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The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP
spectrum is studied numerically using a nonlinear wave model based on a pseudospectral �PS�
method and the modified nonlinear Schrödinger �MNLS� equation. In addition, new laboratory
experiments with two different spectral bandwidths are carried out and a number of wave probe
measurements are made to validate these two wave models. Strongly nonlinear wave groups are
observed experimentally and their propagation and interaction are studied in detail. For the
comparison with experimental measurements, the two models need to be initialized with care and
the initialization procedures are described. The MNLS equation is found to approximate reasonably
well for the wave fields with a relatively smaller Benjamin–Feir index, but the phase error increases
as the propagation distance increases. The PS model with different orders of nonlinear
approximation is solved numerically, and it is shown that the fifth-order model agrees well with our
measurements prior to wave breaking for both spectral bandwidths. © 2011 American Institute of
Physics. �doi:10.1063/1.3533961�

I. INTRODUCTION

It is crucial to accurately predict ocean waves for surface
ships and offshore structures operating in severe sea states
where extreme events such as rogue waves could occur.
These rare, but highly destructive phenomena have been ob-
served more frequently than ever imagined. In recent years,
considerable progress toward more accurate predictions of
such waves has been made using various mathematical mod-
els and numerical methods. Among them, for the phase-
resolving prediction of broadband nonlinear surface waves, a
pseudospectral �PS� method based on the asymptotic formu-
lation of West et al.1 has been found to be an accurate and
computationally efficient numerical tool when combined
with fast Fourier transform �Bateman et al.2 and Tanaka3,4�.
The formulation of West et al.1 is closely related to that of
Craig and Sulem,5 who expanded formally the Dirichlet–
Neumann operator for water of finite depth. Similar pseu-
dospectral approaches have been also proposed by Dommer-
muth and Yue6 and Clamond and Grue.7 These
pseudospectral formulations have been further generalized to
investigate the interaction of nonlinear waves with bottom
topography �Smith,8 Craig et al.,9 and Guyenne and
Nicholls10� and with a submerged body �Liu et al.11 and Kent
and Choi12�. Numerical solutions of these pseudospectral
models have been widely validated with numerical solutions
obtained via classical boundary element methods and labo-
ratory experiments in, e.g., Bateman et al.,2 Choi et al.,13

Fructus et al.,14 Tian et al.,15 and Xu and Guyenne.16 A draw-
back of this approach �or any Eulerian approaches� is that,
once the wave slope becomes large so that wave breaking
occurs, no reliable computations can be made. Recently, an
attempt to take into account energy dissipation due to wave

breaking was made by Tian et al.17 for focusing wave groups
using an eddy viscosity model. Surprisingly, when the eddy
viscosity is estimated from measured energy dissipation due
to wave breaking, their numerical solution for the surface
elevation at wave probes located downstream of the active
breaking region shows excellent agreement with laboratory
measurements.

A spectral formulation of Zakharov18 accurate to the
third order in wave steepness has been also adopted to study
the evolution of broadband nonlinear surface waves. This
formulation has been modified to include the next-order
terms �Krasitskii19,20 and Stiassnie and Shemer21�. In Shemer
et al.,22 it was shown that their numerical solutions of the
modified Zakharov equation compare well with experimental
measurements for the propagation of slowly modulated wave
packets. Although it has been used to study the evolution of
broadband nonlinear surface waves �Yokoyama23�, these
spectral formulations require one to evaluate multiple convo-
lution integrals, which is computationally expensive, and,
therefore, has been used with lower-order nonlinear approxi-
mations. Since the wave fields in our laboratory experiments
are often so nonlinear that higher-order nonlinear �e.g., fifth-
or seventh-order� effects need to be included, the spectral
formulation of Zakharov is not considered in this paper.

