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We consider resonant triad interactions between surface and internal gravity waves
propagating in two horizontal dimensions in a two-layer system with a free surface.
As the system supports both surface and internal wave modes, two different types of
resonant triad interactions are possible: one with two surface and one internal wave
modes and the other with one surface and two internal wave modes. The resonance
conditions are studied in detail over a wide range of physical parameters (density and
depth ratios). Explicitly identified are the spectral domains of resonance whose boundaries
represent one-dimensional resonances (class I–IV). To study the nonlinear interaction
between two-dimensional surface and internal waves, a spectral model is derived from
an explicit Hamiltonian system for a two-layer system after decomposing the surface and
interface motions into the two wave modes through a canonical transformation. For both
types of resonances, the amplitude equations are obtained from the reduced Hamiltonian
of the spectral model. Numerical solutions of the explicit Hamiltonian system using a
pseudo-spectral method are presented for various resonance conditions and are compared
with those of the amplitude equations.

Key words: stratified flows, internal waves, surface gravity waves

1. Introduction

Resonant wave interactions have been studied extensively for surface waves on a
homogeneous layer as a main mechanism to determine the spectral distribution of wave
energy (Hammack & Henderson 1993; Janssen 2004). It is well known that the primary
resonant interactions occur among four waves at the third order of nonlinearity for surface
gravity waves (Phillips 1960; Benney 1962; Longuet-Higgins & Smith 1966; McGoldrick
et al. 1966) and three waves at the second order for gravity-capillary waves (McGoldrick
1965; Simmons 1969; McGoldrick 1970; Chabane & Choi 2019).

Resonant wave interactions have been also studied for a two-layer system with a free
surface, where there exist two gravity wave modes: fast surface wave (or barotropic) and
slow internal wave (or baroclinic) modes. Similarly to gravity-capillary waves, three waves
can interact resonantly at the second order of nonlinearity and, depending on participating
wave modes, it has been known that various types of resonances are possible.

† Email address for correspondence: wychoi@njit.edu
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For one-dimensional (1-D) waves, based on the classification suggested by Alam (2012),
the resonant interaction between one internal wave and two counter-propagating surface
waves is often referred to as the class-I resonance (Ball 1964), while the interaction
between one internal wave and two surface waves, all propagating in the same direction,
is identified as the class-III resonance (Alam 2012). As pointed out by Alam (2012), the
resonance that occurs between short surface waves and long internal waves propagating
in the same direction was overlooked in the work of Ball (1964). Nevertheless, due to
its relevance to ocean waves such as a mechanism of short surface wave modulation
by long internal waves, the class-III resonance has been studied for a few decades both
experimentally and theoretically for progressive waves (Lewis, Lake & Ko 1974; Alam
2012; Tanaka & Wakayama 2015; Taklo & Choi 2020) and for standing waves (Joyce 1974).
In addition, the critical case of the class-III resonance where the internal wavenumber
approaches zero has been investigated for its possible application to surface expressions of
internal solitary waves (Hashizume 1980; Funakoshi & Oikawa 1983; Kodaira et al. 2016).

A different type of 1-D resonant interaction can occur between one surface wave and two
counter-propagating internal waves. This interaction has been referred to as the class-II
resonance (Segur 1980). Wen (1995) and Hill & Foda (1996) also studied the class-II
resonance for its application to wave-fluidized seabed interactions. While it is little known,
the resonance between one surface wave and two internal waves, all propagating in the
same direction, is also possible when the ratio of the density of the lower layer to that of
the upper layer is greater than three (see § 2.3), which will be referred to as the class-IV
resonance.

While 1-D resonant interactions, in particular, of classes II and III have been previously
investigated, two-dimensional (2-D) interactions have been studied only for a few special
cases. Ball (1964) schematically discussed the 2-D resonance conditions between two
surface waves and one internal wave, but no detailed discussions were provided except
for the shallow water case, where the wavenumbers of both surface and internal waves
approach zero. As his study focused on the surface and internal waves of infinite
wavelengths, Ball (1964) missed the 1-D class-III resonance. Hill & Foda (1998) and
Jamali, Seymour & Lawrence (2003) investigated 2-D resonant interactions between a
surface wave and two oblique internal waves for a few values of the density and depth
ratios, but no general description was presented. Oikawa, Okamura & Funakoshi (1989)
also considered a 2-D resonant interaction, but their investigation was limited to the critical
condition to study the interaction of a short surface wave packet with an internal wave of
infinite wavelength.

Considering that wave propagation in two horizontal dimensions is unavoidable in real
applications, it would be useful to provide a comprehensive description of 2-D resonant
triad interactions between surface and internal waves in a two-layer system. This study
would also clarify energy transfer mechanisms between the two waves and their long-term
spectral evolutions.

In this paper, we study in § 2 the 2-D resonance conditions in detail and find the domain
of resonance in spectral space for different types of resonant interactions. Then, using
the explicit Hamiltonian formulation of Taklo & Choi (2020) for a two-layer system, a
second-order spectral model describing the evolution of the amplitudes of the surface and
internal wave modes is obtained in § 3 and is further reduced to the amplitude equations for
resonant triads. Then, in § 4 the numerical solutions of the explicit Hamiltonian system are
compared with those of the amplitude equations for various physical parameters. Finally,
concluding remarks are given in § 5.
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FIGURE 1. Two-layer system.

2. Two-dimensional resonance conditions

We consider two homogeneous fluid layers with densities ρi and thicknesses hi with
i = 1 and 2 for the upper and lower layers, respectively (see figure 1). Then the dispersion
relations between the wave frequency ω and the wavenumber k are given (Lamb 1932) by

ω2
± = ρ2gk

2(ρ1T1T2 + ρ2)

[
(T1 + T2) ±

√
(T1 + T2)2 − 4Δρ(ρ1T1T2 + ρ2)T1T2/ρ

2
2

]
,

(2.1)

where k = |k| with k being the two-dimensional wavenumber vector, g is the gravitational
acceleration, Δρ = ρ2 − ρ1 > 0 is assumed for stable stratification and Ti = tanh khi.
Note that both ω+ and ω− are always real for all physical parameters and represent
the wave frequencies for the surface and internal wave modes, respectively. Similarly,
hereafter, the physical variables with + and − signs denote those corresponding to the
surface and internal wave modes, respectively. Note that ζ1 and ζ2 represent the combined
motions of the surface and internal wave modes whose amplitudes can be described after
decomposing ζ1 and ζ2 into the two modes, as discussed in § 3.

For a two-layer system, it has been known that, depending on which wave modes
are involved in resonant interactions, two types of resonances are possible. One is the
resonance between two surface and one internal wave modes while the other is that
between one surface and two internal wave modes. To distinguish from the classification
for 1-D waves, these two types of resonant interactions for 2-D waves will be hereafter
referred to as type-A and type-B resonances, whose conditions are given by

type-A: k+
1 = k+

2 + k−
3 , ω+

1 = ω+
2 + ω−

3 , (2.2)

type-B: k+
1 = k−

2 + k−
3 , ω+

1 = ω−
2 + ω−

3 , (2.3)

respectively, with ω±
j = ω±(kj) ( j = 1, 2, 3) being assumed to be positive. To be shown

later, the 1-D class-I and class-III resonances can be described as special cases of the
type-A resonance defined by (2.2). Similarly, the 1-D class-II resonance between one
surface and two internal wave modes propagating in opposite directions (Segur 1980) is
a part of the class-B resonance. Therefore, the 1-D resonances will not be considered
separately here.

To examine the resonance conditions (2.2) and (2.3) with (2.1), we non-dimensionalize
all physical variables with respect to ρ1, g and h1 so that the dimensionless dispersion
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relations can be written, from (2.1), as

Ω2
± = ρK

2(T1T2 + ρ)

[
T1 + T2 ±

√
(T1 + T2)2 − 4(ρ − 1)(T1T2 + ρ)T1T2/ρ2

]
, (2.4)

where Ω± = (h1/g)1/2ω±, K = kh1, T1 = tanh(K), T2 = tanh(Kh), ρ = ρ2/ρ1 > 1 and
h = h2/h1. Note that the dispersion relations depend on two physical parameters ρ and
h, which are the density and depth ratios, respectively. Then the dimensionless resonance
conditions can be written, from (2.2) and (2.3), as

K 1 = K 2 + K 3, (2.5)

Ω1 = Ω2 + Ω3, (2.6)

where K j = kjh1 with Kj = |K j| > 0 and Ωj = Ω(Kj) > 0. Next, the wavenumber vectors
satisfying the 2-D resonance conditions (2.5) and (2.6) will be described in detail, focusing
on the spectral domain of resonance, where resonant triads can always be found.

2.1. Spectral domain of triad resonance
When the dimensionless wavenumber vectors K j ( j = 1, 2, 3) are expressed, in polar
form, as K j = Kj(cos θj, sin θj), three of the six unknowns (Kj and θj for j = 1, 2, 3) are
free to choose as the resonance conditions (2.5) and (2.6) yield three scalar equations.
After assuming, without loss of generality, that K 1 is aligned with the x-axis (θ1 = 0), the
resonance conditions for the three wavenumber vectors given by (2.5) can be rewritten as

K1 = K2 cos θ2 + K3 cos θ3, 0 = K2 sin θ2 + K3 sin θ3, (2.7a,b)

where sin θ2 and sin θ3 must have opposite signs or be zeros with 0 � |θ2,3| � π. Then, by
fixing two additional free parameters, the solutions of (2.6) and (2.7a,b) can be found. In
this study, K2 and K3 are chosen as the two free parameters.

Then, from (2.6), K1 can be expressed in terms of K2 and K3 and, from (2.7a,b), the
expressions for θ2 and θ3 can be found as

cos θ2 = K2
1 + K2

2 − K2
3

2K1K2
, cos θ3 = K2

1 + K2
3 − K2

2

2K1K3
. (2.8a,b)

Given that | cos θj| � 1, one can see from (2.8a,b) that Kj satisfy the following inequalities:

|K1 − K2| � K3 � K1 + K2, |K1 − K3| � K2 � K1 + K3. (2.9a,b)

In the three-dimensional (K1, K2, K3)-space, the volumes represented by the two
inequalities are identical and define an open tetrahedron originating from the origin and
bounded by three planes defined by

K1 = −K2 + K3, K1 = K2 − K3, K1 = K2 + K3. (2.10a–c)

Therefore, all resonant triads must have Kj ( j = 1, 2, 3) inside the open tetrahedron, T . If
(0, θ2, θ3) are the propagation directions of three waves in a resonant triad, (0,−θ2,−θ3)
are also possible propagation angles, but the corresponding resonant triad is simply the
mirror image of the original triad about the K1-axis. The equalities in (2.9a,b) hold only
when (θ2, θ3) = (0, 0), (0,π), or (π, 0), which implies that 1-D resonant triads must
appear on the faces of T defined by (2.10a–c). Additionally, from (2.7a,b), one can see
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FIGURE 2. Type-A resonance. (a) Surface S in the (K+
1 , K+

2 , K−
3 )-space defined by the

resonance condition for the wave frequencies (2.6) for ρ2/ρ1 = 1.163 and h2/h1 = 4. The dashed
lines represent the edges of T . (b) Region of type-A resonance (shaded), which is the projection
of the resonance surface SR onto the (K+

2 , K−
3 )-plane. The boundaries (dashed) represent the 1-D

class-I and class-III resonant interactions. The black dot on the abscissa denotes the minimum
wavenumber for the 1-D class-III resonance: K+

2m ≈ 2.157. The long dashed line represents the
symmetric case of K+

2 = K−
3 and θ+

2 = −θ−
3 .

that θ2 = −θ3 only when (i) K2 = K3 or (ii) K1 = K2 + K3, the latter of which implies 1-D
waves with θ2 = θ3 = 0.

The resonance condition between the wave frequencies Ωj ( j = 1, 2, 3) given by (2.6)
can be written, after using the linear dispersion relations, in the form of F(K1, K2, K3) = 0,
which defines a surface S in the (K1, K2, K3)-space. Then, any part of S residing inside T
defines the surface of resonance SR.

As the dispersion relations for surface and internal gravity waves are different, to
explicitly find the resonance surface SR, the resonance condition between Ωj ( j = 1, 2, 3)
given by (2.6) needs to be examined separately for the type-A and type-B resonances.

2.2. Type-A resonance between two surface waves and one internal wave
For the type-A resonance, we consider two surface wave modes (K 1,2 = K+

1,2) and one
internal wave mode (K 3 = K−

3 ) that satisfy the resonance conditions

K+
1 = K+

2 + K−
3 , Ω+

1 = Ω+
2 + Ω−

3 , (2.11a,b)

where the superscript + or − for K j ( j = 1, 2, 3) is used just to emphasize that the
wavenumber is associated with either the surface or internal wave mode while Ω±

j are
defined by

Ω±
j = Ω±(Kj). (2.12)

Figure 2(a) shows the surface S and the open tetrahedron T defined by (2.6) and (2.10a–c),
respectively, for h2/h1 = 4 and ρ2/ρ1 = 1.163. The resonance surface denoted by SR is the
part of S inside T and, then, all possible resonant triads stay on SR.

When K+
2 and K−

3 are chosen as two free parameters, the projection of SR onto the
(K+

2 , K−
3 )-plane is shown in figure 2(b), where K±

j = |K±
j | ( j = 2, 3). For any choice of
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FIGURE 3. Type-A resonant triads for ρ2/ρ1 = 1.163 and h2/h1 = 4. (a) K+
1 versus K+

2 (solid)
for different values of K−

3 . The dashed and dash–dotted lines represent the 1-D class-I and
class-III resonances, respectively. (b) θ+

2 (solid) and −θ−
3 (dashed) versus K+

2 for K−
3 = 1, for

which the range of K+
2 is given by 0.337 � K+

2 � 3.398. Note that θ+
1 = 0.

