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A B S T R A C T

To describe large amplitude internal solitary waves in a two-layer system, we consider the high-order unidirectional (HOU) model that extends the Korteweg–de
Vries equation with high-order nonlinearity and leading-order nonlinear dispersion. While the original HOU model is valid only for weakly nonlinear waves,
its coefficients depending on the depth and density ratios are adjusted such that the adjusted model can represent the main characteristics of large amplitude
internal solitary waves, including effective wavelength, wave speed, and maximum wave amplitude. It is shown that the solitary wave solution of the adjusted
HOU (aHOU) model agrees well with that of the strongly nonlinear Miyata–Choi–Camassa (MCC) model up to the maximum wave amplitude, which cannot
be achieved by the original HOU model. To further validate the aHOU model, numerical solutions of the aHOU model are presented for the propagation and
interaction of solitary waves and are shown to compare well with those of the MCC model. The aHOU model is further extended to the case of variable bottom
and is solved numerically. In comparison with the MCC model for variable bottom, it is found that the aHOU model is a simple, but reliable theoretical model
for large amplitude internal solitary waves, which would be useful for practical applications.

1. Introduction

Large amplitude internal solitary waves in density-stratified oceans
are typically generated by tidal flows over topographical disturbances
and have been observed via satellite images as well as field experi-
ments. Due to the reduced effective gravity by small density variation
in the ocean, the amplitudes of the internal solitary waves can be as
large as the characteristic length scale in the vertical direction, such as
the thickness of the mixed layer, which could be on the order of 100 m
(Helfrich and Melville, 2006). Therefore, it is non-trivial to describe
the large amplitude wave motions using a simple theoretical model
developed under the small amplitude assumption.

For a two-layer system, a theoretical model for large amplitude
long internal waves has been proposed by Miyata (1988) and Choi and
Camassa (1999) and the validity of this strongly nonlinear model, often
referred to as the MCC model, has been confirmed through the compari-
son of its solitary wave solution with the numerical solution of the Euler
equations and laboratory measurements (Camassa et al., 2006; Kodaira
et al., 2016). However the application of the MCC model to unsteady
wave problems could be problematic as its initial value problem is
ill-posed due to the local Kelvin–Helmholtz instability excited by a
velocity jump across the deformed interface (Jo and Choi, 2002). While
such shear instability persists in laboratory and field experiments, it has
been observed that only relatively large amplitude waves are deformed
by the instability. Even when they are unstable, the solitary waves
of large amplitudes maintain approximately their profiles although
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dispersive tails excited by Kelvin–Helmholtz billows are observed (Grue
et al., 1999; Kodaira et al., 2016). Therefore stabilizing effects in-
duced by, for example, viscosity and a thin density transition layer
need to be incorporated into the MCC model for unsteady problems.
Unfortunately, modeling these stabilizing effects in an asymptotically-
consistent way is difficult, particularly, under the strongly nonlinear
assumption.

Numerically the unsteady MCC model has been solved with a low-
pass filter to remove unstable short waves (Jo and Choi, 2008). This
numerical approach was justified by the fact that the MCC model is
valid only for long waves and unstable short waves described incor-
rectly by the long wave model should be filtered out. The filter was
successfully used for the propagation of a single solitary wave, where
the critical wave number beyond which the instability is observed
can be predicted. For more general problems, the filter might remove
too much or too little energy. As an alternative approach, the MCC
model was regularized (Choi et al., 2009) by changing the dispersive
behavior of the model with adopting, instead of the depth-averaged
horizontal velocities, the horizontal velocities at certain vertical levels
as dependent variables. While an efficient iterative scheme to solve the
regularized model was proposed (Choi et al., 2011), it still requires
a numerical parameter to be tuned for faster convergence of their
iterative scheme. Furthermore, to solve numerically the MCC model,
one should know initially not only the interface displacement, but
also the initial velocity fields that might be unavailable. Therefore,
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Fig. 1. Two-fluid system.

for practical applications, it would be desirable if one could find a
relatively simple, but reliable model that describes the evolution of
large amplitude internal solitary waves as accurately as the MCC model.

Previously there have been numerous attempts to improve the
well-known Korteweg–de Vries (KdV) equation for weakly nonlinear
unidirectional waves. At the critical depth ratio, where the coefficient
for the second-order nonlinear term in the KdV equation vanishes,
the modified KdV equation with a third-order nonlinear term can be
obtained. Near this criticality, both second- and third-order terms are
necessary along with the linear dispersive term in the KdV equation,
which yields the so-called Gardner equation (Michallet and Barthélemy,
1998; Grimshaw et al., 2002). By breaking the balance between non-
linearity and dispersion to describe the strong nonlinearity of large am-
plitude long internal waves, a high-order unidirectional (HOU) model
has been proposed by Choi and Camassa (1999). A related model,
although more phenomenological, has been proposed by Ostrovsky and
Grue (2003) by replacing the linear wave speed and the undisturbed
layer thicknesses in the dispersive term in the KdV equation by the
characteristic speed of the shallow water equations and the local layer
thicknesses, respectively. In this paper, the HOU model is modified by
adjusting its coefficients such that the adjusted HOU (aHOU) model
preserves the solitary wave characteristics of the MCC model. To show
that the good agreement observed for the steady solitary wave solutions
persists for time-dependent problems, the unsteady aHOU model is
solved numerically and is compared with the MCC model.

After reviewing in Section 2 the strongly nonlinear MCC model and
weakly-nonlinear unidirectional models for internal waves, the aHOU
model is proposed and its solitary wave solutions are discussed in
comparison with those of the MCC model in Section 3. Then the aHOU
model is further generalized for variable bottom and its numerical
solutions are presented in Section 4. Concluding remarks are given in
Section 5. (See Fig. 1.)