A simpler model was also suggested by Zakharov18 to
describe the evolution of the envelope of slowly modulated
surface waves. Under the weakly nonlinear and narrow-
bandness assumptions, it is well-known that the slowly vary-
ing envelope is governed by the nonlinear Schrödinger
�NLS� equation that is valid up to the third-order in wave
steepness, ��1 with assuming the spectral bandwidth to be
O���. Compared with the aforementioned pseudospectral or
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spectral approaches, the NLS-type equation has been widely
adopted due to its simplicity, for numerical studies, but has
been known to fail to describe accurately the observed evo-
lution of real nonlinear wave packets. For example, the front-
tail asymmetry of nonlinear wave packets observed in labo-
ratory experiments is not captured by the NLS equation, as
discussed in Shemer et al.24 The NLS equation was extended
by Dysthe25 with including the fourth-order corrections and
the resulting fourth-order equation is often referred to as the
modified nonlinear Schrödinger �MNLS� equation. This
model has been further generalized by relaxing the constraint
on the bandwidth to O��1/2� by Trulsen and Dysthe.26 Com-
pared with that of the NLS equation, the numerical solutions
of the MNLS equation were found to agree better with labo-
ratory experiments over a longer distance, as demonstrated
by Lo and Mei27 and Shemer et al.28 for slowly modulated
wave packets and Trulsen and Stansberg29 for bichromatic
waves. Clamond et al.30 compared the numerical solutions of
the NLS and MNLS equations with those of the PS models
of both West et al.1 and Clamond and Grue7 for the long-
term propagation of envelope solitary waves and found that
these weakly nonlinear models are of limited success in real
applications.

Up until now, validation or invalidation of various non-
linear wave models with laboratory experiments has been
made mostly for wave fields with a small number of fre-
quency components. Even with a large number of frequency
components, instead of generating them at the wavemaker in
a random fashion, a frequency focusing technique is often
used for a large peak to form at a prescribed location �Johan-
nessen and Swan,31–33 Shemer et al.,34 and Tian et al.15�. A
relatively less number of attempts have been made to vali-
date nonlinear wave models with laboratory experiments for
the evolution of true broadband irregular waves, in particu-
lar, when the wave steepness is finite.

An earlier attempt to validate numerical solutions with
laboratory experiments for broadband wave fields was made
by Spell et al.35 for a wave field characterized by the JON-
SWAP spectrum whose wave steepness is �p=0.12, where
the wave steepness is defined as �p=kpHs /2 with kp and Hs

being the peak wave number and the significant wave height,
respectively. They used a second-order nonlinear wave
theory of Zhang et al.36 and found that the comparison was
reasonable up to a relatively short distance of kpx / �2��
=1.88, where x is the downstream wave probe location. We
should remark that a typical wave steepness for our experi-
ments is �p=0.2 and the comparison is made up to a rela-
tively longer distance of kpx / �2��=14.6. Similarly, Bonne-
foy et al.37 made a preliminary comparison of a second-order
spectral model38 for a surface wave field created by a
Bretschneider spectrum, but their characteristic steepness
was smaller than what we consider in this paper. In Grue et
al.,39 the velocity profile measurements using particle image
velocimetry under broadband wave fields of �p=0.1–0.15
were found reasonable agreement with the numerical solu-
tions of the pseudospectral model of Clamond and Grue,7 but
no comparison of the surface elevation has been presented.
The NLS and MNLS equations have been also tested, but
previous studies using these models have focused on the time

evolution of wavenumber spectrum �Dysthe et al.40 and
Socquet-Juglard et al.41� and statistical properties of wave
fields, such as the correlation between kurtosis and the oc-
currence of extreme events or rogue waves.42,43

In this paper, we adopt a phase-resolving PS model
based on the formulation of West et al.1 and study numeri-
cally the evolution of moderately nonlinear wave fields of
�p=0.2. We compare our numerical solutions with new labo-
ratory experiments and address its capability to predict
broadband wave fields in comparison with the MNLS model.

The paper is organized as follows. In Sec. II, the two
mathematical models �the PS model and the MNLS equa-
tion� are described along with the numerical methods
adopted in this paper. After we outline our experimental
setup and describe our observations in Sec. III, we present
our numerical solutions compared with experimental mea-
surements in Sec. IV.