(K+
2 , K−

3 ) inside the shaded area, which will be referred to as the resonance region, K+
1 and

θ±
j ( j = 2, 3) can be computed from (2.6) and (2.8a,b). Then, the corresponding resonant

triad can be constructed inside the resonance region.
The boundaries (in dashed lines) of the resonance region represent 1-D resonant triad

interactions. The upper boundary corresponds to the intersection of the resonance surface
SR with the plane given by K+

1 = −K+
2 + K−

3 so that, from (2.8a,b), θ+
2 = π and θ−

3 = 0.
Therefore, along with θ+

1 = 0, the upper boundary describes the 1-D class-I resonance,
where the two surface wave modes are propagating in opposite directions. As can be seen
in figure 2(b), the 1-D class-I resonance is possible for any value of K+

2 .
On the other hand, the lower boundary in figure 2(b) represents the intersection of SR

with the plane given by K+
1 = K+

2 + K−
3 for which θ+

2 = θ−
3 = 0 from (2.8a,b) so that the

two surface and one internal waves propagate in the same direction. This is known as the
1-D class-III resonance and occurs only when at least one of the surface wavenumbers
(more specifically, K+

1 in our case) is greater than the critical wavenumber K+
c whose

group velocity is the same as the phase velocity of a long internal wave. The critical
wavenumber K+

c depends on the density and depth ratios and, for the physical parameters
used in figure 2, K+

c ≈ 2.17. For 1-D waves, note that the class-III resonance (K+
1 = K+

2 +
K−

3 ) occurs only when K+
2 > K−

3 , while the class-I resonance (K+
1 + K+

2 = K−
3 ) occurs

when an internal wave has a shorter wavelength than two surface waves (K−
3 > K+

1,2).
For 2-D type-A resonant triads, the solutions of (2.11a,b) for different values of K−

3
are shown in figure 3. One can see from figure 3(a) that K+

1 in general increases with
K+

2 for a fixed value of K−
3 . The range of K+

2 is bounded by (K+
2 )min and (K+

2 )max , which
correspond to the values of K+

2 for the 1-D class-I and class-III resonances, respectively.
As can be seen from figure 3(b), for K−

3 = 1, the propagation angle θ+
2 decreases from π

to 0 as K+
2 increases while θ−

3 remains negative. In general, when K−
3 is fixed, θ+

2 > −θ−
3

for (K+
2 )min < K+

2 < K−
3 while the opposite is true for K−

3 < K+
2 < (K+

2 )max .
As pointed out previously, when K+

2 = K−
3 , we have θ+

2 = −θ−
3 so that a surface wave

mode and an internal wave mode are propagating symmetrically about the positive x-axis,
which is the propagation direction of the K+

1 wave. For example, the propagation angle for
the symmetric case with K−

3 = 1 is approximately 38.19◦, as shown in figure 3(b). In fact,
the propagation angle for the symmetric triad varies slightly with K−

3 and its limiting value
as K−

3 → ∞ can be estimated, as follows. From (2.4), for large K, the dispersion relations
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Two-dimensional resonant interactions in a two-layer system 907 A5-7

can be approximated by

Ω2
± �

(
ρ ± 1
ρ + 1

)
K, (2.13)

where ρ = ρ2/ρ1 > 1, and Tj → 1 ( j = 1, 2) as K → ∞ have been used. Then, for the
type-A symmetric resonance with K+

2 = K−
3 , we have, from (2.11a,b),

K+
1 = K−

3

(
1 +

√
ρ − 1
ρ + 1

)2

, cos θ+
2 = K+

1

2K−
3

= 1
2

(
1 +

√
ρ − 1
ρ + 1

)2

. (2.14a,b)

For ρ = ρ2/ρ1 = 1.163, the symmetric triad with K+
2 = K−

3 has K+
1 /K−

3 ≈ 1.624 and θ2 ≈
35.71◦ as K−

3 → ∞.
For a density ratio close to one, relevant for the ocean, the qualitative characteristics

of 2-D resonant triads are similar to those shown in figures 2 and 3, except for the value
of K+

2m, at which the 1-D class-III resonance is originated from the K+
2 -axis, as shown

in figure 2(b). As discussed in Taklo & Choi (2020), when the density ratio approaches
one, K+

2m increases rapidly for the class-III resonance. For example, for h2/h1 = 4 and
ρ2/ρ1 = 1.01, the minimum surface wavenumber for the 1-D class-III resonance is given
by K+

2m ≈ 31.198.
In general, except for the areas near the K+

2 and K−
3 -axes, the 2-D type-A resonant triads

can always be found in the (K+
2 , K−

3 )-plane.

2.3. Type-B resonance between one surface wave and two internal waves
The type-B resonance occurs between one surface and two internal wave modes. When we
assume that K 1 = K+

1 and K 2,3 = K−
2,3, the resonance conditions are given by

K+
1 = K−

2 + K−
3 , Ω+

1 = Ω−
2 + Ω−

3 . (2.15a,b)

Figure 4(a) shows the surface S defined by the resonance condition between Ω+
1 and Ω−

2,3
for ρ2/ρ1 = 1.163 and h2/h1 = 4. Again the part of S inside the open tetrahedron T defines
the resonance surface SR. Figure 4(b) shows the region of resonance, or the projection of
SR onto the (K−

2 , K−
3 )-plane. As the subscripts 2 and 3 in (2.15a,b) can be interchanged,

one can expect the resonance region to be symmetric about the straight line K−
2 = K−

3 , as
can be seen from figure 4(b). The resonant triads on one side of the line of symmetry are
equivalent to those on the other side when the subscripts 2 and 3 are interchanged.

Once again, the boundaries of the resonance region (shaded) in figure 4(b) represent
1-D resonant interactions. The upper and lower boundaries correspond to the intersections
of S with the planes given by K+

1 = −K−
2 + K−

3 and K+
1 = K−

2 − K−
3 , respectively. As

the propagation angles on the upper and lower boundaries are given, from (2.8a,b), by
(θ−

2 , θ−
3 ) = (π, 0) and (θ−

2 , θ−
3 ) = (0,π), respectively, two internal waves in a resonant

triad propagate in opposite directions to each other while the surface wave with θ+
1 = 0

propagates in the positive x-direction. This is known as the 1-D class-II resonance (Segur
1980).

Figure 5(a) shows the variation of K+
1 with K−

2 for different values of K−
3 . For each value

of K−
3 , the admissible range of K−

2 is limited by the 1-D class-II resonance and increases
with K−

3 . For example, for K−
3 = 4, the type-B resonance occurs only for 2.960 � K−

2 �
5.408. The surface wavenumber K+

1 increases with K−
2 in the range, but remains smaller

than both K−
2 and K−

3 . Therefore, the type-B resonance is the interaction between a longer
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FIGURE 4. Type-B resonance for ρ2/ρ1 = 1.163 and h2/h1 = 4. (a) Surface S in the
(K+

1 , K−
2 , K−

3 )-space defined by the resonance condition for the wave frequencies given by (2.6).
The dashed lines represent the edges of T . (b) Region of type-B resonance (shaded), which is the
projection of the resonance surface SR onto the (K−

2 , K−
3 )-plane. The short-dashed lines represent

the 1-D class-II resonant interactions and, as the subscripts 2 and 3 can be changed, the region is
symmetric about the long-dashed line, on which symmetric resonant triads of type-B exist with
K−

2 = K−
3 and θ−

2 = −θ−
3 .

K+
1

5 π

4

3

2

2

4

6

8

10

1

15 3.0 3.5 4.0 4.5 5.01050 0

K –
3 = 12

–θ–
3 θ–

2 

θ2,3
π /2

π /4

3π /4

(b)(a)

K –
2

K –
2

FIGURE 5. Type-B resonant triads for ρ2/ρ1 = 1.163 and h2/h1 = 4. (a) K+
1 versus K−

2 for
different values of K−

3 . The upper and lower dashed lines represent the 1-D class-II resonances
with (θ−

2 , θ−
3 ) = (π, 0) and (θ−

2 , θ−
3 ) = (0, π), respectively. Note that θ+

1 = 0. (b) θ−
2 (solid)

and −θ−
3 (dashed) versus K−

2 for K−
3 = 4. The admissible range of K−

2 is given by 2.960 �
K−

2 � 5.408, whose limits are the two possible values of K−
2 for the 1-D class-II resonance.

surface wave and two shorter internal waves. Due to the symmetry between the subscripts
2 and 3 in the resonance conditions given by (2.15a,b), the propagation angles for the K−

2
and K−

3 waves (θ−
2,3) are reversed when K−

2 = K−
3 , as shown in figure 5(b).

Similarly to the type-A case, the type-B resonance also supports symmetric triads
with K−

2 = K−
3 and θ−

2 = −θ−
3 , as shown in figure 4(b). The surface wavenumber K+

1
in a symmetric triad increases with K−

2 and its limiting behaviour as K−
2 → ∞ can

be found, from the frequency resonance condition for the symmetric case given by
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Two-dimensional resonant interactions in a two-layer system 907 A5-9

Ω+(K+
1 ) = 2Ω−(K−

2 ) with (2.13) for Ω±, as

K+
1 /K−

2 = 4(ρ − 1)/(ρ + 1). (2.16)

On the other hand, the propagation angle θ2 = −θ3 can be found, from (2.8a,b), as

cos θ2 = K+
1 /(2K−

2 ) = 2(ρ − 1)/(ρ + 1). (2.17)

For example, for ρ2/ρ1 = 1.163, the propagation directions of two symmetric internal
waves about the x-axis are close to ±81.34◦, independent of the depth ratio, while the
surface wave is propagating in the positive x-direction.

When the density ratio ρ2/ρ1 approaches 1, the width of the resonance region decreases
toward the line of symmetry K−

2 = K−
3 . Therefore, the type-B resonance is expected to

less frequently occur under realistic oceanic conditions unless the wave frequencies satisfy
Ω+

1 ≈ 2Ω−
2 ≈ 2Ω−

3 . For the symmetric resonance to occur, the propagation angles of the
two internal waves are close to ±90◦, as can be seen from (2.17), so that the surface and
internal waves are propagating almost perpendicularly to each other.

As the density ratio ρ2/ρ1 increases from 1, the resonance region first widens, but,
beyond a certain density ratio, a qualitatively different region of resonance appears.
For example, figure 6 shows the resonance surface SR and its projection onto the
(K−

2 , K−
3 )-plane for ρ2/ρ1 = 3.1 and h2/h1 = 4. The symmetric resonant triad disappears

at a finite value of K−
2 , where the resonance region is split and is bounded by two

outer and two inner boundaries. The outer boundaries still correspond to the 1-D class-II
resonance, but the inner boundaries that appear on the face of the open tetrahedron given
by K+

1 = K−
2 + K−

3 represent a different 1-D resonance. The corresponding propagation
angles can be found, from (2.8a,b), as θ+

1 = θ−
2 = θ−

3 = 0 and, therefore, all three waves
propagate in the same direction, similarly to the 1-D class-III resonance observed in
the type-A resonance. This resonance will be hereafter referred to as the 1-D class-IV
resonance to distinguish it from other 1-D resonances.

To find the critical density ratio beyond which the 1-D class-IV resonance occurs, it is
sufficient to consider the short-wave limit as the class-IV resonance is always observed as
Kj → ∞ ( j = 1, 2, 3), as shown in figure 6. For short waves, using the dispersion relations
given by (2.13) for Ω±, the class-IV resonance conditions can be written as

K+
1 = K−

2 + K−
3 ,

√
K+

1 =
√

ρ − 1
ρ + 1

(√
K−

2 +
√

K−
3

)
, (2.18a,b)

which can be combined to(√
K−

2 −
√

K−
3

)2

/

√
K−

2 K−
3 = ρ − 3 � 0. (2.19)

Therefore, the 1-D class-IV resonance occurs only for ρ = ρ2/ρ1 � 3. Then the three
waves propagate in the same direction.

From figure 6(b), it can be noticed that there exists a critical wavenumber K−
c ,

where the symmetric triad ceases to exist and the class-IV resonance appears. At the
criticality, from K−

2 = K−
3 = K−

c and K+
1 = K−

2 + K−
3 = 2K−

c , the critical wavenumber K−
c

can be computed from the frequency condition for the class-IV resonance: Ω+(2K−
c ) =

2Ω−(K−
c ). For example, for ρ2/ρ1 = 3.1 and h2/h1 = 4, the critical wavenumber K−

c for
the class-IV resonance can be computed as K−

c ≈ 2.072.
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FIGURE 6. Type-B resonance for ρ2/ρ1 = 3.1 and h2/h1 = 4. (a) Surface S in the
(K+

1 , K−
2 , K−

3 )-space defined by the resonance condition for the wave frequencies given by (2.6).
The dashed lines represent the edges of T . (b) Resonance region (shaded) that is the projection
of the resonance surface SR onto the (K−

2 , K−
3 )-plane. The short-dashed lines represent the

1-D class-II and class-IV resonant interactions. The dotted line denotes the symmetric triad
resonance.

Figure 7(a) shows the variations of K+
1 with K−

2 for different values of K−
3 . For

K−
3 < K−

3m (≈1.940), the type-B resonance is possible over a range of K−
2 bounded by

the 1-D class-II resonances. For example, for K−
3 = 1, the range of K−

2 is given by
0.272 � K−

2 � 8.357 and K+
1 increases with K−

2 . The propagation angle of the K−
2 wave

decreases continuously from θ−
2 = π to 0 while the opposite is true for the K−

3 wave, as
shown in figure 7(b). As before, the two propagation angles are the same for the symmetric
case with K−

2 = K−
3 . On the other hand, for K−

3 > K−
3m, the type-B resonance occurs

over two ranges of K−
2 , each bounded by the 1-D class-II and class-IV resonances. For

example, for K−
3 = 4, the admissible ranges of K−

2 are given by 0.580 � K−
2 � 2.337 and

7.488 � K−
2 < ∞, as can be observed in figure 7(c). At K−

2 ≈ 2.337 and 7.488, where the
1-D class-IV resonance happens, θ−

2 = θ−
3 = 0, which implies, with θ+

1 = 0, that both the
surface and internal waves propagate in the positive x-direction, as mentioned previously.