2. Nonlinear long wave models

2.1. Strongly nonlinear MCC equations

In a system of two homogeneous liquid layers of densities 𝜌𝑖 and
undisturbed thicknesses ℎ𝑖 (𝑖 = 1, 2) with 𝜌2 > 𝜌1 for stable stratification
(see Fig. 1), the interface displacement 𝜁 (𝑥, 𝑡) and the depth-averaged
velocities 𝑢𝑖(𝑥, 𝑡) can be described by a strongly nonlinear long wave
model (Miyata, 1988; Choi and Camassa, 1999), commonly referred to
as the Miyata–Choi–Camassa (MCC) model, given by

𝜂𝑖𝑡+(𝜂𝑖𝑢𝑖)𝑥 = 0 , 𝑢𝑖𝑡+𝑢𝑖𝑢𝑖𝑥+𝑔𝜁𝑥 = −
𝑃𝑥
𝜌𝑖

+ 1
𝜂𝑖

( 1
3
𝜂𝑖

3 𝐺𝑖

)

𝑥
+𝑂(𝜖4) , (2.1)

where subscripts with respect to space 𝑥 and time 𝑡 represent partial
differentiation. In (2.1), 𝑔 is the gravitational acceleration, 𝑃 is the
pressure at the interface, 𝜂𝑖 (𝑖 = 1, 2) are the local layer thicknesses
defined by 𝜂1 = ℎ1 − 𝜁 and 𝜂2 = ℎ2 + 𝜁 , and 𝐺𝑖 (𝑖 = 1, 2) representing
the linear and nonlinear dispersive effects are given by

𝐺𝑖(𝑥, 𝑡) = 𝑢𝑖𝑥𝑡 + 𝑢𝑖𝑢𝑖𝑥𝑥 − (𝑢𝑖𝑥)
2 . (2.2)

This model assumes ℎ2∕ℎ1 = 𝑂(1) and is valid to 𝑂(𝜖2), where 𝜖 =
ℎ1∕𝜆 ≪ 1 with 𝜆 being the characteristic wavelength is the dispersion
parameter. On the other, the nonlinear parameter defined by 𝛼 = 𝑎∕ℎ1
that is often assumed small for weakly nonlinear waves is no longer
small and is assumed 𝑂(1). Therefore, the system given by (2.1) is
considered a strongly nonlinear long wave model.

For traveling-wave solutions of (2.1), after assuming 𝜁 = 𝜁 (𝑋),
𝑢𝑖 = 𝑢𝑖(𝑋), and 𝑃 = 𝑃 (𝑋) with 𝑋 = 𝑥 − 𝑐𝑡, 𝑐 being the wave speed,
and imposing 𝜁, 𝜁𝑋 , 𝜁𝑋𝑋 → 0, 𝑢𝑖 → 0, 𝑃𝑋 → 0 at infinity, the system
given by (2.1) can be integrated (Choi and Camassa, 1999) to

𝜁𝑋
2 = 𝑞0

𝜁2(𝜁2 + 𝑞1𝜁 + 𝑞2)
𝜁 − 𝑎∗

= 𝑞0
𝜁2(𝜁 − 𝑎−)(𝜁 − 𝑎+)

𝜁 − 𝑎∗
, (2.3)

where 𝑎∗ and 𝑞𝑖 (𝑖 = 0, 1, 2) are given by

𝑎∗ = −
ℎ1ℎ2(𝜌1ℎ2 + 𝜌2ℎ1)

𝜌1ℎ21 − 𝜌2ℎ22
, 𝑞0 =

3𝑔(𝜌2 − 𝜌1)
𝑐2(𝜌1ℎ21 − 𝜌2ℎ22)

,

𝑞1 = − 𝑐2

𝑔
− ℎ1 + ℎ2, 𝑞2 = ℎ1ℎ2

(

𝑐2

𝑐20
− 1

)

,
(2.4)

with the solitary wave speed 𝑐 and the linear long wave speed 𝑐0 given
by

𝑐2 = 𝑐0
2
[

(ℎ1 − 𝑎)(ℎ2 + 𝑎)
ℎ1ℎ2 − (𝑐02∕𝑔) 𝑎

]

, 𝑐0
2 =

𝑔ℎ1ℎ2(𝜌2 − 𝜌1)
𝜌1ℎ2 + 𝜌2ℎ1

. (2.5)

As shown in Choi and Camassa (1999), either 𝑎− or 𝑎+ is the wave
amplitude depending on the density and depth ratios. In agreement
with the solitary-wave solutions for the Euler equations, the traveling
waves are symmetric and the sign of their amplitude 𝑎 is determined
by the sign of the quantity 𝜌1ℎ22 − 𝜌2ℎ21. More specifically, waves are
of elevation (or depression) if 𝜌1ℎ22 − 𝜌2ℎ21 is negative (or positive).
Moreover, in the critical case when 𝜌1ℎ22 = 𝜌2ℎ21, no solitary wave
solutions exist (Craig and Sternberg, 1992).

When 𝑎− = 𝑎+ = 𝑎𝑚, the solitary wave has the maximum amplitude
and becomes a front wave (or internal bore), whose amplitude 𝑎𝑚 and
speed 𝑐𝑚 are given by

𝑎𝑚 =
ℎ1 − ℎ2

√

𝜌1∕𝜌2
1 +

√

𝜌1∕𝜌2
, 𝑐𝑚

2 = 𝑔(ℎ1 + ℎ2)
1 −

√

𝜌1∕𝜌2
1 +

√

𝜌1∕𝜌2
. (2.6)

Notice that 𝑎𝑚 and 𝑐𝑚 are identical to the amplitude and speed of the
internal bore for the Euler equations (Choi and Camassa, 1999).

2.2. High-order unidirectional model

For unidirectional waves of relatively large amplitudes, one can
imagine that the KdV equation needs to be improved by including
higher-order nonlinear and dispersive terms. To obtain such a model,
instead of 𝛼 = 𝑂(𝜖2) ≪ 1 valid for the KdV equation, the balance
between nonlinearity and dispersion might need to be altered. Under
the assumption of 𝜖2 < 𝛼 < 𝜖 (Choi and Camassa, 1999, Appendix A),
the MCC equations (2.1) can be reduced, for the interface elevation
𝜁 (𝑥, 𝑡), to

𝜁𝑡+𝑐0𝜁𝑥+𝑐1𝜁𝜁𝑥+𝑐2𝜁𝑥𝑥𝑥+𝑐3𝜁
2𝜁𝑥+

(

𝑐4𝜁
2
𝑥+𝑐5𝜁𝜁𝑥𝑥

)