II. MATHEMATICAL MODELS
AND NUMERICAL METHODS

A. A pseudospectral model

For inviscid, incompressible, and irrotational flows in
water of uniform depth h, by assuming that the waves have
small steepness �=a /� with a and � being a characteristic
amplitude and wavelength, respectively, the free surface mo-
tions are governed by the following set of nonlinear evolu-
tion equations:1

��

�t
= �

n=1

�

Qn��,��,
��

�t
= �

n=1

�

Rn��,�� , �1�

where ��x , t� is the surface elevation and ��x , t��	�x ,z
=� , t� is the velocity potential evaluated at the free surface.
In Eq. �1�, Qn and Rn are given by the following explicit
recursion formulas:

Q1 = W1, Q2 = W2 − �� · ��,

Qn = Wn + ����2Wn−2 for n 
 3, �2�

R1 = − g�, R2 = −
1

2
����2 +

1

2
W1

2, R3 = W1W2,

Rn =
1

2�
j=0

n−2

Wn−j−1Wj+1 +
1

2
����2�

j=0

n−4

Wn−j−3Wj+1

�3�
for n 
 4,

where �= ��x ,�y� represents the horizontal gradient. This
system can be derived from the nonlinear free surface bound-
ary conditions written in terms of �, �, and the vertical ve-
locity evaluated at the free surface W,
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��

�t
+ �� · �� = �1 + ����2�W,

�4�
��

�t
+

1

2
����2 + g� =

1

2
�1 + ����2�W2,

by substituting into Eq. �4� the expansion of W in Taylor
series about z=0,

W = �
n

�

Wn��,�� , �5�

where Wn=O��n� are given in Appendix A. Notice that Qn

=O�Rn�=O��n�. The leading-order terms �Q1 and R1� repre-
sent the linear dispersive effect, while Qn and Rn for n
2
describe both resonant and nonresonant nonlinear wave in-
teractions. This expansion can be considered as a generaliza-
tion of Stokes’ expansion for traveling waves to unsteady
waves. It has been shown by Bateman et al.2 that the result-
ing system can be also obtained by expanding the Dirichlet–
Neumann operator, as suggested by Craig and Sulem.5

For example, the third-order system can be written ex-
plicitly in terms of � and � �Choi44� as

��

�t
+ L��� + � · �� � �� + L��L���� + �2	1

2
�2L���


+ L��L��L���� +
1

2
�2�2�� = 0, �6�

��

�t
+ g� +

1

2
� � · �� −

1

2
�L����2 − L������2�

+ L��L����� = 0, �7�

where the linear operator L is defined as L���
=−F−1�k tanh�kh�F����, where F and F−1 represent the
Fourier and inverse Fourier transforms, respectively �see Ap-
pendix A�. The system given by Eqs. �6� and �7� can be
reduced to various asymptotic models for surface waves, in-
cluding the NLS equation, the Boussinesq equations, the
KdV equation, etc., by imposing appropriate approximations,
as shown by Choi.44

System �1� possesses conservation laws for mass m,
horizontal momentum M, and total energy E,

m = 

D

�dx, M = 

D

� � �dx,

�8�

E =
1

2



D
	��

n=1

�

Qn��,�� + g�2
dx ,

where D is the domain of interest. These conserved quanti-
ties are monitored when system �1� is solved numerically.

As a first step toward validating the pseudospectral
model for broadband irregular waves, we consider long-
crested waves in this paper and assume that the waves

are independent of the transverse coordinate. To solve nu-
merically the system given by Eq. �1�, the infinite series on
the right-hand sides of Eq. �1� are truncated up to the first
Mth order nonlinear terms and the system is then integrated
in time using a fourth-order Runge–Kutta scheme. The trun-
cated right-hand sides of Eq. �1� are evaluated using a pseu-
dospectral method based on fast Fourier transform, for which
� and � are approximated by the following truncated Fourier
series,

��x,t� = �
n=−N/2+1

n=N/2

an�t�eiknx, ��x,t� = �
n=−N/2+1

n=N/2

bn�t�eiknx,

�9�

where N is the number of Fourier modes, kn=2�n /L, and L
is the computational domain length. As in West et al.,1 to
reduce aliasing errors due to truncation of Fourier series, the

number of Fourier modes is increased to Ñ in our computa-

tions, such that Ñ= �M +1�N /2 and the Fourier coefficients
beyond the first N Fourier modes are set to zero at each
substep of the Runge–Kutta scheme. For the case of M =2,
we recover the well-known “3/2-rule” and, for the third-
order nonlinear computations with M =3, the number of Fou-
rier modes is doubled although the number of the “physical”
Fourier modes is just N. For numerical stability, the linear
part of the system given by Eq. �1� is solved exactly using an
integrating factor approach, as suggested by Craig and
Sulem.5 The number of Fourier modes is chosen to be N
=1024 in our computations. The accuracy of our numerical
solutions is tested by monitoring conserved quantities: mass
m, horizontal momentum M, and total energy E. For our
numerical results for irregular waves presented in this paper,
these quantities are conserved typically up to a relative error
of O�10−10� with a time step of �t /Tp=0.02, where Tp is the
peak wave period. No significant changes in conserved quan-
tities have been observed for smaller time steps.