3. Spectral formulation for two-layer system

3.1. Two-layer Hamiltonian system
For a two-layer system shown in figure 1, it has been known (Benjamin & Bridges 1997;
Craig, Guyenne & Kalisch 2005) that the surface and interface motions are governed by a
Hamiltonian system (i = 1, 2):

∂ζi

∂t
= δE

δΨi
,

∂Ψi

∂t
= −δE

δζi
. (3.1a,b)

Here the Hamiltonian E is the total energy. In (3.1a,b), ζ1(x, t) and ζ2(x, t) with x = (x, y)
represent the surface and interface displacements, respectively, while Ψi(x, t) (i = 1, 2)
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FIGURE 7. Type-B resonant triads for ρ2/ρ1 = 3.1 and h2/h1 = 4. (a) K+
1 versus K−

2 for
different values of K−

3 . The dashed and dash–dotted lines represent the class-II and class-IV
resonances, respectively. (b) θ−

2 (solid) and −θ−
3 (dashed) versus K−

2 for K−
3 = 1. The admissible

range of K−
2 is given by 0.272 � K−

2 � 8.357. (c) θ−
2 (solid) and −θ−

3 (dashed) versus K−
2 for

K−
3 = 4. The admissible ranges of K−

2 are given by 0.580 � K−
2 � 2.337 and 7.488 � K−

2 < ∞.

are the density-weighted velocity potentials defined as

Ψ1 = ρ1Φ1, Ψ2 = ρ2Φ2 − ρ1Φ̄1, (3.2a,b)

where Φ1(x, t) ≡ φ1(x, z = ζ1, t), Φ̄1(x, t) ≡ φ1(x, z = −h1 + ζ2, t) and Φ2(x, t) ≡
φ2(x, z = −h1 + ζ2, t) with φi (i = 1, 2) being the solution of the three-dimensional
Laplace equation of the i-th layer. Alternatively, one can define Ψ1 = Φ1 and Ψ2 =
Φ2 − (ρ2/ρ1)Φ1, which is equivalent to considering ρ2 as the density ratio with ρ1 = 1
in the following formulations.

Under the assumption of small wave steepness, ε � 1, Taklo & Choi (2020) obtained
an explicit Hamiltonian system, correct to O(ε2), for ζi and Ψi (i = 1, 2) given by

∂ζ1

∂t
= γ11Ψ1 + γ12Ψ2 − ρ1 γ11

[
ζ1 (γ11Ψ1 + γ12Ψ2)

]− Δρ γ21
[
ζ2 (γ21Ψ1 + γ22Ψ2)

]
− ∇ · (ζ1∇Ψ1)/ρ1 + Δρ(ρ2/ρ1)γ31∇ · (ζ2γ31∇Ψ1) − ρ2γ31∇ · (ζ2γ33∇Ψ2) ,

(3.3)

∂ζ2

∂t
= γ21Ψ1 + γ22Ψ2 − ρ1γ12

[
ζ1 (γ11Ψ1 + γ12Ψ2)

]− Δργ22
[
ζ2 (γ21Ψ1 + γ22Ψ2)

]
− ρ2γ33∇ · (ζ2γ31∇Ψ1) − ρ2J∇ · (ζ2J∇Ψ2) + ρ1γ32∇ · (ζ2γ32∇Ψ2), (3.4)
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∂Ψ1

∂t
= −ρ1gζ1 + 1

2ρ1 (γ11Ψ1 + γ12Ψ2)
2 − 1

2∇Ψ1 · ∇Ψ1/ρ1, (3.5)

∂Ψ2

∂t
= −Δρgζ2 + 1

2Δρ(γ21Ψ1 + γ22Ψ2)
2 + 1

2Δρ(ρ2/ρ1)(γ31∇Ψ1) · (γ31∇Ψ1)

− 1
2ρ2(J∇Ψ2) · (J∇Ψ2) + 1

2ρ1(γ32∇Ψ2) · (γ32∇Ψ2) − ρ2(γ31∇Ψ1) · (γ33∇Ψ2),

(3.6)

where the Fourier multipliers γij are defined as

γ11 = kJ
[
(ρ2/ρ1)T1 + T2

]
, γ12 = γ21 = kJST2, γ22 = kJT2, (3.7a–c)

γ31 = JS, γ32 = JT1T2, γ33 = J(1 + T1T2), (3.8a–c)

with Ti (i = 1, 2), S and J given by

Ti = tanh khi, S = sech kh1, J = (ρ1T1T2 + ρ2)
−1 . (3.9a–c)

Here γijΨl (i, j = 1, 2, 3, l = 1, 2) should be understood as

γijΨl = Γij[Ψl] ≡
∫ ∞

−∞
γ̂ij(x − x ′)Ψl(x ′, t) dx ′, (3.10)

where γ̂ij(x) is the inverse Fourier transform of γij(k). The similar interpretation also
applies to JΨl (l = 1, 2) in (3.4) and (3.6).

The corresponding Hamiltonian that is the total energy E can be written as

E = E2 + E3, (3.11)

where En = O(εn) are given by

E2 = 1
2

∫ [
ρ1gζ1

2 + Δρgζ2
2

+Ψ1(γ11Ψ1) + Ψ1(γ12Ψ2) + Ψ2(γ21Ψ1) + Ψ2(γ22Ψ2)
]

dx, (3.12)

E3 = − 1
2

∫ [
ζ1
{−∇Ψ1 · ∇Ψ1/ρ1 + ρ1 (γ11Ψ1 + γ12Ψ2)

2}
+ ζ2 {Δρ(ρ2/ρ1)(γ31∇Ψ1) · (γ31∇Ψ1) − 2ρ2(γ31∇Ψ1) · (γ33∇Ψ2)

+ρ1(γ32∇Ψ2) · (γ32∇Ψ2) − ρ2(J∇Ψ2) · (J∇Ψ2) + Δρ(γ21Ψ1 + γ22Ψ2)
2}] dx.

(3.13)

Then, it can be shown that the nonlinear evolution equations for ζi and Ψi (i = 1, 2) given
by (3.3)–(3.6) are Hamilton’s equations (3.1a,b). Therefore, the total energy given by (3.11)
with (3.12) and (3.13) is conserved exactly.

While the resonant interactions between surface and internal wave modes are of our
interest, the Hamiltonian system in physical space given by (3.3)–(3.6) describes the
combined surface and interface motions of the two modes. Therefore, it is necessary
to identify the surface and internal wave contributions from the surface and interface
motions. As this decomposition can be accomplished conveniently in spectral space, we
first obtain a spectral model corresponding to the Hamiltonian system (3.3)–(3.6).
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Two-dimensional resonant interactions in a two-layer system 907 A5-13

3.2. Hamiltonian in spectral space
To write the second-order model in spectral space, we introduce the Fourier transforms of
ζj and Ψj ( j = 1, 2):

ζ1,2(x, t) =
∫

a+,−(k, t) e−ik·x dk, Ψ1,2(x, t) =
∫

b+,−(k, t) e−ik·x dk. (3.14a,b)

As ζj and Ψj are real functions, the complex conjugates of a± and b±, denoted by a∗
± and

b∗
±, satisfy

a∗
±(k, t) = a±(−k, t), b∗

±(k, t) = b±(−k, t). (3.15a,b)

By substituting these into (3.12) and (3.13), the second- and third-order Hamiltonians
(leading to the linear and second-order systems, respectively) defined by Hn = En/(2π)2

can be found as

H2 = 1
2

∫ (
ρuga+a∗

+ + Δρga−a∗
− + γ11b+b∗

+ + γ12b∗
+b− + γ21b+b∗

− + γ22b−b∗
−
)

dk,

(3.16)

H3 =
∫∫∫ [

h(1)

1,2,3b+
1 b+

2 a+
3 + h(2)

1,2,3b+
1 b−

2 a+
3 + h(3)

1,2,3b−
1 b−

2 a+
3

+h(4)

1,2,3b+
1 b+

2 a−
3 + h(5)

1,2,3b+
1 b−

2 a−
3 + h(6)

1,2,3b−
1 b−

2 a−
3

]
δ1+2+3 dk1,2,3, (3.17)

where δ(k) is the Dirac delta function with

δj = δ(kj), δ1+2 = δ(k1 + k2), δ1+2+3 = δ(k1 + k2 + k3), (3.18a–c)

and we have used the following shorthand notation for j = 1, 2:

a±
j = a±(kj), b±

j = b±(kj), dk1,2,3 = dk1 dk2 dk3. (3.19a–c)

Note that, due to δ1+2+3, the triple integral in (3.17) can be written as a double integral.
In (3.16) and (3.17), as the subscripts are used to denote the wavenumber dependence, ρ1
and ρ2 are replaced by ρu and ρl, respectively, and the superscripts have been used for ±
whenever necessary to avoid any confusion with the indices for wavenumbers. Likewise,
T1 and T2 are replaced by U and L so that

Uj = tanh(kjh1), Lj = tanh(kjh2), Jj = (
ρuUjLj + ρl

)−1
, Sj = sech(kjh1).

(3.20a–d)
The coefficients h( j)

1,2,3 for j = 1, 2, . . . , 6 in (3.17) are defined as

h(1)

1,2,3 = − 1
2(k1 · k2)/ρu − 1

2ρuγ11,1γ11,2, (3.21)

h(2)

1,2,3 = −ρuγ11,1γ12,2, h(3)

1,2,3 = − 1
2ρuγ12,1γ12,2, (3.22)

h(4)

1,2,3 = − 1
2Δρ

[−(ρl/ρu)γ31,1γ31,2(k1 · k2) + γ21,1γ21,2
]
, (3.23)

h(5)

1,2,3 = −Δργ21,1γ22,2 − ρlγ31,1γ33,2(k1 · k2), (3.24)

h(6)

1,2,3 = − 1
2

[
Δργ22,1γ22,2 + (

ρlγ30,1γ30,2 − ρuγ32,1γ32,2
)
(k1 · k2)

]
, (3.25)
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907 A5-14 W. Choi, M. Chabane and T. M. A. Taklo

where γmn,j denote γmn defined in (3.7a–c) with k = kj so that

γ11,j = kjJj
[
(ρl/ρu)Uj + Lj

]
, γ12,j = γ21,j = kjJjSjLj, γ22,j = kjJjLj, (3.26a–c)

γ30,j = Jj, γ31,j = JjSj, γ32,j = JjUjLj, γ33,j = Jj(1 + UjLj). (3.27a–d)

Note that h( j)
1,2,3 satisfy the following conditions:

h( j)
1,2,3 = h( j)

2,1,3 for j = 1, 3, 4, 6, (3.28)

h( j)
1,2,3 = h( j)

−1,−2,3 = h( j)
1,2,−3 = h( j)

−1,−2,−3 for j = 1, . . . , 6. (3.29)

From Hamilton’s equations in spectral space (Krasitskii 1994) with H = H2 + H3, the
evolution equations for a± and b± can be obtained from

∂a±
∂t

= δH
δb∗±

,
∂b±
∂t

= − δH
δa∗±

, (3.30a,b)

which are given explicitly in appendix A.

3.3. Mode decomposition into surface and internal wave modes
As a± and b± represent the combined motions of the surface and internal wave modes, the
system for a± and b± given by (3.30a,b), or, explicitly by (A 1) and (A 2), is inconvenient to
study energy transfer between the two wave modes. Therefore, it is desirable to decompose
a± and b± into the amplitudes of the two modes.

As described in detail in appendix B, one can find new conjugate variables
q = (q+, q−)T and p = ( p+, p−)T from a = (a+, a−)T and b = (b+, b−)T using the
transformation

a = Qq, b = Pp, (3.31a,b)

where Q and P are 2 × 2 matrices given by (B 16). Here q and p correspond to
the generalized coordinate and momentum, respectively, with (q+, p+) and (q−, p−)
describing the surface and internal wave modes, respectively. Note that (q, p) and their
complex conjugates are related as

q(−k, t) = q∗(k, t), p(−k, t) = p∗(k, t). (3.32a,b)

By substituting (B 16) into (3.16) (with the help of Mathematica), the second-order
Hamiltonian H2 can be found, in terms of the conjugate variables (q±, p±), as

H2 = 1
2

∫ [(
ω2

+q+q∗
+ + p+p∗

+
)+ (

ω2
−q−q∗

− + p−p∗
−
)]

dk, (3.33)

where the sum of the first two terms and that of the last two terms represent the total
energy of the surface and internal wave modes, respectively, under the linear assumption.

The expression for the third-order Hamiltonian H3 representing the nonlinear
interactions between the surface and internal wave modes can be found, in terms of the
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Two-dimensional resonant interactions in a two-layer system 907 A5-15

conjugate variables (q±, p±), as

H3 =
∫∫∫ [

U(1)

1,2,3p+
1 p+

2 q+
3 + U(2)

1,2,3p+
1 p−

2 q+
3 + U(3)

1,2,3p−
1 p−

2 q+
3

+U(4)

1,2,3p+
1 p+

2 q−
3 + U(5)

1,2,3p+
1 p−

2 q−
3 + U(6)

1,2,3p−
1 p−

2 q−
3

]
δ1+2+3 dk1,2,3, (3.34)

where U( j)
1,2,3 for j = 1, . . . , 6 are listed in appendix C. Once again, we have used the

superscripts ± to avoid any confusion with the indices for wavenumbers so that p±
j =

p±(kj, t) and q±
j = q±(kj, t). From Hamilton’s equations given by (B 15), or

∂q
∂t

= δH
δp∗ ,

∂p
∂t

= − δH
δq∗ , (3.35a,b)

one can find the evolution equations for (q, p), which are explicitly given in (B 18)–(B 21).

3.4. Scalar complex amplitudes
Following Zakharov (1968) for surface waves, instead of using q(k, t) and p(k, t), we
introduce the following scalar complex amplitudes z±(k, t) for the surface and internal
wave modes, respectively,

z±(k, t) =
√

ω±
2

[
q±(k, t) − i

p±(k, t)
ω±

]
, (3.36)

from which q± and p± can be written in terms of z± as

q±(k, t) =
√

1
2ω±

[
z±(k, t) + z∗

±(−k, t)
]
, p±(k, t) = i

√
ω±
2

[
z±(k, t) − z∗

±(−k, t)
]
,

(3.37a,b)

where we have used (3.32a,b), and ω± are assumed positive. Then, z± can be related to
(a, b) from (3.31a,b) with (3.37a,b).