𝑥 = 𝑂(𝜖4, 𝛼3, 𝛼2𝜖2) , (2.7)

where 𝑐𝑖 (𝑖 = 1,… , 5) are given by

𝑐1 = −
3𝑐0
2

𝜌1ℎ22 − 𝜌2ℎ21
𝜌1ℎ1ℎ22 + 𝜌2ℎ21ℎ2

, 𝑐2 =
𝑐0
6
𝜌1ℎ21ℎ2 + 𝜌2ℎ1ℎ22

𝜌1ℎ2 + 𝜌2ℎ1
,

𝑐3 =
7𝑐12

6𝑐0
−

3𝑐0(𝜌1ℎ32 + 𝜌2ℎ31)

ℎ21ℎ
2
2(𝜌1ℎ2 + 𝜌2ℎ1)

,

(2.8)

𝑐4 =
17𝑐1𝑐2
12𝑐0

−
𝑐0ℎ1ℎ2(𝜌2 − 𝜌1)
12(𝜌1ℎ2 + 𝜌2ℎ1)

, 𝑐5 =
7𝑐1𝑐2
3𝑐0

−
𝑐0ℎ1ℎ2(𝜌2 − 𝜌1)
6(𝜌1ℎ2 + 𝜌2ℎ1)

. (2.9)

Notice that 𝑐2∕𝑐0 > 0 and 𝑐3∕𝑐0 < 0 for all physical parameters
(𝜌2∕𝜌1, ℎ2∕ℎ1) while the signs of 𝑐𝑖∕𝑐0 for 𝑖 = 1, 4, 5 can vary depending
on the physical parameters. The errors in (2.7) represent those relative
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to the leading-order term 𝜁𝑡 = 𝑂(𝜁𝑥). When the nonlinear dispersive
terms (with 𝑐4 and 𝑐5) are neglected, (2.7) can be reduced to the
Gardner equation:

𝜁𝑡 + 𝑐0 𝜁𝑥 + 𝑐1 𝜁𝜁𝑥 + 𝑐2 𝜁𝑥𝑥𝑥 + 𝑐3 𝜁
2𝜁𝑥 = 𝑂(𝛼𝜖2, 𝜖4) . (2.10)

Previously, (2.10) has been obtained e.g. by Kakutani and Yamasaki
(1978) for internal waves under the criticality condition of ℎ2∕ℎ1 =
(𝜌2∕𝜌1)1∕2 for which 𝑐1 vanishes or is small. Here no such assump-
tion has been made and, therefore, the coefficients given by (2.8)
are slightly different from those of Kakutani and Yamasaki (1978).
They match, however, with the first four coefficients for higher-order
extension of the KdV equation presented by Koop and Butler (1981,
Appendix A). When the third-order nonlinear term (𝑐3 = 0) is neglected
from the Gardner equation, the well-known KdV equation is recovered.

While (2.7) conserves excess mass, or ∫ 𝜁 d𝑥, it possesses no energy-
like conservative quantity. In Choi and Camassa (1999, Appendix A), an
alternative form was suggested with the same order of approximation
as in (2.7). Using 𝜁𝑥𝑥𝑡+ 𝑐0𝜁𝑥𝑥𝑥+ 𝑐1(𝜁𝜁𝑥)𝑥𝑥 = 𝑂(𝜖4), equation (2.7) is then
modified to

𝜁𝑡 + 𝑐0𝜁𝑥 + 𝑐1𝜁𝜁𝑥 +
𝑐2
2
𝜁𝑥𝑥𝑥 −

𝑐2
2𝑐0

𝜁𝑥𝑥𝑡 + 𝑐3𝜁
2𝜁𝑥 + (𝑐5 − 𝑐4)

(

𝜁2𝑥 +2𝜁𝜁𝑥𝑥
)

𝑥 = 0 ,

(2.11)

where (𝑐5 − 2𝑐4)∕𝑐1 = −𝑐2∕(2𝑐0) has been used. This particular form
to be hereafter called the High-Order Unidirectional (HOU) model
conserves the following energy-like quantity HOU

HOU = 1
2 ∫

∞

−∞

[

𝜁2 +
(

𝑐2
2𝑐0

)

𝜁𝑥
2
]

d𝑥 . (2.12)

The HOU model can be easily integrated twice, for waves propagating
with the wave speed 𝑐, to

𝜁𝑋
2 = 𝑞0

𝜁2(𝜁2 + 𝑞1𝜁 + 𝑞2)
𝜁 − �̃�∗

= 𝑞0
𝜁2(𝜁 − �̃�−)(𝜁 − �̃�+)

𝜁 − �̃�∗
, 𝑋 = 𝑥 − 𝑐 𝑡 ,

(2.13)

where 𝑞𝑖 (𝑖 = 0, 1, 2) and �̃�∗ are given by

𝑞0 =
𝑐3

12(𝑐4 − 𝑐5)
, 𝑞1 = 2𝑐1∕𝑐3 , 𝑞2 = −6(𝑐 − 𝑐0)∕𝑐3 > 0 ,

�̃�∗ = −
𝑐2(𝑐∕𝑐0 + 1)
2(𝑐4 − 𝑐5)

.
(2.14)

As 𝑐∕𝑐0 > 1 and 𝑐3∕𝑐0 < 0, 𝑞2 is always positive and, therefore,
the polarity of the solitary wave solution depends on the sign of 𝑞1,
i.e., on the sign of 𝜌1ℎ22 − 𝜌2ℎ21, in agreement with the strongly and
fully nonlinear theories. Therefore, if 𝑐1∕𝑐0 is positive, 𝑞1 < 0 and the
amplitude of the solitary wave is given by 𝑎 = �̃�+ < 0 with �̃�− < �̃�+ < 0.
On the other hand, if 𝑐1∕𝑐0 is negative, 𝑞1 > 0 and the amplitude is
given by 𝑎 = �̃�− > 0 with 0 < �̃�− < �̃�+.

