2
, α15 = 0,

α16 =−g[(η1 − h1)+ (η2 − h2)] + 1
2

c2

[
1−

(
h1

η1

)2
]
,


(A 17)

α21 = 1
2
ρc2h1

2

η1
, α22 = ρc2h1

2

η1
+ 1

3
c2h2

2

η2
,

α23 =−1
2
ρc2h1

2

η1
2
, α24 =−1

6
c2h2

2

η2
2
, α25 =−ρc2h1

2

η1
2
,

α26 =−g[ρ(η1 − h1)+ (η2 − h2)] + 1
2

c2

[
1−

(
h2

η2

)2
]
,


(A 18)

α31 = 1
6
ρc2h1

2

(
2+ 3

η2

η1

)
, α32 = 1

6
c2h2

2

[
2+ 3ρ

h1
2

h2
2

(
1+ 2

η2

η1

)]
,

α33 =−1
6
ρc2h1

2

η1

(
2+ 3

η2

η1

)
, α34 =−1

3
c2h2

2

η2
,

α35 =−1
2
ρc2h1

2

η1

(
1+ 2

η2

η1

)
,

α36 = ρc2h1

(
1− h1

η1

)
+ c2h2

(
1− h2

η2

)
− 1

2
g
[
ρη1

2

(
1− h1

2

η1
2

)
+ 2ρη1η2

(
1− h1

η1

h2

η2

)
+ η2

2

(
1− h2

2

η2
2

)]
,



(A 19)

α41 = 1
6
ρc3h1

2

[
2
(

1− h1

η1

)
+ 3

η2

η1

(
1− h2

η2

)]
,

α42 = 1
2
ρc3h1

2

[
1− h1

η1
+ 2

η2

η1

(
1− h2

η2

)]
,

α43 =−1
6
ρc3h1

2

η1

(
2+ 3

η2

η1
− h1

η1
− 3

h2

η1

)
,

α44 =−1
6

c3h2
2

η2

(
2− h2

η2
+ 3ρ

h1
2

h2
2

h1

η1

η2

η1

)
,

α45 =−1
6

c3h2
2

η1

[
3ρ

h1
2

h2
2 + 2

η2

η1

(
1− h2

η2

)(
3ρ

h1
2

h2
2 − 2

)]
,

α46 = 1
2
ρc3h1

η1

(
1− h1

η1

)2

+ 1
2

c3h2

η2

(
1− h2

η2

)2

− 1
2

cg

[
ρη1

2

(
1− h1

η1

)2

+ 2ρη1η2

(
1− h1

η1

)(
1− h2

η2

)
+ η2

2

(
1− h2

η2

)2
]
.


(A 20)

It should be noticed that (A 5)–(A 6) also give (A 16) with j= 2.
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In principle, from (A 16) with any two values of j, one can obtain a system of two
nonlinear second-order differential equations for η1 and η2, but different combinations
of j would result in different systems. This non-uniqueness is unacceptable; the
systems must be identical. In fact, from (A 16) for j = 1 and 2, one can obtain the
expressions for η1

′′ and η2
′′ as

ηi
′′ = qi(η

′
1, η

′
2, η1, η2) for i= 1, 2. (A 21)

Then, by substituting these into (A 16) for j = 3 or 4, one can obtain the following
first-order nonlinear differential equation in the form of

β1η
′
1

2 + β2η
′
2

2 + β3η
′
1η
′
2 + β4 = 0, (A 22)

where the coefficients βi are given by

β1 = ρc2h1
2η2, β2 = c2(h2

2η1 + 3ρh2
1η2), β3 = 3ρc2h1

2η2, (A 23a−c)

β4 = −3c2[η1(η2 − h2)
2 + ρη2(η1 − h1)

2]
+ 3gη1η2[(η2 − h2)

2 + ρ(η1 − h1)
2 + 2ρ(η1 − h1)(η2 − h2)]. (A 24)

It should be noticed that the left-hand side of (A 22) represents the Hamiltonian
(Barros & Gavrilyuk 2007) for the system given by (A 21). The first three terms on
the left-hand side of (A 22) represent the kinetic energy, while the last term β4 is the
potential energy.
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