By substituting (3.37a,b) into (3.33) and (3.34), H2 can be found, in terms of z±(k, t),
as

H2 =
∫ (

ω+z+z∗
+ + ω−z−z∗

−
)

dk, (3.38)

where the first and second terms represent the total energy of the surface and internal wave
modes, respectively, while H3 is given by

H3 =
∫∫∫ [{

V (1)

1,2,3(z
+
1

∗z+
2 z+

3 + z+
1 z+

2
∗z+

3
∗
) + V (2)

1,2,3(z
+
1

∗z+
2 z−

3 + z+
1 z+

2
∗z−

3
∗
)

+ V (3)

1,2,3(z
−
1

∗z+
2 z+

3 + z−
1 z+

2
∗z+

3
∗
) + V (4)

1,2,3(z
−
1

∗z−
2 z+

3 + z−
1 z−

2
∗z+

3
∗
)

+ V (5)

1,2,3(z
+
1

∗z−
2 z−

3 + z+
1 z−

2
∗z−

3
∗
) + V (6)

1,2,3(z
−
1

∗z−
2 z−

3 + z−
1 z−

2
∗z−

3
∗
)
}

δ1−2−3

+
{

V (7)

1,2,3(z
+
1 z+

2 z+
3 + z+

1
∗z+

2
∗z+

3
∗
) + V (8)

1,2,3(z
+
1 z+

2 z−
3 + z+

1
∗z+

2
∗z−

3
∗
)

+ V (9)

1,2,3(z
+
1 z−

2 z−
3 + z+

1
∗z−

2
∗z−

3
∗
) + V (10)

1,2,3(z
−
1 z−

2 z−
3 + z−

1
∗z−

2
∗z−

3
∗
)
}

δ1+2+3

]
dk1,2,3,

(3.39)
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907 A5-16 W. Choi, M. Chabane and T. M. A. Taklo

where z±
j = z±(kj, t) and the expressions for V ( j)

1,2,3 for j = 1, . . . , 10 are listed in
appendix C. Then, from (3.35a,b), Hamilton’s equations given, with H = H2 + H3, by

∂z±
∂t

= i
δH
δz∗±

, (3.40)

yield the evolution equations for z±(k, t) that are explicitly written in (B 23).
The system given by (3.40) is an alternative to the second-order spectral model for (q±,

p±) given by (B 18)–(B 21) and is valid for both resonant and non-resonant interactions.
While the original system of four equations given by (B 18)–(B 21) has been reduced to
a system of two equations in (B 22)–(B 23), the number of degrees of freedom, or the
number of real unknowns remains the same as there are no relationships between z± and
their complex conjugates. Therefore, z± are defined in the whole k-plane while p± and q±
can be defined only in a half of the k-plane as they are related to their complex conjugates,
as shown in (3.32a,b). Nevertheless, to be shown in the followings, the system for z± is
advantageous to study the resonant interactions between the surface and internal wave
modes.

3.5. Reduced Hamiltonians for resonant triad interactions
To study the resonant triad interactions, it is convenient to find a reduced Hamiltonian
from H3. We first write z± as

z±(k, t) = Z±(k, t) eiω±t, (3.41)

where, due to nonlinearity, Z± are assumed to depend on time. When (3.41) is substituted
into the expression for H3 given by (3.39), the integrands of H3 can be expressed in terms
of products of Z± multiplied by exponential functions oscillating in time with frequencies
that are linear combinations of the three wave frequencies. While the integrands are rapidly
oscillatory for non-resonant triads, those for resonant waves become independent of fast
time as their exponents vanish under the resonance conditions. Therefore, for resonant
triads, Z± depend only on the slow time, or, specifically, εt. Then, the evolution of resonant
triads can be described by the reduced Hamiltonian that is independent of fast time t.
This approach, widely used for gravity and gravity-capillary waves (Zakharov 1968; Mei,
Stiassnie & Yue 2005; Chabane & Choi 2019), will be adopted here.

3.5.1. Type-A resonant triad interactions
For type-A resonant interactions, the reduced Hamiltonian HA can be identified as

HA =
∫∫∫

V (2)

1,2,3

(Z+
1

∗Z+
2 Z−

3 e−iΔ1,2,3t + Z+
1 Z+

2
∗Z−

3
∗ eiΔ1,2,3t

)
δ1−2−3 dk1,2,3, (3.42)

where Z±
j = Z±(kj, t), and Δ1,2,3 = ω+

1 − ω+
2 − ω−

3 = O(ε) � 1 has been assumed for
near-resonant interactions. For exact resonances, Δ1,2,3 = 0. This is the only integral that
is independent of fast time under the type-A resonance frequency condition given by
ω+

1 = ω+
2 + ω−

3 and depends only on slowly varying amplitude functions, Z+
1 , Z+

2 and
Z−

3 . All other integrals rapidly oscillating in time have been neglected. For example, the
terms proportional to V (3)

1,2,3 and V (8)

1,2,3 represent the interactions between two surface and
one internal wave modes, but oscillate fast with the frequencies of ±(ω−

1 − ω+
2 − ω+

3 )
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Two-dimensional resonant interactions in a two-layer system 907 A5-17

and ±(ω+
1 + ω+

2 + ω−
3 ), respectively, that are non-vanishing. Therefore, they describe

non-resonant interactions.
Then, from ∂Z±/∂t = i(δHA/δZ∗

±), the slowly varying amplitude equations for Z± are
given by

∂Z+
∂t

= i
∫∫ (

V (2)

0,1,2Z+
1 Z−

2 e−iΔ0,1,2tδ0−1−2 + V (2)

2,0,1Z−
1

∗Z+
2 eiΔ2,0,1tδ0+1−2

)
dk1,2, (3.43)

∂Z−
∂t

= i
∫∫

V (2)

1,2,0Z+
1 Z+

2
∗ eiΔ1,2,0tδ0−1+2 dk1,2. (3.44)

It should be pointed out that, as Δ1,2,3 = ω+
1 − ω+

2 − ω−
3 = O(ε) � 1, the integrations in

(3.43) and (3.44) should be performed over the resonance region in the (k1, k2)-plane,
where the resonance conditions (2.2) are approximately satisfied. As mentioned
previously, the 1-D class-III resonance is the unidirectional limit of the type-A resonance
and, therefore, the reduced Hamiltonian for the 1-D class-III resonance is still given by
(3.42) once the integration is performed over a range of one-dimensional wavenumbers
for which the 1-D class-III resonance is possible.

Under the exact resonance condition (Δ1,2,3 = 0), in addition to conservation of the
reduced Hamiltonian HA, one can show that the system of (3.43) and (3.44) conserves the
quantities

d
dt

∫ (
ω+|Z+|2 + ω−|Z−|2) dk = 0,

d
dt

∫
k
(|Z+|2 + |Z−|2) dk = 0, (3.45a,b)

where the type-A resonance conditions given by (2.2) have been used.
For a single resonant triad satisfying the exact type-A resonance conditions (k+

1 = k+
2 +

k−
3 and ω+

1 = ω+
2 + ω−

3 ), a wave field is assumed to consist of two surface waves and one
internal wave so that

Z+(k, t) = Z+
1 (t)δ(k − k1) + Z+

2 (t)δ(k − k2), Z−(k, t) = Z−
3 (t)δ(k − k3).

(3.46a,b)

Then, the reduced Hamiltonian HA is given, from (3.42), by

HA = V (2)

1,2,3(Z+
1

∗Z+
2 Z−

3 + Z+
1 Z+

2
∗Z−

3
∗
), (3.47)

from which the amplitude equations can be obtained, Ż±
j = iδHA/δZ±

j
∗, as

Ż+
1 = iV (2)

1,2,3Z+
2 Z−

3 , Ż+
2 = iV (2)

1,2,3Z+
1 Z−

3
∗
, Ż−

3 = iV (2)

1,2,3Z+
1 Z+

2
∗
, (3.48a–c)

where ḟ = df /dt. Note that the coefficient V (2)

1,2,3 can be made equal to one by rescaling t if
necessary. In addition to conservation of HA, it can be shown from (3.45a,b) and (3.46a,b)
that the discrete system has the conservation laws

d
dt

(
ω+

1

∣∣Z+
1

∣∣2 + ω+
2

∣∣Z+
2

∣∣2 + ω−
3

∣∣Z−
3

∣∣2) = 0,
d
dt

(
k1

∣∣Z+
1

∣∣+ k2

∣∣Z+
2

∣∣2 + k3

∣∣Z−
3

∣∣2) = 0,

(3.49a,b)

which can be shown, using (2.2), to be equivalent to

d
dt

(∣∣Z+
1

∣∣2 + ∣∣Z+
2

∣∣2) = 0,
d
dt

(∣∣Z+
1

∣∣2 + ∣∣Z−
3

∣∣2) = 0. (3.50a,b)

These are known as the Manley–Rowe relations (Manley & Rowe 1956).
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To be shown later, in addition to an exact resonant triad (k+
1 , k+

2 , k−
3 ), a few additional

surface wave modes can be excited through successive near-resonant interactions of type-A
such that k+

l = k+
m + k−

3 and ω+
l = ω+

m + ω−
3 + Δl,m,3 with |Δl,m,3| � 1. In such cases, the

complex amplitude of the surface wave Z+ should be expressed as

Z+(k, t) = Z+
1 (t)δ(k − k+

1 ) + Z+
2 (t)δ(k − k+

2 ) +
2(N+1)∑

j=4

Z+
j (t)δ(k − k+

j ), (3.51)

where N is a positive integer with 2N − 1 being the number of near-resonant triads and

k+
4 = k+

1 + k−
3 , k+

2n+1 = k+
1 − nk−

3 , k+
2(n+1) = k+

1 + nk−
3 , n � 2. (3.52)

In (3.51), Z+
j ( j � 4) represent the complex amplitudes of the successive near-resonant

triads. For example, for N = 3, from (3.43) and (3.44), the amplitude equations can be
found as

Ż+
1 = i

(
V (2)

1,2,3Z+
2 Z−

3 e−iΔ1,2,3t + V (2)

4,1,3Z+
4 Z−

3
∗ eiΔ4,1,3t

)
, (3.53)

Ż+
2 = i

(
V (2)

1,2,3Z+
1 Z−

3
∗ eiΔ1,2,3t + V (2)

2,5,3Z+
5 Z−

3 e−iΔ2,5,3t
)

, (3.54)

Ż−
3 = i

(
V (2)

1,2,3Z+
1 Z+

2
∗ eiΔ1,2,3t + V (2)

4,1,3Z+
1

∗Z+
4 eiΔ4,1,3t

+ V (2)

2,5,3Z+
2 Z+

5
∗ eiΔ2,5,3t + V (2)

6,4,3Z+
4

∗Z+
6 eiΔ6,4,3t

+V (2)

5,7,3Z+
5 Z+

7
∗ eiΔ5,7,3t + V (2)

8,6,3Z+
6

∗Z+
8 eiΔ8,6,3t

)
, (3.55)

Ż+
4 = i

(
V (2)

4,1,3Z+
1 Z−

3 e−iΔ4,1,3t + V (2)

6,4,3Z+
6 Z−

3
∗ eiΔ6,4,3t

)
, (3.56)

Ż+
5 = i

(
V (2)

2,5,3Z+
2 Z−

3
∗ eiΔ2,5,3t + V (2)

5,7,3Z+
7 Z−

3 e−iΔ5,7,3t
)

, (3.57)

Ż+
6 = i

(
V (2)

6,4,3Z+
4 Z−

3 e−iΔ6,4,3t + V (2)

8,6,3Z+
8 Z−

3
∗ eiΔ8,6,3t

)
, (3.58)

Ż+
7 = iV (2)

5,7,3Z+
5 Z−

3
∗ eiΔ5,7,3t, Ż+

8 = iV (2)

8,6,3Z+
6 Z−

3 e−iΔ8,6,3t. (3.59a,b)

If no successive near-resonant interactions occur, (3.53)–(3.55) with Zj = 0 ( j =
4, . . . , 8) can be reduced to (3.48a–c). For N = 1, the amplitude equations are given by
(3.53)–(3.56) with Zj = 0 ( j = 5, 6, 7, 8) and, for N = 2, by (3.53)–(3.58) with Z7 =
Z8 = 0.

3.5.2. Type-B resonant triad interactions
For type-B resonant interactions between one surface wave and two internal waves, the

reduced Hamiltonian HB can be found as

HB =
∫∫∫

V (5)

1,2,3

(Z+
1

∗Z−
2 Z−

3 e−iΔ1,2,3t + Z+
1 Z−

2
∗Z−

3
∗ eiΔ1,2,3t

)
δ1−2−3 dk1,2,3, (3.60)
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Two-dimensional resonant interactions in a two-layer system 907 A5-19

from which the amplitude equations for Z± are given, using ∂Z±/∂t = i(δHB/δZ∗
±), by

∂Z+
∂t

= i
∫∫

V (5)

0,1,2Z−
1 Z−

2 e−iΔ0,1,2tδ0−1−2 dk1,2, (3.61)

∂Z−
∂t

= i
∫∫ (

V (5)

1,0,2 + V (5)

1,2,0

)
Z+

1 Z−
2

∗ eiΔ1,0,2tδ0−1+2 dk1,2. (3.62)

For the type-B resonance, Δ1,2,3 is defined as Δ1,2,3 = ω+
1 − ω−

2 − ω−
3 . Under the exact

resonance condition (Δ1,2,3 = 0), the system for the type-B resonance given by (3.61) and
(3.62) also satisfies the conservations laws given by (3.45a,b). Similarly to the type-A
resonance, the terms proportional to V (4)

1,2,3 and V (9)

1,2,3 describe non-resonant interactions
between one surface and two internal wave modes.

For a single triad satisfying the exact type-B resonance conditions (k+
1 = k−

2 + k−
3 and

ω+
1 = ω−

2 + ω−
3 ), Z± can be written as

Z+(k, t) = Z+
1 (t)δ(k − k+

1 ), Z−(k, t) = Z−
2 (t)δ(k − k−

2 ) + Z−
3 (t)δ(k − k−

3 ).

(3.63a,b)

Then the amplitude equations can be found, from Ż±
j = iδHB/δZ±

j
∗, as

Ż+
1 = i

(
V (5)

1,2,3 + V (5)

1,3,2

)
Z−

2 Z−
3 , Ż−

2,3 = i
(

V (5)

1,2,3 + V (5)

1,3,2

)
Z+

1 Z−
3,2

∗
. (3.64a,b)

Similarly to the type-A resonance, under the exact resonance conditions given by (2.3), it
can be shown the system obeys the conservation laws

d
dt

(
ω+

1

∣∣Z+
1

∣∣2 + ω−
2

∣∣Z−
2

∣∣2 + ω−
3

∣∣Z−
3

∣∣2) = 0,
d
dt

(
k1

∣∣Z+
1

∣∣+ k2

∣∣Z−
2

∣∣2 + k3

∣∣Z−
3

∣∣2) = 0,

(3.65a,b)

which yield the Manley–Rowe relations given by (3.50a,b) with replacing Z+
2 (t) by Z−

2 (t).
For near-resonant interactions, the right-hand sides of the amplitude (3.64a,b) need to be

multiplied by exp(−iΔ1,2,3t) and exp(iΔ1,2,3t), respectively. Unlike the type-A resonance,
from the type-B resonance conditions (2.15a,b), one can note that successive near-resonant
interactions are unlikely to occur with Ω+ > Ω−.