Similarly to the MCC equations, from the condition 𝜁𝑋 = 0 at 𝜁 = 𝑎,
the right-hand side of (2.13) yields the following relationship between
wave speed and amplitude for the HOU model:

𝑐HOU = 𝑐0 +
𝑐1𝑎
3

(

1 +
𝑎𝑐3
2𝑐1

)

. (2.15)

When �̃�− = �̃�+ = �̃�𝑚, the solitary wave becomes the internal bore, whose
amplitude �̃�𝑚 and speed 𝑐𝑚 are given by

�̃�𝑚 = −𝑞1∕2 = −𝑐1∕𝑐3 , 𝑐𝑚 = 𝑐0 − 𝑐21∕(6𝑐3) . (2.16)

It is interesting to notice that the mathematical structure of (2.13) is
identical to that of the strongly nonlinear MCC equations for traveling
waves given by (2.3). Furthermore, the HOU model (2.11) describes
physical processes relevant for large amplitude waves, such as the
higher-order nonlinear and leading-order nonlinear dispersive effects
through the terms proportional to 𝑐3 and 𝑐4 − 𝑐5, respectively.

2.3. Limitations of weakly nonlinear unidirectional models

The comparison between the solitary wave solutions of the MCC,
HOU, Gardner, and KdV equations is shown in Fig. 2 for fixed param-
eters 𝜌2∕𝜌1 = 1.01 and ℎ2∕ℎ1 = 4, relevant to ocean applications. In
addition to the half solitary wave profile for 𝑎∕ℎ1 = −0.8, we compute
the effective wavelength 𝜆 defined (Koop and Butler, 1981) by

𝜆 ≡
|

|

|

|

1
𝑎 ∫

∞

0
𝜁 (𝑋) d𝑋

|

|

|

|

=
|

|

|

|

1
𝑎 ∫

∞

0

𝜁
(d𝜁∕d𝑋)

d𝜁
|

|

|

|

. (2.17)

As shown in Fig. 2(𝑎), the KdV equation is valid only for small
amplitude waves. On the other hand, the Gardner and HOU models
improve agreement with MCC for moderate wave amplitudes, but fail
to describe large internal solitary waves, as shown in Fig. 2(𝑏). For the
physical parameters chosen for Fig. 2, notice that the Gardner and HOU
models share the same maximum amplitude, but its value is much less
than that of the MCC equations (and that of the Euler equations).

Under usual oceanic conditions, where internal solitary waves are
typically of depression with ℎ2∕ℎ1 > (𝜌2∕𝜌1)1∕2, one can conclude
that both HOU and Gardner models under-predict the maximum wave
amplitude. On the other hand, the weakly nonlinear models can overes-
timate the maximum wave amplitude for internal waves of elevation.
Either way, the weakly nonlinear uni-directional models are not reli-
able to describe large amplitude internal solitary waves of interest. This
is not so surprising as the unidirectional models should be valid only
for weakly nonlinear waves.

Here we attempt to find a unidirectional model that is relatively
simple, but is applicable to a wide range of wave amplitudes, including
those close to the maximum. Particularly the mathematical structure
of the HOU model is appealing as it contains terms describing the
characteristics of large amplitude waves, such as higher-order nonlin-
earity and nonlinear dispersion. Therefore, if modified appropriately,
the HOU model could serve as a useful theoretical tool for practical
applications.

3. The HOU model with adjusted coefficients

To describe large amplitude internal solitary waves, the coeffi-
cients of the HOU model given by (2.11) are replaced by unspecified
coefficients:

𝜁𝑡+𝜇0𝜁𝑥+𝜇1𝜁𝜁𝑥+𝜇21 𝜁𝑥𝑥𝑥−𝜇22 𝜁𝑥𝑥𝑡+𝜇3 𝜁
2𝜁𝑥+𝜇4

(

𝜁2𝑥 +2𝜁𝜁𝑥𝑥
)

𝑥 = 0 , (3.1)

where 𝜇𝑖 are the coefficients to be determined. In (3.1), the coefficients
for the linear terms (𝜇0, 𝜇21, and 𝜇22) would be chosen to better
represent the linear dispersive behavior of linear long waves while 𝜇1
and 𝜇3 will be determined to better describe the nonlinear effects of
large amplitude internal solitary waves. On the other hand, 𝜇4 will be
determined to account for the nonlinear dispersive effects.

By rewriting (3.1) as
(

𝜁−𝜇22 𝜁𝑥𝑥
)

𝑡
+
[

𝜇0𝜁+
1
2𝜇1𝜁

2+𝜇21𝜁𝑥𝑥+
1
3𝜇3𝜁

3+𝜇4(𝜁2𝑥+2𝜁𝜁𝑥𝑥)
]

𝑥
= 0 , (3.2)

one can see that the adjusted HOU (aHOU) model given by (3.1) or
(3.2) conserves not only excess mass ∫ 𝜁d𝑥, but also an energy-like
quantity given by

aHOU = 1
2 ∫

∞

−∞

(

𝜁2 + 𝜇22 𝜁𝑥
2) d𝑥 . (3.3)

To find its solitary wave solution, (3.2) can be integrated into

𝜁𝑋
2 = 𝛾0

𝜁2(𝜁2 + 𝛾1𝜁 + 𝛾2)
𝜁 − 𝑎∗

, (3.4)

where 𝛾0 and 𝑎∗ are given by

𝛾0 = −
𝜇3

12𝜇4
, 𝛾1 =

2𝜇1
𝜇3

, 𝛾2 = −
6(𝑐 − 𝜇0)

𝜇3
. 𝑎∗ = −

𝜇21 + 𝑐 𝜇22
2𝜇4

. (3.5)

3
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Fig. 2. Comparison between models for 𝜌2∕𝜌1 = 1.01 and ℎ2∕ℎ1 = 4. (𝑎) Effective wavelength (𝜆∕ℎ1) versus wave amplitude (𝑎∕ℎ1); (𝑏) Half profiles for a solitary wave of depression
of 𝑎∕ℎ1 = −0.8. Solid: MCC; long-dashed: HOU; dotted: Gardner; dot-dashed: KdV.

From 𝜁𝑋 = 0 with 𝜁 = 𝑎, the wave speed of the solitary wave for the
aHOU equation can be obtained, from (3.4), as

𝑐aHOU = 𝜇0 +
1
6
(

2𝜇1𝑎 + 𝜇3𝑎
2) . (3.6)

The maximum amplitude 𝑎𝑚 = −𝛾1∕2 and the corresponding wave
speed 𝑐𝑚 are given, from (3.6), by

𝑎𝑚 = −
𝜇1
𝜇3

, 𝑐𝑚 = 𝜇0 −
𝜇12

6𝜇3
. (3.7)

3.1. Choice of coefficients

Now we need to fix the coefficients (𝜇𝑖) as functions of the density
and depth ratios such that the aHOU equation approximates well its
parent equations, which should be the Euler equations. However, as no
analytic solutions are available for the Euler equations and the MCC
solutions agree well with the Euler solutions for large amplitude long
waves, we develop a model that approximates the MCC model. Then
we choose 𝜇𝑖 such that the MCC and aHOU equations share the main
characteristics of large amplitude internal solitary waves.

We first fix 𝜇0, 𝜇21, and 𝜇22 to better match the linear dispersion
relation with that of the Euler equations. When linearized, the aHOU
model has the linear wave speed 𝑐aHOUlin given by

𝑐aHOUlin =
𝜇0 − 𝜇21𝑘2

1 + 𝜇22 𝑘2
= 𝜇0 − (𝜇21 + 𝑐0 𝜇22) 𝑘2 + (𝜇21 + 𝑐0 𝜇22)𝜇22 𝑘4 +𝑂(𝑘6) ,

(3.8)

where 𝑘 is assumed to be small for long waves. This wave speed can be
matched, up to 𝑂(𝑘4), with the exact linear wave speed given by

𝑐Eulerlin =
[

(𝑔∕𝑘)(𝜌2 − 𝜌1)
𝜌1 coth 𝑘ℎ1 + 𝜌2 coth 𝑘ℎ2

]1∕2
= 𝑐0 − 𝑐2𝑘

2 + 𝑐6𝑘
4 + 𝑂(𝑘6) , (3.9)

where 𝑐6 is given by

𝑐6 =
3𝑐22
2𝑐0

+
𝑐0ℎ1ℎ2(𝜌1ℎ31 + 𝜌2ℎ32)
90(𝜌1ℎ2 + 𝜌2ℎ1)

. (3.10)

From (3.8) and (3.9), one can choose 𝜇0, 𝜇21, and 𝜇22 as

𝜇0 = 𝑐0 , 𝜇21 = 𝑐2 − 𝑐0 (𝑐6∕𝑐2) , 𝜇22 = 𝑐6∕𝑐2 , (3.11)

which is equivalent to the Pade (2,2) approximation to the full linear
dispersion relation given by (3.9). Compared with the wave speed of
the original HOU model given by

𝑐HOUlin =
𝑐0 − (𝑐2∕2)𝑘2

1 +
(

𝑐2∕(2𝑐0)
)

𝑘2
= 𝑐0 − 𝑐2 𝑘

2 +
(

𝑐22∕(2𝑐0)
)

𝑘4 + 𝑂(𝜖6) , (3.12)

the wave speed given by (3.8) with (3.11) better approximates that of
the Euler equations given by (3.9). Alternatively, 𝜇21 and 𝜇22 can be

adjusted to match the linear wave speed of the MCC model, but this
has not been pursued here as the MCC model approximates the linear
long wave speed of the Euler equations less accurately than the aHOU
model.

Next we choose 𝜇1 and 𝜇3 such that the maximum wave amplitude
and the maximum wave speed of the aHOU equation given by (3.7)
match those of the MCC model given by (2.6). This can be achieved by
replacing 𝑎𝑚 and 𝑐𝑚 in (3.7) by 𝑎𝑚 and 𝑐𝑚 in (2.6), respectively, which
yields the expressions of 𝜇1 and 𝜇3, in terms of 𝑎𝑚 and 𝑐𝑚, as

𝜇1 = 6(𝑐𝑚 − 𝑐0)∕𝑎𝑚 , 𝜇3 = −6(𝑐𝑚 − 𝑐0)∕𝑎2𝑚 . (3.13)

As shown in (2.6), 𝑐𝑚 and 𝑎𝑚 are functions of the density and depth
ratios, 𝜌2∕𝜌1 and ℎ2∕ℎ1, and, therefore, so are 𝜇1 and 𝜇3.

Finally the coefficient of nonlinear dispersive terms 𝜇4 is chosen by
matching the characteristic length scale of the solitary wave solution
at the maximum amplitude. By comparing (2.3) and (3.4), one can see
that this is equivalent to imposing the condition of 𝛾0 = 𝑞0 with 𝑞0 given
by (2.4) being evaluated with 𝑎 = 𝑎𝑚 and 𝑐 = 𝑐𝑚. Then the expression
of 𝜇4 is found as

𝜇4 =
(𝜌1ℎ21 − 𝜌2ℎ22)
6 𝑔(𝜌2 − 𝜌1)

𝑐2𝑚(𝑐𝑚 − 𝑐0)
𝑎2𝑚

. (3.14)

With this choice of 𝜇4, the effective wavelength is expected to be better
predicted.

Fig. 3 shows the comparison of the linear wave speed and the
coefficients between the original HOU model and the aHOU model. As
shown in Fig. 3(𝑎), the linear wave speed of the aHOU model agrees
much better with that of the Euler equations than the HOU model, as
noted previously. In addition, as 𝜇21 < 0 for all 𝑘, the wave speed 𝑐 is
always positive, which is not the case for the HOU model. In Fig. 3(𝑏)−
(𝑑), for a fixed value of 𝜌2∕𝜌1 = 1.01, the coefficients of the aHOU model
are compared with those of the HOU model. The coefficients of the
aHOU model vary with the depth ratio ℎ2∕ℎ1 similarly to those of the
HOU model, but the difference between the two models increases with
the depth ratio.