4. Numerical solutions for 2-D resonant triad interactions

4.1. Numerical method for the Hamiltonian system
To solve numerically the explicit Hamiltonian system (3.3)–(3.6) after it is
non-dimensionalized with respect to h1 and g, we adopt a pseudo-spectral method based
on the fast Fourier transform algorithm similar to that used in Taklo & Choi (2020) for 1-D
waves. While the detailed description and discussion about the numerical scheme and its
accuracy can be found in Taklo & Choi (2020), they are summarized as follows. We let Lx

and Ly be the lengths in the x- and y-directions of the computational domain. The number
of Fourier modes is Nx × Ny , where Nx and Ny are the numbers of grid points along
the x- and y-directions, respectively. Typically we use 16 grid points per wavelength. The
linear integral operators Γij in the Hamiltonian system are evaluated in Fourier space using
(3.10). The smallest wavenumbers resolved in Fourier space are given by ΔKx = 2π/Lx

and ΔKy = 2π/Ly . Once the right-hand sides of the Hamiltonian system are evaluated
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907 A5-20 W. Choi, M. Chabane and T. M. A. Taklo

using the pseudo-spectral method, the system is integrated in time using a fourth-order
Runge–Kutta scheme with time step Δt. To avoid aliasing errors resulting from the use of
truncated Fourier series, a low-pass filter is applied to eliminate one-third of the highest
wavenumber modes.

The pseudo-spectral model requires periodic boundary conditions. Then, the x- and
y-components of the wavenumber vector (Kx and Ky) need to be integer multiples of each
other so that the waves whose wavelengths are given by λx = 2π/Kx and λy = 2π/Ky

are periodic within the computational domain. Under this restriction, the x-components of
the wavenumber vectors for two waves in a resonant triad, say Klx and Kn x , are fixed
with Klx = MKn x , where an integer M and Kn x are chosen as two free parameters in
the problem. Considering that we have chosen K1 y = 0, the resonance condition for the
wavenumber vectors given by (2.5) requires K1x = K2x + K3x and K2 y = K3 y . Then the
only unknown is K2 y , which can be determined by the frequency condition (2.6).

The lengths of the total computational domain for the Hamiltonian system are chosen to
be Lx/λ1 = K1x and Ly/λ1 = 2K1x/|K2 y|, where λ1 = 2π/K1x .

To initialize ζ1,2 and Ψ1,2 for the explicit Hamiltonian system (3.3)–(3.6), their Fourier
coefficients a± and b± can be prescribed. For example, for the surface (or internal) wave
mode, a+ (or a−) is given and the remaining variables are computed using their linear
relationships given by (A 15) and (A 16). Then, after assuming that only two wave modes
in a resonant triad initially have non-zero amplitudes, we monitor the growth of the third
mode and the subsequent interaction among the three modes.

4.2. Link to the amplitude equations
To solve the amplitude equations, one should initialize Z± in a way consistent with the
initial conditions for the Hamiltonian system and transform the solutions of the amplitude
equations back to the original physical variables for the Hamiltonian system. In other
words, Z± need to be related to a± and b±.

From (3.31a,b) and (3.37a,b), for a pure surface wave mode (q− = p− = 0), a± and b±
can be expressed, in terms of q+ and p+, as

a±(K , t) = Q(m,1)q+, b±(K , t) = P(m,1)p+, (4.1a,b)

where m = 1 for a+ and b+ and m = 2 for a− and b−. Note that a+ and a− are the
Fourier coefficients of the surface and interface displacements, respectively, induced by
the surface wave motion. On the other hand, for a pure internal wave mode (q+ = p+ = 0),
the expressions for a± and b± are given, in terms of q− and p−, by

a±(K , t) = Q(m,2)q−, b±(K , t) = P(m,2)p−. (4.2a,b)

For small amplitude waves, when the system given by (B 18)–(B 21) is linearized, the
relationships between p± and q± can be found as

p± = iΩ±q±, (4.3)

which can be substituted into (3.36) to find the expressions for z± as

z± =
√

2Ω± q± = −i
√

2/Ω± p±. (4.4)

Then, from (4.1a,b)–(4.2a,b) and (4.4), a± and b± can be related to z±, for a pure surface
wave mode, as

a±(K , t) ≈ 1√
2Ω+

Q(m,1)z+(K , t), b±(K , t) ≈ i

√
Ω+
2

P(m,1)z+(K , t), (4.5a,b)
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Two-dimensional resonant interactions in a two-layer system 907 A5-21

and, for a pure internal wave mode, as

a±(K , t) ≈ 1√
2Ω−

Q(m,2)z−(K , t), b±(K , t) ≈ i

√
Ω−
2

P(m,2)z−(K , t), (4.6a,b)

where, once again, m = 1 for a+ and b+ and m = 2 for a− and b−. Equations (4.5a,b) and
(4.6a,b) provide, under the small amplitude assumption, the leading-order relationships
of a± and b± with z±(k, t) and, therefore, Z±(k, t). These are then used to initialize the
amplitude equations to be consistent with the Hamiltonian system and to compare the
numerical solutions of the two models. In particular, the real amplitudes A+ = 2|a+| and
A− = 2|a−| for the surface and internal wave modes, respectively, are monitored for the
explicit Hamiltonian system and can be related to Z± as

A+(K , t) =
√

2
Ω+

∣∣Q(1,1)
∣∣ |Z+(K , t)| , A−(K , t) =

√
2

Ω−

∣∣Q(2,2)
∣∣ |Z−(K , t)| , (4.7a,b)

where, from (3.41), |z±| = |Z±| have been used.

4.3. Numerical results
We numerically study five different 2-D resonant triad interactions: three cases for type A
and two for type B. Both the Hamiltonian system and the amplitude equations described
in §§ 3.1 and 3.5, respectively, are solved numerically and their solutions are compared.
As presented later, the plots for the surface and interface displacements show the whole
computational domain.

For the weakly nonlinear assumption for these models to be valid, the initial wave
steepnesses defined by KjAj should be small. In addition, the dimensionless real wave
amplitudes Aj introduced in (4.7a,b) are assumed to be small, which means the wave
amplitudes are small compared with the upper layer thickness h1. This additional
assumption is crucial particularly for small Kj for which higher-order nonlinearities for
long waves missing in the second-order model need to be taken into account. Here we
choose both KjAj and Aj to be O(10−2). Table 1 summarizes the dimensionless wave
parameters of resonant triads used for computations, including the wavenumbers, wave
frequencies and propagation angles along with the coefficients of the amplitude equations.

4.3.1. Type-A resonant interactions
(i) Case A1. As discussed in § 2.2, the type-A resonance is the resonant interaction

between two surface waves and one internal wave. The first case considered here is when
the two surface waves with K+

1 = (2, 0) and K+
2 = (0, 1.012) propagate perpendicularly

to each other. The density and depth ratios are chosen to be ρ2/ρ1 = 1.163 and
h2/h1 = 4. While the initial wave steepnesses are K+

1 A+
1 = K+

2 A+
2 = 0.01, note that the

wave amplitudes relative to h1 are given by A+
1 = 0.005 and A+

2 ≈ 0.01 so that the
K+

2 wave propagating in the y-direction has a larger amplitude. Through the resonant
triad interaction, an internal wave with K−

3 = K+
1 − K+

2 = (2,−1.012) is expected to be
excited.

Figure 8 shows the numerical solutions of the Hamiltonian system for the surface and
interface displacements, ζ1 and ζ2, at t/T1 = 0, 2700, 4200, where T1 = 2π/Ω+

1 is the
wave period of the K+

1 wave. Initially the surface displacement is a linear combination
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Case ρ2/ρ1 K+
1 K+

2 K−
3 K+

1 K+
2 K−

3 Ω+
1 Ω+

2 Ω−
3 K+

1 A+
1 K+

2 A+
2 K−

3 A−
3 θ2(

◦) θ3(
◦) V(2)

1,2,3

A1 1.163 (2, 0) (0, 1.012) (2, −1.012) 2 1.012 2.241 1.414 1.006 0.408 0.01 0.01 0 90 −26.84 0.0174
A2 1.163 (4, 0) (3, 0.331) (1, −0.331) 4 3.018 1.053 2 1.737 0.263 0.01 0 0.01 6.30 −18.33 0.6502
A3 1.01 (33, 0) (32, 1.168) (1, −1.168) 33 32.021 1.537 5.745 5.659 0.086 0.01 0 0.01 2.08 −49.42 1.6581

Case ρ2/ρ1 K+
1 K−

2 K−
3 K+

1 K−
2 K−

3 Ω+
1 Ω−

2 Ω−
3 K+

1 A+
1 K−

2 A−
2 K−

3 A−
3 θ2(

◦) θ3(
◦) V(5)

1,2,3 V(5)
1,3,2

B1 1.163 (2, 0) (1, 6.567) (1, −6.567) 2 6.643 6.643 1.414 0.707 0.707 0.025 0.025 0 81.34 −81.34 0.0406 0.0406
B2 3.1 (4, 0) (3, 0.724) (1, −0.724) 4 3.086 1.234 2 1.255 0.745 0 0.01 0.01 13.56 −35.89 0.0759 0.0509

TABLE 1. Dimensionless physical parameters for numerical solutions of the Hamiltonian system and the amplitude equations for type-A (A1, A2,
A3) and type-B (B1, B2) resonances. Here K±

j = k±
j h1, Ω±

j = ω±
j /(g/h1)

1/2 and A±
j = 2|a±

j |/h1. The depth ratio and the propagation angle of K1
are fixed to be h2/h1=4 and θ1 = 0, respectively.
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FIGURE 8. Numerical solutions of the Hamiltonian system given by (3.3)–(3.6) for case
A1: (a,c,e) surface displacement ζ1 and (b,d, f ) interface displacement ζ2 at (a,b) t/T1 = 0,
(c,d) t/T1 = 2700 and (e, f ) t/T1 = 4200. The initial wave steepnesses are K+

1 A+
1 = K+

2 A+
2 =

0.01, and K−
3 A−

3 = 0 with K+
1 = 2, K+

2 = 1.012 and K−
3 = 2.241. The angles of wave

propagation are θ+
1 = 0, θ+

2 = 90◦, θ−
3 ≈ −26.84◦. The displacements are normalized by the

initial amplitude of A+
2 , or A+

2 (0).

of two orthogonal surface waves while the amplitude of the K−
3 wave is zero. Note that

the interface is slightly perturbed in figure 8(b) even in the absence of the internal wave
mode and displays the surface wave mode contribution to the interface displacement ζ2.
The ratio of ζ2 to ζ1 for the surface wave mode is given by ζ2/ζ1 = Q(2,1)/Q(1,1) ≈ 0.363
for K = K+

2 . The excitation of the K−
3 wave with θ−

3 ≈ −26.84◦ can be clearly seen in
figure 8(d).

Figure 9 shows the comparison for the wave amplitudes (A+
1 , A+

2 , A−
3 ) between the

Hamiltonian system and the amplitude equations for a single triad given by (3.48a–c).
For the Hamiltonian system, the amplitudes A+

1 and A+
2 are computed from the Fourier

coefficients of ζ1 for K = K+
1 and K+

2 (= K+
1 − K−

3 ), respectively, while A−
3 is computed

from the Fourier coefficient of ζ2 for K = K−
3 . The solutions of the amplitude equations
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t/T1

12000

0.5

1.0

A/
A+

2
(0

)

A+
1

A+
2

A+
3

FIGURE 9. Time evolution of the wave amplitudes for case A1. The numerical solutions of the
Hamiltonian system given by (3.3)–(3.6) (lines) compared with those of the amplitude equations
(symbols) given by (3.48a–c). For the Hamiltonian system, the amplitudes A+

1 (solid, open
circles) and A+

2 (dashed, open squares) are computed from the Fourier coefficients of ζ1 for
K = K+

1 and K+
2 (= K+

1 − K−
3 ), respectively, while A−

3 (dotted, filled squares) is computed from
the Fourier coefficient of ζ2 for K = K−

3 . Note that the amplitudes are normalized by A+
2 (0).

for Z±
j are transformed to the real amplitudes A±

j , from (4.7a,b), as

A+
j =

√
2

Ω+
j

∣∣∣Q(1,1)

j

∣∣∣ ∣∣Z+
j

∣∣ for j = 1, 2, A−
3 =

√
2

Ω−
3

∣∣∣Q(2,2)

3

∣∣∣ ∣∣Z−
3

∣∣ , (4.8a,b)

where Q(1,1)

1,2 = Q(1,1)(K+
1,2) and Q(2,2)

3 = Q(2,2)(K−
3 ). The coefficient V (2)

1,2,3 for the amplitude
equations is listed in table 1. As shown in figure 9, some minor differences are
observed and increase with time. Considering the wave steepness ε = O(10−2), the total
computational time is t/T1 = 12 000 = O(ε−2) and is much greater than the time scale for
the second-order theory, which is O(ε−1). Nevertheless, it can be noticed that the single
triad reasonably well describe the surface and interface motions, or the evolutions of ζ1
and ζ2. The numerical solutions of the explicit Hamiltonian system show that the triad
exchanges energy quasi-periodically in time and the recurrence period is close to what the
amplitude equations predict. The numerical results clearly demonstrate that the resonant
triad interaction is a mechanism for the generation of an initially absent internal wave from
two surface waves propagating with an angle.