3.2. The Gardner equation with adjusted coefficients

When 𝜇4 = 0, the aHOU model can be reduced to

𝜁𝑡 + 𝜇0 𝜁𝑥 + 𝜇1 𝜁𝜁𝑥 + 𝜇21 𝜁𝑥𝑥𝑥 − 𝜇22 𝜁𝑥𝑥𝑡 + 𝜇3 𝜁
2𝜁𝑥 = 0 , (3.15)

or, equivalently,
(

𝜁 − 𝜇22 𝜁𝑥𝑥
)

𝑡
+
(

𝜇0 𝜁 + 1
2𝜇1 𝜁

2 + 𝜇21 𝜁𝑥𝑥 +
1
3𝜇3 𝜁

3
)

𝑥
= 0 . (3.16)

For simplicity, this equation will be hereafter referred to as the adjusted
Gardner (aG) equation as it has both quadratic and cubic nonlinear
terms. Due to the additional term with 𝜇22, notice that the aG equa-
tion has different mathematical properties from the Gardner equation,
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Fig. 3. Comparison between the aHOU (solid) and HOU (dashed) models: (𝑎) linear wave speed 𝑐lin along with that of the linearized Euler equations (dotted); (𝑏) coefficient of
the quadratic nonlinear term: 𝜇1 (solid) and 𝑐1 (dashed); (𝑐) coefficient of the cubic nonlinear term: 𝜇3 (solid) and 𝑐3 (dashed); (𝑑) coefficient of the nonlinear dispersive term: 𝜇4
(solid) and 𝑐5 − 𝑐4 (dashed). Here the density ratio is set as 𝜌2∕𝜌1 = 1.01.

including the loss of integrability (Olver, 1979). With 𝜇1 = 𝑐1, 𝜇22 = 0,
and 𝜇3 = 𝑐3, the original Gardner equation (2.10) can be recovered
from (3.15). When 𝜇3 = 0, (3.15) with (3.11) is the KdV-BBM equation,
which is asymptotically consistent with the KdV equation.

For traveling waves, the aG equation given by (3.16) can be easily
reduced to

𝜁𝑋
2 = 𝛾0 𝜁

2 (𝜁2 + 𝛾1 𝜁 + 𝛾2
)

, (3.17)

where 𝛾1 and 𝛾2 are the same as those of the aHOU model given by
(3.5) and 𝛾0 is given by

𝛾0 = −
𝜇3

6
(

𝜇21 + 𝑐 𝜇22
) . (3.18)

The steady form of the aG equation (3.17) has the same structure as
that of the original Gardner equation and its solitary wave solution is
given by

𝜁aG(𝑋) = 𝑎
𝑏 + (1 − 𝑏) cosh2(𝐾𝑋)

, 𝑋 = 𝑥 − 𝑐aG 𝑡 , (3.19)

where 𝑏 are 𝐾 given by

𝑏 = 𝑎2∕𝛾2 , 𝐾 = (𝛾0𝛾2)1∕2∕2 . (3.20)

Notice that the solitary wave speed of the aG equation, 𝑐aG, is identical
to that of the aHOU model given by (3.6) while its effective wavelength
is given, from (2.17), by

𝜆aG = 2
|𝑎|𝛾1∕20

tanh−1
|𝑎|

𝛾1∕22

. (3.21)

3.3. Solitary wave solutions

As shown in Fig. 4(𝑎), both the aHOU and aG models now predict
the effective wavelength to the maximum wave amplitude for the MCC
model. In particular, the effective wavelength for the aHOU equation

agrees well with that for the MCC model over a wide range of wave
amplitudes although it is slightly overestimated. On the other hand,
the aG model underestimates the effective wavelength. This implies
that the nonlinear dispersive term in the aHOU model is essential for
the accurate prediction of the effective wavelength. As can be seen in
Fig. 4(𝑏), the wave speed for the aHOU model is slightly smaller than
the MCC wave speed over a range of intermediate wave amplitudes,
but the difference is insignificant.

In Fig. 4(𝑐), the solitary wave profiles are compared for 𝑎∕ℎ1 =
−0.8. The original HOU and Gardner equations have the solitary wave
solutions, but, the comparison with the MCC solution is poor, as shown
in Fig. 2(𝑏). On the other hand, the adjusted models clearly improve the
comparison. Fig. 4(𝑑) shows the solitary wave solutions of the aHOU
and aG models for 𝑎∕ℎ1 = −1.2. The comparison of the aHOU model
with the MCC model is outstanding. It should be remarked that the
original HOU and Gardner models have no solitary wave solutions for
this amplitude.

3.4. Numerical solutions for evolving solitary waves

While the solitary wave solution of the aHOU model compares well
with that of the MCC equations, its applicability to time dependent
problems is still uncertain and needs to be tested. Here, we solve
numerically the MCC, aHOU, and aG equations using a second-order
central difference scheme in both space and time with zero and radia-
tion boundary (𝜁𝑡+𝑐0𝜁𝑥 = 0) conditions at the left and right boundaries,
respectively, as described in Jo and Choi (2002). As discussed in Jo and
Choi (2008), to eliminate the local Kelvin–Helmholtz instability from
the MCC model Jo and Choi (2002), a low-pass filter that eliminates
short waves whose wavenumbers are greater than criticality has been
applied when the MCC model is solved numerically. With the number of
spatial grid points 𝑁 = 211, and 𝛥𝑡∕(ℎ1∕𝑔)1∕2 = 0.005, when the aHOU
model is initialized with its own solitary wave solution, the relative
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Fig. 4. Comparison between the MCC (solid), aHOU (dashed), and aG (dot-dashed) models for 𝜌2∕𝜌1 = 1.01 and ℎ2∕ℎ1 = 4. (𝑎) Effective wavelength (𝜆∕ℎ1) versus wave amplitude
(𝑎∕ℎ1). (𝑏) Wave speed (𝑐∕𝑐0) versus wave amplitude (𝑎∕ℎ1). (𝑐) Half solitary wave profiles of depression for 𝑎∕ℎ1 = −0.8. (𝑑) Half solitary wave profiles of depression for 𝑎∕ℎ1 = −1.2,
for which the original HOU and Gardner equations have no solitary wave solutions.

Fig. 5. Numerical solutions of the aHOU model initialized by a single MCC solitary wave of depression with 𝑎∕ℎ1 = −1.2 for 0 ≤ 𝑡∕(ℎ1∕𝑔)1∕2 ≤ 3000. The solutions are presented
in the reference frame moving with the speed of the MCC solitary wave. (𝑎) Time evolution of −𝜁∕ℎ1; (𝑏) Wave profiles for the aHOU model (dashed) compared with the MCC
solution at 𝑡∕(ℎ1∕𝑔)1∕2 = 3000. Here the density and depth ratios are 𝜌2∕𝜌1 = 1.028 and ℎ2∕ℎ1 = 4.

errors in conserving excess mass and energy are found to be 10−5 and
10−8, respectively, at 𝑡 = 3 × 103. Therefore, the numerical scheme is
considered reliable. It should be also remarked that no filter has been
applied when the aHOU model is solved while the MCC model cannot
be solved for large amplitude internal waves without a filter for the
spatial resolution used here. In addition, no initial conditions for the
velocity fields are necessary for the aHOU model.