(ii) Case A2. Next, for the same density and depth ratios, we consider the case, where
one surface wave with K+

1 = (4, 0) and one internal wave with K−
3 = (1,−0.331) initially

propagate with an angle θ−
3 = −18.33◦. Their initial wave steepnesses are K+

1 A+
1 =

K−
3 A−

3 = 0.01. From the type-A resonance conditions given by (2.11a,b), one expects a
surface wave with K+

2 = K+
1 − K−

3 = (3, 0.331) to be excited. Even though the resonance
condition is not exactly satisfied, another resonant triad (K+

4 , K+
1 , K−

3 ) is also possible
with K+

4 = K+
1 + K−

3 = (5,−0.331). As the frequency is slightly detuned, or Δ4,1,3 =
Ω+

4 − Ω+
1 − Ω−

3 = 0.0242 � 1, the near-resonant triad is expected to exchange energy
with the primary triad (K+

1 , K+
2 , K−

3 ). Therefore, the evolution of the K−
4 wave cannot be
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FIGURE 10. Numerical solutions of the Hamiltonian system given by (3.3)–(3.6) for case
A2: (a,c,e) surface displacement ζ1 and (b,d, f ) interface displacement ζ2 at (a,b) t/T1 = 0,
(c,d) t/T1 = 150 and (e, f ) t/T1 = 250. The initial wave steepnesses are K+

1 A+
1 = 0.01, K+

2 A+
2 =

K+
4 A+

4 = 0 and K−
3 A−

3 = 0.01 with K+
1 = 4, K+

2 = 3.01825, K−
3 = 1.05348, K+

4 = 5.011. The
angles of wave propagation are θ+

1 = 0, θ+
2 ≈ 6.30◦, θ−

3 ≈ −18.33◦, θ+
4 ≈ −3.79◦. The

displacements are normalized by A−
3 (0).

neglected and needs to be included in the amplitude equations. When the surface wave is
written as (3.51) with N = 1, the coupled amplitude equations for the two triads (or Zj for
j = 1, 2, 3, 4) are given by (3.53)–(3.56) with Zl = 0 for l = 5, 6, 7, 8.

The results are shown in figures 10 and 11. Initially, a surface wave propagates in the
positive x-direction while an internal wave propagates with θ−

3 = −18.33◦, as shown in
figure 10(a,b). Note that the initial internal wave amplitude A−

3 is approximately four
times greater than A+

1 and the scales in the x- and y-directions in the plot are different.
At t/T = 150, the K+

2 wave with θ+
2 = 6.30◦ that is initially absent is clearly generated

on the surface, as can be seen in figure 10(c), although the amplitude of the interface
displacement shown in figure 10(b,d, f ) remains almost unchanged.

While the K+
4 wave with θ+

4 = 3.79◦ should be excited, it is a little difficult to identify
in figure 10(c) although it is visible in figure 10(e). As shown in figure 11, the K+

4 wave
is surely excited, but its amplitude remains smaller than that of the K+

1 or K+
2 wave.

Nevertheless, the second resonant triad interaction must be included to predict the detailed
evolution of the primary resonant triad.
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(0
) A+

1

A+
2

A–3
A+

4

FIGURE 11. Time evolution of the wave amplitudes for case A2. The numerical solutions of
the Hamiltonian system given by (3.3)–(3.6) (lines) are compared with those of the amplitude
equations (symbols) for two triads including a near-resonant triad (N = 1). For the Hamiltonian
system, the amplitudes A+

1 (solid, open circles), A+
2 (dashed, open squares) and A+

4 (dash–dotted,
filled squares) are computed from the Fourier coefficients of ζ1 for K = K+

1 , K+
2 (= K+

1 − K−
3 )

and K+
4 (= K+

1 + K−
3 ), respectively, while A−

3 (dotted, dots) is computed from the Fourier
coefficient of ζ2 for K = K−

3 . Note that the wave amplitudes are normalized by A−
3 (0).

(iii) Case A3. Surface signatures of large amplitude long internal waves have been of
interest for their applications to remote sensing and have been attributed to near-resonant
interactions between surface and internal waves. In particular, when a group of short
surface waves propagates with its group velocity that is close to the phase velocity of a
long internal wave, the short surface waves are greatly modulated. Once their amplitudes
become large enough, the surface waves start to exchange energy with each other. This
process has been studied for 1-D waves using the Hamiltonian system in Taklo & Choi
(2020). Here, we study this process for 2-D waves under a realistic oceanic condition with
ρ2/ρ1 = 1.01 and h2/h1 = 4.

Similarly to case A2, the initial wave field consists of one surface wave with K+
1 =

(33, 0) and one internal wave with K−
3 = (1,−1.168), and the angle between the two wave

directions is θ3 = −49.42◦. As pointed out previously in § 2.2, when a 2-D resonant triad
inside the type-A resonance region is located close to the 1-D class-III resonance curve, the
surface wavenumbers are much greater than the internal wavenumber particularly when
the density ratio is close to 1. For case A3, the ratio between the surface and internal
wavenumbers is given by K+

1 /K−
3 = 33/1.537 ≈ 21.47. While the initial steepnesses for

the two waves are the same (K+
1 A+

1 = K−
3 A−

3 = 0.01), the internal wave amplitude is
approximately 20 times greater than the surface wave amplitude. As shown for case A2,
we expect the interactions between the two primary resonant triads: (K+

1 , K+
2 , K−

3 ) and
(K+

4 , K+
1 , K−

3 ), where K+
2 = K+

1 − K−
3 and K+

4 = K+
1 + K−

3 . From our choice, the first
is the exact resonant triad while the second is a near-resonant triad with the detuning
parameter Δ4,1,3 = Ω+

4 − Ω+
1 − Ω−

3 = 0.0242, as listed in table 2.
The numerical solutions of the Hamiltonian system for the surface and interface

displacements are shown in figure 12. At t/T1 = 400 with T1 = 2π/Ω+
1 , one can notice
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Tw
o-dim
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a
tw

o-layer
system

907
A

5-27

Case K+
4 K+

4 Ω+
4 Δ4,1,3 θ4(

◦) V(2)
4,1,3 K+

5 K+
5 Ω+

5 Δ2,5,3 θ5(
◦) V(2)

2,5,3 K+
6 K+

6 Ω+
6 Δ6,4,3 θ6(

◦) V(2)
6,4,3

A2 (5,−0.331) 5.011 2.239 0.0242 −3.79 0.8665
A3 (34, −1.168) 34.02 5.833 0.0023 −1.97 1.7813 (31, 2.335) 31.088 5.576 0.0027 4.31 1.5348 (35, −2.335) 35.078 5.923 0.0042 −3.82 1.9045

Case K+
7 K+

7 Ω+
7 Δ5,7,3 θ7(

◦) V(2)
4,1,3 K+

8 K+
8 Ω+

8 Δ8,6,3 θ8(
◦) V(2)

8,6,3
A3 (30, 3.503) 30.204 5.496 0.006 6.66 1.4116 (36, −3.503) 36.17 6.014 0.0057 −5.56 2.0277

TABLE 2. Dimensionless physical parameters for successive type-A resonant interactions. For case A2, a near-resonant triad satisfying K+
4 =

K+
1 + K−

3 and Ω+
4 = Ω+

1 + Ω−
3 + Δ4,1,3 is considered. For case A3, included are four more additional triads: (K+

2 , K+
5 , K−

3 ), (K+
6 , K+

4 , K−
3 ),

(K+
5 , K+

7 , K−
3 ), (K+

8 , K+
6 , K−

3 ). The initial amplitudes of all near-resonant triads are zero.
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FIGURE 12. Numerical solutions of the Hamiltonian system given by (3.3)–(3.6) for case
A3: (a,c,e) surface displacement intensities ζ1 and (b,d, f ) interface displacement intensities
ζ2 at (a,b) t/T1 = 0, (c,d) t/T1 = 400, (e, f ) t/T1 = 800. The initial wave steepnesses are
K+

1 A+
1 = K−

3 A−
3 = 0.01 and K+

2 A+
2 = 0 with K+

1 = 33, K+
2 = 32.021 and K−

3 = 1.537. The
angles of wave propagation are θ+

1 = 0, θ+
2 ≈ 2.09◦ and θ−

3 ≈ −49.42◦. The displacements are
normalized by A+

1 (0).

that the interface changes little, but the top surface shows distinctive streaks that are
almost aligned with the crestlines of the internal wave. These streaks are visible as the
short surface wave with K+

1 is modulated and its local amplitude over the internal wave
crestlines increases. At t/T1 = 800, other surface modes are excited through successive
resonant interactions and each streak is distorted.

Unlike case A2, successive near-resonant triad interactions can occur more easily as the
density ratio is close to one (Alam 2012; Taklo & Choi 2020). Through successive resonant
interactions, one expects the generation of a number of surface wave modes, or sidebands,
whose wavenumbers are given by K+

1 ± nK−
3 (n � 2) with K−

3 /K+
1 = 0.0466 � 1. Note

that the K+
1 ± K−

3 waves belong to the two primary triads. Even for a finite value of
n, the frequency resonance condition could still be approximately satisfied as the ratio
K−

3 /K+
1 is small. Therefore, to compare with the Hamiltonian system, one should include

the amplitude equations for several triads that could be generated by the successive
near-resonant interactions, as discussed in § 3.5.1.

As shown in figure 13(a), when the first successive triads with K+
5 = K+

1 − 2K−
3

and K+
6 = K+

1 + 2K−
3 are included, the numerical solutions of the amplitude equations

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 6
7.

86
.6

4.
19

3,
 o

n 
18

 N
ov

 2
02

0 
at

 1
5:

04
:3

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

82
4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.824


Two-dimensional resonant interactions in a two-layer system 907 A5-29

1000800600400200 12000

0.5

1.0

10008006004002000 1200

0.5

1.0

t/T1 t/T1

A/
A+

1
(0

)
A+

1

A+
2

A+
4

(a) (b)

FIGURE 13. Time evolution of the wave amplitudes for case A3. The numerical solutions
of the Hamiltonian system given by (3.3)–(3.6) (lines) are compared with those of the
amplitude equations (symbols) given by (3.53)–(3.59a,b) with (a) N = 2 and (b) N = 3. For
the Hamiltonian system, the amplitudes A+

1 (solid, open circles), A+
2 (dashed, open squares) and

A+
4 (dash–dotted, filled squares) are computed from the Fourier coefficients of ζ1 for K = K+

1 ,
K+

2 = K+
1 − K−

3 , K+
4 = K+

1 + K−
3 , respectively, and are normalized by A+

1 (0). The internal
wave amplitude A−

3 changes little and is not shown here.

given by (3.53)–(3.59a,b) with N = 2 deviate from those of the Hamiltonian system
as t increases. When two more surface wave modes given by K+

7 = K+
1 − 3K−

3 and
K+

8 = K+
1 + 3K−

3 are included, the two solutions agree well to t/T1 = 1200, as can be
seen in figure 13(b). Figure 14 shows the comparison between the two solutions for the
amplitudes of the Kj waves ( j = 5, 6, 7, 8) excited by first and second successive resonant
interactions. Their amplitudes are comparable with those of the two primary triads shown
in figure 13(b). Therefore, for case A3, it can be concluded that at least the second
successive resonant triads need to be included to correctly describe how the initial energy
is spread to the sidebands. The parameters for all the surface wave modes excited by the
successive interactions are listed in table 2. This demonstrates that, when the oceanic
condition is met, the dynamics of near-resonant wave modes or sidebands are crucial to
correctly describe the wave modulation on the top surface.

4.3.2. Type-B resonant interactions
(i) Case B1. For the type-B resonance, we consider the interaction between one

surface wave and two internal waves. As discussed in § 2.3, the resonance region in the
(K−

2 , K−
3 )-plane is symmetric about the straight line K−

2 = K−
3 , on which one can find

symmetric resonant triads with θ−
2 = −θ−

3 . For the density and depth ratios given by
ρ2/ρ1 = 1.163 and h2/h1 = 4, we assume that a surface wave with K+

1 = (2, 0) and an
internal wave with K−

2 = (1, 6.567) that satisfy the symmetric resonance conditions so
that another internal wave with K−

3 = (1,−6.567) is excited. As the propagation angles
of the K−

2 and K−
3 waves are given by ±81.34◦, the two internal waves propagate almost

in opposite directions and interact resonantly with the surface wave propagating in the
positive x-direction that is almost perpendicular to the directions of the internal waves.

Figure 15 shows the numerical solutions of the Hamiltonian system at t/T1 = 0, 1200,
1700. The initial wave steepnesses of the K+

1 and K−
2 waves are chosen to be K+

1 A+
1 =

K−
2 A−

2 = 0.025 with K+
1 = 2 and K−

2 = 6.643. These steepnesses are slightly greater than
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+
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A8

+

FIGURE 14. Time evolution of the wave amplitudes from successive near-resonant interactions
for case A3. The numerical solutions of the Hamiltonian system given by (3.3)–(3.6) (lines)
are compared with those of the amplitude equations (symbols) given by (3.53)–(3.59a,b) with
N = 3. The amplitudes A+

5 (solid, open circles), A+
6 (dashed, open squares), A+

7 (dash–dotted,
filled squares) and A+

8 (dotted, filled circles) are computed from the Fourier coefficients of
ζ1 for K = K+

5 = K+
1 − 2K−

3 , K+
6 = K+

1 + 2K−
3 , K+

7 = K+
1 − 3K−

3 and K+
8 = K+

1 + 3K−
3 ,

respectively, and are normalized by A+
1 (0).

those for other cases, but the greater initial wave amplitude, which is the amplitude of
the K+

1 wave given by A+
1 = 0.125, is approximately the same as before. As shown in

figure 15(c), the top surface is almost flat at t/T1 = 1200, implying most of the initial
energy of the K+

1 wave is transferred to the K−
2 and K−

3 waves. Then, in figure 15(d), the
interface shows a typical pattern of symmetric waves. At t/T1 = 1700, the surface wave
re-emerges, as shown in figure 15(e).

In figure 16, the numerical solutions of the Hamiltonian system (3.3)–(3.6) are compared
with those of the amplitude equations given by (3.64a,b). The amplitudes of both the
K−

2 and K−
3 waves grow in time and become almost twice the initial amplitude of the

K+
1 wave approximately at t/T1 = 1200. As the K+

1 wave with the highest frequency has
the greatest initial amplitude among the triad, this observation is consistent with what
Hasselmann (1967) predicted. At t/T1 = 1700, the amplitudes of the three waves become
almost the same. The Hamiltonian system shows the recurrence of this process as the
amplitude equations suggest.