To confirm that the aHOU model behaves similarly to the MCC
model even for unsteady problems, we first consider a simple problem
of the propagation of a single solitary wave of the MCC model, whose
wave amplitude is 𝑎∕ℎ1 = −1.2. To address the importance of the
nonlinear dispersive term, the aG model is also solved numerically.
As the MCC solitary wave is not a solution of either unidirectional

model, it is expected to be initially deformed, but the numerical so-
lution should remain close the initial wave profile as the solitary wave
solution of each model approximates reasonably well that of the MCC
model. Notice that the numerical solutions in Fig. 5 are presented
in a frame of reference moving with the speed of the MCC solitary
wave. As the solitary wave solution of the aHOU model is closer to
the MCC solitary wave than the aG model, smaller dispersive waves
are generated initially for the aHOU model, but propagate downstream
to disappear from the computational domain. At 𝑡∕(ℎ1∕𝑔)1∕2 = 3000,
the two models show almost steady-state profiles although the aHOU
solution is slightly smaller and slower than the aG solution. Considering
the effective wavelength of the aG model is smaller than that of the
MCC model and the mass lost to the dispersive tail is small, one can
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Fig. 6. Comparison between MCC (solid), aHOU (dashed), and aG (dot-dashed) equations for the overtaking collision between two solitary waves of depression with 𝑎∕ℎ1 = −1.2
and 𝑎∕ℎ1 = −0.3 for 0 ≤ 𝑡∕(ℎ1∕𝑔)1∕2 ≤ 3000. The models are initialized with their own solitary waves and are solved in a frame of reference moving with the solitary wave of
𝑎 = −0.3. (𝑎) Numerical solutions of MCC; (𝑏) Numerical solutions of aHOU; (𝑐) 𝑡∕(ℎ1∕𝑔)1∕2 = 0; (𝑑) 𝑡∕(ℎ1∕𝑔)1∕2 = 1000; (𝑒) 𝑡∕(ℎ1∕𝑔)1∕2 = 2000; (𝑓 ) 𝑡∕(ℎ1∕𝑔)1∕2 = 3000. Here the density
and depth ratios are 𝜌2∕𝜌1 = 1.028 and ℎ2∕ℎ1 = 4.

expect that the wave amplitude of the steady-state solution of the aG
model is greater than the initial amplitude.

Next we consider numerically the overtaking collision of two soli-
tary waves, whose amplitudes are 𝑎∕ℎ1 = −1.2 and 𝑎∕ℎ1 = −0.3,
for the MCC, aHOU, and aG models. Here each model is initialized
with its own solitary wave solutions. This would test if the adjusted
unidirectional models are reliable theoretical tools for time dependent
problems in comparison with the MCC model. Fig. 6(𝑎) and (𝑏) show
the numerical solutions of the MCC and aHOU models, respectively, for
0 ≤ 𝑡∕(ℎ1∕𝑔)1∕2 ≤ 3000. Both solutions show little disturbances, except
for a phase shift after the overtaking collision. Detailed comparisons
of the numerical solutions at 𝑡∕(ℎ1∕𝑔)1∕2 = 0, 1000, 2000, 3000 are
made in Fig. 6(𝑐 − 𝑓 ). As shown in Fig. 6(𝑐), the initial solitary wave
solution of the aHOU model is close to the MCC while that of the
aG model is slightly narrower than the others. As shown in Fig. 6(𝑓 ),
after the collision, the taller wave of the aHOU model is still located
close to that of the MCC model although the smaller wave experiences
a greater phase shift. On the other hand, the amplitude of the taller
wave of the aG model is reduced and stays behind the taller waves of

the other models. Based on this comparison, it can be concluded that
the aHOU model better represents the MCC model than the aG model
and, therefore, only the aHOU model is considered in the following
discussion for variable bottom.

4. Propagation over variable bottom

The propagation of weakly nonlinear long internal waves in a two-
layer system with variable bottom can be modeled by the KdV equation
with variable coefficients (Djordjevic and Redekopp, 1978; Jo and Choi,
2002):

𝜁𝑡 + 𝑐0(𝑥)𝜁𝑥 + 𝑐1(𝑥)𝜁𝜁𝑥 + 𝑐2(𝑥)𝜁𝑥𝑥𝑥 +
1
2 𝑐

′
0(𝑥) 𝜁 = 0 , (4.1)

where 𝑐𝑖(𝑥) (𝑖 = 0, 1, 2) can be found with replacing ℎ2 in (2.5) and (2.8)
by the local lower-layer thickness, ℎ2(𝑥), and 𝑐′0(𝑥) = d𝑐0∕d𝑥. Notice
that the depth variation is assumed to be slow, or more specifically,
ℎ′2(𝑥) = 𝑂(𝜖3).
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Fig. 7. Comparison between the MCC (solid) and aHOU (dashed) models for the propagation of a single solitary wave of depression with 𝑎∕ℎ1 = −1.2 over an isolated bottom
topography given by (4.6) for 0 ≤ 𝑡∕(ℎ1∕𝑔)1∕2 ≤ 800. The models are initialized with their own solitary wave solutions located at 𝑥∕ℎ1 = −60. (𝑎) Numerical solutions of MCC;
(𝑏) Numerical solutions of aHOU; (𝑐) 𝑡∕(ℎ1∕𝑔)1∕2 = 200; (𝑑) 𝑡∕(ℎ1∕𝑔)1∕2 = 400; (𝑒) 𝑡∕(ℎ1∕𝑔)1∕2 = 600; (𝑓 ) 𝑡∕(ℎ1∕𝑔)1∕2 = 800. Here the density and depth ratios are 𝜌2∕𝜌1 = 1.028 and
ℎ20∕ℎ1 = 4.

A similar approach can be applied to the aHOU model, which yields
the following aHOU equation with variable coefficients:

𝜁𝑡 + 𝜇0(𝑥)𝜁𝑥 + 𝜇1(𝑥)𝜁𝜁𝑥 + 𝜇21(𝑥)𝜁𝑥𝑥𝑥 − 𝜇22(𝑥)𝜁𝑥𝑥𝑡 + 𝜇3(𝑥)𝜁2𝜁𝑥
+𝜇4(𝑥)

(

𝜁2𝑥 + 2𝜁𝜁𝑥𝑥
)

𝑥 + 𝜇5(𝑥)𝜁 = 0. (4.2)

Here, as in (4.1), the expressions of 𝜇𝑖(𝑥) except for 𝑖 = 5 can be
found from those of 𝜇𝑖 chosen in Section 3.1 with replacing ℎ2 by
the local lower layer thickness ℎ2(𝑥). The expression of 𝜇5(𝑥) can be
adjusted to better describe the deformation of large amplitude internal
solitary waves propagating over variable bottom, but is chosen here as
𝜇5(𝑥) = 𝑐′0(𝑥)∕2, by following (4.1), as the leading-order approximation.
It should be noticed that, if necessary, one can choose 𝜇5(𝑥) = 𝑐′0(𝑥)∕2+
𝜈, where 𝜈 > 0 is the damping coefficient representing viscous energy
dissipation due to bottom friction although it should be measured or
modeled.

To validate the aHOU model with variable coefficients, we solve
the MCC model (𝑖 = 1, 2) for variable bottom given (Jo and Choi, 2002)

by

𝜂𝑖𝑡 + (𝜂𝑖𝑢𝑖)𝑥 = 0 , 𝑢𝑖𝑡 + 𝑢𝑖𝑢𝑖𝑥 + 𝑔𝜁𝑥 = −
𝑃𝑥
𝜌𝑖

+ 1
𝜂𝑖

( 1
3
𝜂𝑖

3 𝐺𝑖

)

𝑥
+𝐵𝑖 , (4.3)

where 𝜂2 = ℎ2(𝑥) + 𝜁 , 𝐵1 = 0, and 𝐵2 is given by

𝐵2 =
1
𝜂2

(

1
2 𝜂

2
2𝐻2

)

𝑥
−
(

1
2 𝜂2𝐺2 +𝐻2

)

ℎ′2(𝑥) , (4.4)

with 𝐻2 defined by

𝐻2 =
(

𝜕𝑡 + 𝑢2𝜕𝑥
)

(ℎ′2 𝑢2) . (4.5)

The remaining variables are the same as before, except for 𝑢2, which
is now the horizontal velocity averaged over the slowly-varying local
thickness of the lower layer. If the depth variation is so slow that
ℎ′2(𝑥) = 𝑂(𝜖3), one can assume 𝐵2 = 0 without violating the asymptotic
assumption to derive the MCC model. For a single layer (𝜌1 = 0), under
the weakly nonlinear assumption, (4.3) can be reduced to the model of
Peregrine (1967) for surface waves.
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To test the aHOU for variable bottom, we study numerically the
propagation of a single solitary wave over an isolated bottom
topography of finite amplitude given by

𝑏(𝑥) = 𝑏0 cos2(4𝜋∕𝐿) for |𝑥| ≤ 𝐿∕8 , (4.6)

where 𝑏0∕ℎ1 = 2.4; 𝑏(𝑥) = 0 for |𝑥| > 𝐿∕8. Then the local thickness of
the lower layer is given by ℎ2 = ℎ20−𝑏(𝑥), where ℎ20 is the undisturbed
thickness of the lower layer. Here the total computational domain 𝐿
is chosen 𝐿∕ℎ1 = 240 and the depth and density ratios are given by
𝜌2∕𝜌1 = 1.028 and ℎ20∕ℎ1 = 4, respectively. Initially a single solitary
wave of 𝑎∕ℎ1 = −1.2 is located at 𝑥∕ℎ1 = −60 and both models are
initialized with their own solitary wave solutions. Once again, this
amplitude is greater than the maximum wave amplitude of the original
HOU equation.

Fig. 7 shows the time evolution of a single solitary wave for 0 ≤
𝑡∕(ℎ1∕𝑔)1∕2 ≤ 800 as it passes through the topography given by (4.6).
As the MCC model describes bi-directional waves, one can observe in
Fig. 7(𝑎) both the deformed solitary wave propagating in the positive
𝑥-direction and small-amplitude reflected waves propagating in the
opposite direction. On the other hand, as shown in Fig. 7(b), the aHOU
model describes only the waves traveling to the right. Considering that
the aHOU model is unable to capture the reflected waves, when the
two numerical solutions are compared in Fig. 7(c–f), their agreement is
surprising, in particular, in terms of the evolution of the leading solitary
wave. However the linear dispersive tails behind the leading wave are
different. It should be remarked that the linear dispersion relations of
the two models are different and the filter applied to the MCC model
to eliminate local instability also modifies the dispersive behavior of
relatively short waves.

5. Conclusion

It is shown that the high-order unidirectional model originally
derived for weakly nonlinear waves can describe internal solitary waves
of large amplitudes when the coefficients are adjusted appropriately.
Using the fact that the mathematical structure of the steady HOU model
is similar to that of the MCC equations, the coefficients for the second
and third-order nonlinear and nonlinear dispersive terms in the HOU
model are adjusted to reproduce the solitary wave solution of the MCC
model as closely as possible. When compared with the MCC model, it
is found that the aHOU model well describes not only the solitary wave
profiles up to the maximum wave amplitude, but also their dynamics
even when they propagate over variable bottom. It should be stressed
that the original HOU model is asymptotically consistent, but fails to
describe such large amplitude waves.

The aHOU model is simple and convenient for numerical studies.
Contrary to the MCC model (and also the Euler equations), it requires
no initial conditions for the horizontal velocities and no numerical
filter to suppress the instability induced by a velocity jump across the
interface. Furthermore, the coefficients of the aHOU model depend only
on the physical parameters (the depth and density ratios) and contain
no numerical parameters to be tuned. Therefore, one can conclude that
the aHOU equation can serve as a useful theoretical model to study
large amplitude internal solitary waves and can be applied to a wide
range of practical problems.
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