(i) Case B2. Next we consider the case of ρ2/ρ1 = 3.1 and h2/h1 = 4, for which the
class-IV resonance is possible for 1-D waves, as shown in figure 6(b). We assume that
there exist initially two internal waves, whose wavenumber vectors are given by K−

2 =
(3, 0.724) and K−

3 = (1,−0.724), but no surface wave mode is present. The propagation
angles of these two internal waves are given by θ−

2 = 13.56◦ and θ−
3 = −35.896◦. Then,

through the type-B resonance, a surface wave with K+
1 = K−

2 + K−
3 = (4, 0) is expected

to be excited and visible on the surface.
The initial wave steepnesses are K+

1 A+
1 = 0 and K−

2 A−
2 = K−

3 A−
3 = 0.01 with

K+
1 = 4, K−

2 = 3.086 and K−
3 = 1.234. Due to the periodic boundary conditions

adopted in our pseudo-spectral method, the choice of (K−
2 , K−

3 ) is limited so that
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FIGURE 15. Numerical solutions of the Hamiltonian system given by (3.3)–(3.6) for case B1:
(a,c,e) surface displacement ζ1 and (b,d, f ) interface displacement ζ2 at (a,b) t/T1 = 0, (c,d)
t/T1 = 1200 and (e, f ) t/T1 = 1700. The initial wave steepnesses are K+

1 A+
1 = K−

2 A−
2 = 0.025

and K−
3 A−

3 = 0 with K+
1 = 2 and K−

2 = K−
3 = 6.643. The angles of wave propagation are θ+

1 =
0, θ−

2 ≈ 81.34◦, θ−
3 ≈ −81.34◦. The displacements are normalized by A+

1 (0).

(K−
2 , K−

3 ) = (3.086, 1.234) is not located so close to the 1-D class-IV resonance curve.
Nevertheless, the x-components of the wavenumber vectors are all positive.

In figure 17(a,b), the two distinct internal waves initially appear on the interface. There
is no initial surface wave, but the contribution of the K−

3 wave with a greater amplitude to
ζ1 is also visible on the surface as ζ1/ζ2 = Q(1,2)/Q(2,2) ≈ −0.611 for K = K−

3 . Note that
this ratio is given by ζ1/ζ2 ≈ −0.003 for ρ2/ρ1 = 1.01. When the density ratio is large,
the contribution of the internal wave mode to the surface displacement is noticeable while
it is negligible when the density ratio is close to one. As can be seen in figure 17(c,d), the
K+

1 wave can be observed at t/T1 = 380 while the K−
2 wave disappears on the interface.

At t/T1 = 630, all three waves appear at the same time in figure 17(e, f ). As shown in
figure 18, the numerical solutions of the Hamiltonian system agree well with those of
the amplitude equations for a single triad and the energy exchange inside the triad occurs
almost periodically in time.

5. Conclusion

We have studied two types of 2-D resonant triad interactions between surface and
internal waves in a system of two layers with different densities. For the type-A resonance,
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FIGURE 16. Time evolution of the wave amplitudes for case B1. Numerical solutions of the
Hamiltonian system (lines) given by (3.3)–(3.6) are compared with the solutions of the amplitude
equations (symbols) given by (3.64a,b). For the Hamiltonian system, the amplitudes A+

1 (solid,
open circles), A−

2 (dashed, open squares) and A−
3 (dotted, filled squares) are computed from

the Fourier coefficients of ζ1 for K = K+
1 and ζ2 for K = K−

2 and K−
3 , respectively, and are

normalized by A+
1 (0).

two surface waves and one internal wave interact resonantly while one surface wave and
two internal waves are involved for the type-B resonance. For each type of resonance, the
explicit spectral domain of resonance, including the resonance surface and the resonance
region, has been presented and its boundaries have been shown to correspond to 1-D
resonant interactions. Under the type-A resonance conditions given by K+

1 = K+
2 + K−

3
and Ω+

1 = Ω+
2 + Ω−

3 , the resonance region in the (K+
2 , K−

3 )-plane is bounded by the
1-D class-I and class-III resonances. On the other hand, under the type-B resonance
conditions given by K+

1 = K−
2 + K−

3 and Ω+
1 = Ω−

2 + Ω−
3 , the resonance region in the

(K−
2 , K−

3 )-plane is bounded by the 1-D class-II resonances when the density ratio is
less than 3. Otherwise, the type-B resonance region is bounded by the class-II and
class-IV resonances. Detailed discussions on the variation of the triad wavenumbers and
propagation angles have been presented for 2-D resonant waves.

To study the time evolution of 2-D resonant triads, spectral models have been developed
from the explicit Hamiltonian system obtained by Taklo & Choi (2020) for the surface
and interface displacements and the density-weighted velocity potentials evaluated at the
surface and interface. Starting with the spectral model for the Fourier transforms of the
original dependent variables for the explicit Hamiltonian system, the surface and interface
motions have been decomposed into the surface and internal wave modes using a canonical
transformation. Furthermore, after introducing the complex amplitude functions for the
surface and internal wave modes, we have obtained the reduced Hamiltonians for resonant
triad interactions, from which the amplitude equations are found.

Both the Hamiltonian system and the amplitude equations are studied numerically
under various resonance conditions and it has been found that the numerical solutions
of the amplitude equations agree well with those of the Hamiltonian system if one
chooses a relevant set of triads for the amplitude equations. For the type-A resonance, as
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FIGURE 17. Numerical solutions of the Hamiltonian system given by (3.3)–(3.6) for case B2:
(a,c,e) surface displacement ζ1 and (b,d, f ) interface displacement ζ2 at (a,b) t/T1 = 0, (c,d)
t/T1 = 380 and (e, f ) t/T1 = 630. The initial wave steepnesses are K+

1 A+
1 = 0 and K−

2 A−
2 =

K−
3 A−

3 = 0.01 with K+
1 = 4, K−

2 = 3.086 and K−
3 = 1.234. The angles of wave propagation are

θ+
1 = 0, θ−

2 ≈ 13.56◦, θ−
3 ≈ −35.89◦. The displacements are normalized by A−

3 (0).

Alam (2012) has shown for the 1-D class-III resonance, successive near-resonant
interactions should be taken into account for the density ratio close to one (implying a
large difference between resonant surface and internal wavelengths), in particular, when an
internal wave with a relatively large amplitude is initially present. The sidebands near the
primary surface wavenumber satisfy the near-resonance conditions and are successively
excited. This implies that the primary surface wave is modulated by the growth of the
sidebands and then energy exchange between the primary surface wave and its sidebands
occurs. For the type-B resonance, such successive resonances are unlikely to happen,
and, therefore, the amplitude equations for a single resonant triad accurately describe the
surface and interface evolutions. The numerical solutions of the Hamiltonian system for
type-A resonant interactions have demonstrated that two surface waves propagating with
an angle can generate an internal wave that is initially absent. Likewise two internal waves
can generate a surface wave under the type-B resonance conditions.

It has been shown that the interaction between 2-D surface and internal waves can
be studied effectively using the explicit Hamiltonian system (3.3)–(3.6). However, the
Hamiltonian system describes the combined motions of the surface and internal wave
modes. Therefore, the spectral model obtained in § 3.3 for the generalized coordinates q±
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FIGURE 18. Time evolution of the wave amplitudes for case B2. The numerical solutions of
the Hamiltonian system (lines) given by (3.3)–(3.6) are compared with those of the amplitude
equations (symbols) given by (3.64a,b). For the Hamiltonian system, the amplitudes A+

1 (solid,
open circles), A−

2 (dashed, open squares) and A−
3 (dotted, filled squares) are computed from

the Fourier coefficients of ζ1 for K = K+
1 and ζ2 for K = K−

2 and K−
3 , respectively, and are

normalized by A−
3 (0).

and momenta p±, or that obtained in § 3.4 for the scalar complex amplitude z± would
be advantageous in studying the spectral evolution of surface and internal wave modes
that might interact both resonantly and non-resonantly. While the amplitude equations
obtained in § 3.5 for resonant interactions have been used here with a few discrete modes,
they would be also useful in studying the evolution of a near-resonant wave field with a
continuous spectrum. The type-B resonance that occurs when the density ratio is greater
than three or the corresponding 1-D class-IV resonance is of little value for oceanic
applications. Therefore, it is open to question if there is any specific application.
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Appendix A. Hamiltonian system in spectral space

From (3.30a,b) with (3.16)–(3.17), the evolution equations for a± and b± can explicitly
be written as

∂a+
∂t

= γ11b+ + γ12b− + Na+,
∂b+
∂t

= −ρuga+ + Nb+, (A 1a,b)
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∂a−
∂t

= γ21b+ + γ22b− + Na−,
∂b−
∂t

= −Δρga− + Nb− . (A 2a,b)

Here, Na± and Nb± represent the nonlinear terms written in integrals over the wavenumber
vector space given by

Na+ =
∫∫ (

α
(1,1)

0,1,2b+
1 a+

2 + α
(1,2)

0,1,2b−
1 a+

2 + α
(1,3)

0,1,2b+
1 a−

2 + α
(1,4)

0,1,2b−
1 a−

2

)
δ0−1−2 dk1,2, (A 3)

Na− =
∫∫ (

α
(2,1)

0,1,2b+
1 a+

2 + α
(2,2)

0,1,2b−
1 a+

2 + α
(2,3)

0,1,2b+
1 a−

2 + α
(2,4)

0,1,2b−
1 a−

2

)
δ0−1−2 dk1,2, (A 4)

Nb+ =
∫∫ (

β
(1,1)

0,1,2b+
1 b+

2 + β
(1,2)

0,1,2b+
1 b−

2 + β
(1,3)

0,1,2b−
1 b−

2

)
δ0−1−2 dk1,2, (A 5)

Nb− =
∫∫ (

β
(2,1)

0,1,2b+
1 b+

2 + β
(2,2)

0,1,2b+
1 b−

2 + β
(2,3)

0,1,2b−
1 b−

2

)
δ0−1−2 dk1,2, (A 6)

where γij are given by (3.7a–c), and α
(i,j)
0,1,2 and β

(i,j)
0,1,2 are defined, after using (3.28), as

α
(1,1)

0,1,2 = 2h(1)

−0,1,2, α
(1,2)

0,1,2 = h(2)

−0,1,2, α
(1,3)

0,1,2 = 2h(4)

−0,1,2, α
(1,4)

0,1,2 = h(5)

−0,1,2, (A 7a–d)

α
(2,1)

0,1,2 = h(2)

1,−0,2, α
(2,2)

0,1,2 = 2h(3)

−0,1,2, α
(2,3)

0,1,2 = h(5)

1,−0,2, α
(2,4)

0,1,2 = 2h(6)

−0,1,2, (A 8a–d)

β
(1,1)

0,1,2 = −h(1)

1,2,−0, β
(1,2)

0,1,2 = −h(2)

1,2,−0, β
(1,3)

0,1,2 = −h(3)

1,2,−0, (A 9a–c)

β
(2,1)

0,1,2 = −h(4)

1,2,−0, β
(2,2)

0,1,2 = −h(5)

1,2,−0, β
(2,3)

0,1,2 = −h(6)

1,2,−0. (A 10a–c)

From (3.28)–(3.29), it can be shown that these coefficients satisfy the symmetry conditions

α
(1,1)

0,1,2 = α
(1,1)

1,0,2, α
(1,3)

0,1,2 = α
(1,3)

1,0,2, α
(2,2)

0,1,2 = α
(2,2)

1,0,2, α
(2,4)

0,1,2 = α
(2,4)

1,0,2, (A 11a–d)

α
(1,2)

0,1,2 = α
(2,1)

1,0,2, α
(1,4)

0,1,2 = α
(2,3)

1,0,2, α
(i,j)
0,1,2 = α

(i,j)
−0,−1,2 = α

(i,j)
0,1,−2, (A 12a–c)

and

β
(1,1)

0,1,2 = − 1
2α

(1,1)

1,−2,0, β
(1,2)

0,1,2 = −α
(1,2)

1,−2,0, β
(1,3)

0,1,2 = − 1
2α

(2,2)

1,−2,0, (A 13a–c)

β
(2,1)

0,1,2 = − 1
2α

(1,3)

1,−2,0, β
(2,2)

0,1,2 = −α
(1,4)

1,−2,0, β
(2,3)

0,1,2 = − 1
2α

(2,4)

1,−2,0. (A 14a–c)

As it is obtained from the Hamiltonian formulation, the system given by (A 1) and (A 2)
conserves energy, or the Hamiltonian given by H = H2 + H3, where H2 and H3 are given
by (3.16) and (3.17), respectively.

Under the small amplitude assumption, when the system given by (A 1) and (A 2) is
linearized, the first-order solutions can be obtained as

(
a±

j , b±
j

) =
(

ã±
j , b̃±

j

)
eiωjt, (A 15)

with

ã+
j =

(
Sjω

2
j

ω2
j − gkjUj

)
ã−

j , b̃+
j = i

(
ρugSjωj

ω2
j − gkjUj

)
ã−

j , b̃−
j = i

(
Δρg
ωj

)
ã−

j . (A 16a–c)
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Appendix B. Intermediate steps for mode decomposition

For the mode decomposition discussed in § 3.3, the linearized system is considered.
When linearized, the system given by (A 1) and (A 2) can be written as

d
dt

(
a
b

)
=
(

O Γ
G O

)(
a
b

)
, (B 1)

where O is the 2 × 2 zero matrix and

a =
(

a+
a−

)
, b =

(
b+
b−

)
, Γ =

(
γ11 γ12
γ21 γ22

)
, G =

(−ρug 0
0 −Δρg

)
, (B 2a–d)

with γij given by (3.7a–c). To decompose the linear system (B 1) into two sub-systems for
the surface and internal wave modes, we first diagonalize the 2 × 2 matrix Γ G as

Γ G = MΛM−1, (B 3)

where Λ is a diagonal matrix whose elements are the eigenvalues of Γ G, and M and M−1

are a matrix composed of eigenvectors of Γ G and its inverse matrix, respectively. The
eigenvalues of Γ G are the roots of the following quadratic equation for λ:

λ2 + g (ρuγ11 + Δργ22) λ+ ρuΔρg2 (γ11γ22 − γ12γ21) = 0. (B 4)

This equation then yields the dispersion relation (2.1) with λ = −ω2. Then, the diagonal
matrix Λ is given by

Λ =
(−ω2

+ 0

0 −ω2
−

)
, (B 5)

where λ+ = −ω2
+ and λ− = −ω2

− are two eigenvalues corresponding to the surface and
internal wave modes, respectively. On the other hand, M is given by

M =
(

ω2
+ − Δρgγ22 Δρgγ12

ρugγ21 ω2
− − ρugγ11

)(
n+ 0
0 n−

)
, (B 6)

where n+ and n− introduced to normalize the eigenvectors are given by

n+ =
[(

ω2
+ − Δρgγ22

)2 + (ρugγ21)
2
]−1/2

, n− =
[
(Δρgγ12)

2 + (
ω2

− − ρugγ11
)2
]−1/2

.

(B 7a,b)

Here different choices of eigenvectors and (n+, n−) can be made, but the final canonical
transformation is independent of these choices. Then, by introducing the following new
variables ξ = (ξ+, ξ−)T and η = (η+, η−)T,

(
ξ

η

)
=
(

M−1 O

O M−1Γ

)(
a

b

)
, or

(
a

b

)
=
(

M O

O Γ −1M

)(
ξ

η

)
, (B 8a,b)

the linear system (B 1) can be written as

d
dt

(
ξ

η

)
=
(

O I

Λ O

)(
ξ

η

)
, (B 9)

where ξ(−k, t) = ξ ∗
(k, t) and η(−k, t) = η∗(k, t) as γi,j(−k) = γi,j(k).
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Now, as Λ and the identity matrix I in (B 9) are diagonal 2 × 2 matrices, the surface
and internal wave modes are decoupled as

d
dt

(
ξ±
η±

)
=
(

0 1

−ω2
± 0

)(
ξ±
η±

)
, (B 10)

where the positive and negative signs correspond to the surface and internal wave modes,
respectively.

The nonlinear interaction between the surface and internal wave modes can be studied
once a nonlinear system for ξ and η is obtained. By substituting (B 8) into (A 1) and (A 2),
or, directly from (3.30a,b), the evolution equations for (ξ , η) can be found as

d
dt

(
ξ

η

)
=
(

O S

−S O

)(
δH/δξ ∗

δH/δη∗

)
, (B 11)

where δH/δξ ∗ = (δH/δξ ∗
+, δH/δξ ∗

−)T and δH/δη∗ = (δH/δη∗
+, δH/δη∗

−)T. In (B 11), S is
a 2 × 2 matrix given by

S = M−1Γ
(
M−1)T

, (B 12)

which yields a diagonal matrix so that S = diag(s+, s−) with s± defined, with γ12 = γ21,
by

s+ = 1
n2+

[(
ρuγ

2
11 − Δργ11γ22 + 2Δργ 2

12

)
ω2

+ − Δρg (ρuγ11 − Δργ22)
(
γ11γ22 − γ 2

12

)]
g
[
ρuγ11ω

2+ − Δργ22ω
2− − 2ρuΔρg

(
γ11γ22 − γ 2

12

)]2 ,

s− = 1
n2−

[(
Δργ 2

22 − ρuγ11γ22 + 2ρuγ
2
12

)
ω2

− + ρug (ρuγ11 − Δργ22)
(
γ11γ22 − γ 2

12

)]
g
[
ρuγ11ω

2+ − Δργ22ω
2− − 2ρuΔρg

(
γ11γ22 − γ 2

12

)]2 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B 13)

To write (B 11) as Hamilton’s equations, we further introduce q and p defined as

(
ξ

η

)
=
(

S1/2 O

O S1/2

)(
q

p

)
, (B 14)

where S1/2 = diag(s1/2
+ , s1/2

− ), q = (q+, q−)T and p = ( p+, p−)T. Then, by substituting
(B 14) into (B 11), the amplitude equations for (q, p) can be obtained as Hamilton’s
equations:

d
dt

(
q

p

)
=
(

O I

−I O

)(
δH/δq∗

δH/δp∗

)
. (B 15)

Here the new conjugate variables q± and p± are the generalized coordinates and momenta
of the surface (+) and internal (−) wave modes, respectively. When (B 14) is combined
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with (B 8), the transformation (a,b) to (q, p) can be found as

(
a

b

)
=
(

Q O

O P

)(
q

p

)
, (B 16)

where Q and P are given by

Q = MS1/2, P = Γ −1MS1/2. (B 17a,b)

Using this transformation, the amplitude equations for (q±, p±) can be obtained, from
(3.35a,b) with (3.33) and (3.34), as

∂q+
∂t

= p+ +
∫∫

[(U(1)

−0,1,2 + U(1)

1,−0,2)p
+
1 q+

2 + U(2)

−0,1,2 p−
1 q+

2

+ (U(4)

−0,1,2 + U(4)

1,−0,2)p
+
1 q−

2 + U(5)

−0,1,2 p−
1 q−

2 ]δ0−1−2 dk1,2, (B 18)

∂p+
∂t

= −ω2
+q+ −

∫∫
[U(1)

1,2,−0p+
1 p+

2 + U(2)

1,2,−0p+
1 p−

2 + U(3)

1,2,−0p−
1 p−

2 ]δ0−1−2 dk1,2, (B 19)

∂q−
∂t

= p− +
∫∫

[U(2)

1,−0,2 p+
1 q+

2 + (U(3)

−0,1,2 + U(3)

1,−0,2)p
−
1 q+

2

+ U(5)

1,−0,2 p+
1 q−

2 + (U(6)

−0,1,2 + U(6)

1,−0,2) p−
1 q−

2 ]δ0−1−2 dk1,2, (B 20)

∂p−
∂t

= −ω2
−q− −

∫∫
[U(4)

1,2,−0p+
1 p+

2 + U(5)

1,2,−0p+
1 p−

2 + U(6)

1,2,−0p−
1 p−

2 ]δ0−1−2 dk1,2. (B 21)

When discretized, this system can be considered a dynamical system for coupled
oscillators.

On the other hand, the amplitude equations for the scalar complex amplitudes z±
introduced in (3.36) can be found, from (3.40), as

∂z+
∂t

= iω+z+ + i
∫∫

[(V (1)

0,1,2z+
1 z+

2 + V (2)

0,1,2z+
1 z−

2 + V (5)

0,1,2z−
1 z−

2 )δ0−1−2 + {(V (1)

2,0,1

+ V (1)

2,1,0)z
+
1

∗z+
2 + V (2)

2,0,1z−
1

∗z+
2 + (V (3)

2,0,1 + V (3)

2,1,0)z
+
1

∗z−
2 + V (4)

2,1,0z−
1

∗z−
2 }δ0+1−2

+ {(V (7)

0,1,2 + V (7)

2,0,1 + V (7)

1,2,0)z
+
1

∗z+
2

∗

+ (V (8)

0,1,2 + V (8)

1,0,2)z
+
1

∗z−
2

∗ + V (9)

0,1,2z−
1

∗z−
2

∗}δ0+1+2]dk1,2, (B 22)

∂z−
∂t

= iω−z− + i
∫∫

[(V (3)

0,1,2z+
1 z+

2 + V (4)

0,1,2 z−
1 z+

2 + V (6)

0,1,2z−
1 z−

2 )δ0−1−2 + {V (2)

2,1,0z+
1

∗z+
2

+ V (4)

2,0,1z+
1

∗z−
2 + (V (5)

2,0,1 + V (5)

2,1,0)z
−
1

∗z+
2 + (V (6)

2,0,1 + V (6)

2,1,0)z
−
1

∗z−
2 }δ0+1−2

+ {V (8)

1,2,0z+
1

∗z+
2

∗ + (V (9)

2,0,1 + V (9)

2,1,0)z
−
1

∗z+
2

∗

+ (V (10)

0,1,2 + V (8)

2,0,1 + V (10)

1,2,0)z
−
1

∗z−
2

∗}δ0+1+2]dk1,2. (B 23)
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Appendix C. Interaction coefficients

The interaction coefficients U(n)

1,2,3 (n = 1, . . . , 6) for H3 in (3.34) are given by

U(1)

1,2,3 = h(1)

1,2,3P(1,1)

1 P(1,1)

2 Q(1,1)

3 + h(2)

1,2,3P(1,1)

1 P(2,1)

2 Q(1,1)

3 + h(3)

1,2,3P(2,1)

1 P(2,1)

2 Q(1,1)

3

+ h(4)

1,2,3P(1,1)

1 P(1,1)

2 Q(2,1)

3 + h(5)

1,2,3P(1,1)

1 P(2,1)

2 Q(2,1)

3 + h(6)

1,2,3P(2,1)

1 P(2,1)

2 Q(2,1)

3 , (C 1)

U(2)

1,2,3 = 2h(1)

1,2,3P(1,1)

1 P(1,2)

2 Q(1,1)

3 + h(2)

1,2,3P(1,1)

1 P(2,2)

2 Q(1,1)

3 + h(2)

2,1,3P(2,1)

1 P(1,2)

2 Q(1,1)

3

+ 2h(3)

1,2,3P(2,1)

1 P(2,2)

2 Q(1,1)

3 + 2h(4)

1,2,3P(1,1)

1 P(1,2)

2 Q(2,1)

3

+ h(5)

1,2,3P(1,1)

1 P(2,2)

2 Q(2,1)

3 + h(5)

2,1,3P(2,1)

1 P(1,2)

2 Q(2,1)

3 + 2h(6)

1,2,3P(2,1)

1 P(2,2)

2 Q(2,1)

3 , (C 2)

U(3)

1,2,3 = h(1)

1,2,3P(1,2)

1 P(1,2)

2 Q(1,1)

3 + h(2)

1,2,3P(1,2)

1 P(2,2)

2 Q(1,1)

3 + h(3)

1,2,3P(2,2)

1 P(2,2)

2 Q(1,1)

3

+ h(4)

1,2,3P(1,2)

1 P(1,2)

2 Q(2,1)

3 + h(5)

1,2,3P(1,2)

1 P(2,2)

2 Q(2,1)

3 + h(6)

1,2,3P(2,2)

1 P(2,2)

2 Q(2,1)

3 , (C 3)

U(4)

1,2,3 = h(1)

1,2,3P(1,1)

1 P(1,1)

2 Q(1,2)

3 + h(2)

1,2,3P(1,1)

1 P(2,1)

2 Q(1,2)

3 + h(3)

1,2,3P(2,1)

1 P(2,1)

2 Q(1,2)

3

+ h(4)

1,2,3P(1,1)

1 P(1,1)

2 Q(2,2)

3 + h(5)

1,2,3P(1,1)

1 P(2,1)

2 Q(2,2)

3 + h(6)

1,2,3P(2,1)

1 P(2,1)

2 Q(2,2)

3 , (C 4)

U(5)

1,2,3 = 2h(1)

1,2,3P(1,1)

1 P(1,2)

2 Q(1,2)

3 + h(2)

1,2,3P(1,1)

1 P(2,2)

2 Q(1,2)

3 + h(2)

2,1,3P(2,1)

1 P(1,2)

2 Q(1,2)

3

+ 2h(3)

1,2,3P(2,1)

1 P(2,2)

2 Q(1,2)

3 + 2h(4)

1,2,3P(1,1)

1 P(1,2)

2 Q(2,2)

3

+ h(5)

1,2,3P(1,1)

1 P(2,2)

2 Q(2,2)

3 + h(5)

2,1,3P(2,1)

1 P(1,2)

2 Q(2,2)

3 + 2h(6)

1,2,3P(2,1)

1 P(2,2)

2 Q(2,2)

3 , (C 5)

U(6)

1,2,3 = h(1)

1,2,3P(1,2)

1 P(1,2)

2 Q(1,2)

3 + h(2)

1,2,3P(1,2)

1 P(2,2)

2 Q(1,2)

3 + h(3)

1,2,3P(2,2)

1 P(2,2)

2 Q(1,2)

3

+ h(4)

1,2,3P(1,2)

1 P(1,2)

2 Q(2,2)

3 + h(5)

1,2,3P(1,2)

1 P(2,2)

2 Q(2,2)

3 + h(6)

1,2,3P(2,2)

1 P(2,2)

2 Q(2,2)

3 , (C 6)

where h(n)

1,2,3 are defined by (3.21)–(3.25), and (3.28) has been imposed. In addition, Q(i,j)

and P(i,j) are defined as

Q = MS1/2 =
(

Q(1,1) Q(1,2)

Q(2,1) Q(2,2)

)
, P = Γ −1MS1/2 =

(
P(1,1) P(1,2)

P(2,1) P(2,2)

)
, (C 7a,b)

with P(i,j)
l = P(i,j)(kl) and Q(i,j)

l = Q(i,j)(kl).
After defining Ū(n)

1,2,3 (n = 1, . . . , 6) as

Ū(1)

1,2,3 = −
√

ω+
1 ω+

2

8ω+
3

U(1)

1,2,3, Ū(2)

1,2,3 = −
√

ω+
1 ω−

2

8ω+
3

U(2)

1,2,3, Ū(3)

1,2,3 = −
√

ω−
1 ω−

2

8ω+
3

U(3)

1,2,3,

Ū(4)

1,2,3 = −
√

ω+
1 ω+

2

8ω−
3

U(4)

1,2,3, Ū(5)

1,2,3 = −
√

ω+
1 ω−

2

8ω−
3

U(5)

1,2,3, Ū(6)

1,2,3 = −
√

ω−
1 ω−

2

8ω−
3

U(6)

1,2,3,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(C 8)
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the coefficients V (n)

1,2,3 (n = 1, . . . , 10) in (3.39) are given by

V (1)

1,2,3 = Ū(1)

2,3,−1 − Ū(1)

−1,2,3 − Ū(1)

3,−1,2, V (2)

1,2,3 = −Ū(2)

−1,3,2 + Ū(2)

2,3,−1 − Ū(4)

−1,2,3 − Ū(4)

2,−1,3,

V (3)

1,2,3 = −Ū(2)

3,−1,2 + Ū(4)

2,3,−1, V (4)

1,2,3 = −Ū(3)

−1,2,3 − Ū(3)

2,−1,3 + Ū(5)

3,2,−1 − Ū(5)

3,−1,2,

V (5)

1,2,3 = Ū(3)

2,3,−1 − Ū(5)

−1,2,3, V (6)

1,2,3 = Ū(6)

2,3,−1 − Ū(6)

−1,2,3 − Ū(6)

3,−1,2,

V (7)

1,2,3 = Ū(1)

1,2,3, V (8)

1,2,3 = Ū(2)

1,3,2 + Ū(4)

1,2,3, V (9)

1,2,3 = Ū(3)

2,3,1 + Ū(5)

1,2,3, V (10)

1,2,3 = Ū(6)

1,2,3,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(C 9)

where Ū(n)

1,2,3 = Ū(n)

−1,−2,−3 (n = 1, . . . , 6) have been used. Note that V (n)

1,2,3 = V (n)

−1,−2,−3 (n =
1, . . . , 10).
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