B. Modified nonlinear Schrödinger equation

If one considers unidirectional waves of small steepness
characterized by a narrow-band spectrum centered at fre-
quency �p, the surface elevation � can be expanded as

��x,t� = �̄ +
1

2
�A1ei�kpx−�pt� + A2e2i�kpx−�pt� + A3e3i�kpx−�pt�

+ ¯ + C . C .� , �10�

where C .C. denotes the complex conjugate. In Eq. �10�, �̄
and An are the mean surface elevation and the complex am-
plitudes of the nth harmonic, respectively, and are assumed
to vary slowly in space and time. If the bandwidth of the
spectrum is small, or, more specifically, O���, the complex
amplitude A�A1 is governed, for infinitely deep-water, by
the MNLS correct to O��4� �Trulsen and Stansberg29 and Kit
and Shemer45�,
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�A

�x
+

2kp

�p

�A

�t
+ i

kp

�p
2

�2A

�t2 + ikp
3�A�2A

−
kp

3

�p
	6�A�2

�A

�t
+ 2A

� �A�2

�t
− 2iAH� � �A�2

�t
�
 = 0,

�11�

where H is the Hilbert transform defined by H�f�
= �1 /���−�

� f�
� / �
− t�d
. When the last three terms are ne-
glected, the NLS equation is recovered. Since we are inter-
ested in the comparison of numerical solutions of the MNLS
equation with surface elevation measurements at different
wave probe locations, the MNLS equation is written as a
spatial evolution equation. Once Eq. �11� is solved numeri-
cally to compute the complex amplitude A, the surface eleva-
tion � can be reconstructed from Eq. �10�, where the higher-

order corrections �̄, A2, and A3 are given �Trulsen and
Stansberg29� by

�̄ =
kp

2�p
H� � �A�2

�t
�, A2 =

kp

2
A2 + i

kp
2

�p
A

�A

�t
,

�12�

A3 =
3kp

2

8
A3.

It should be emphasized that the reconstruction of the surface
elevation without the higher-order corrections in Eq. �12�
shows poor comparison with our laboratory measurements.

Spatial evolution equation �11� for A is solved using a
pseudospectral method in time with the number of Fourier
modes of N=512 combined with a fourth-order Runge–Kutta
integration scheme in space with �x /�p=1.6�10−4 with �p

being the peak wavelength. In Fourier space, the Hilbert
transform can be easily computed by F�H�f��
=i sign�f�F�f�. The accuracy of the numerical solution is
measured by monitoring conservation of an energylike quan-
tity ��A�2dt which has a relative error of O�10−12� in our
computations.

III. LABORATORY EXPERIMENTS

A. Wave characteristics

A series of laboratory experiments were conducted in a
rectangular wave basin at the Institute for Ocean Technology
in Newfoundland, Canada. The basin is 75 m long, 32 m
wide, and has a water depth of 2.5 m. The finite depth effect
is found to be negligible for the waves considered in our
experiments and the infinite depth �h→�� limit is consid-
ered to solve the PS model. Piston-type wavemakers present
on two adjacent walls of the basin can generate both unidi-
rectional and multidirectional waves of any wave spectrum.
Each segmented wavemaker is 2 m high and 0.5 m wide. On
the two opposite sides, passive wave absorbers made of ex-
panded metal sheets with varying porosities and spacings
prevent any waves to reflect back to the wave basin. The
surface elevation was measured using 20 wave probes of
capacitance type equally spaced by 1.2 m with a sampling
rate of 0.02 s �50 Hz� and time series over 500 s were re-
corded for our experiments. All the data were acquired using

GDAC �GEDAP Data Acquisition and Control� client-server
acquisition system, developed by National Research Council
Canada, Institute for Ocean Technology.

To generate irregular waves, a random phase normally
distributed over the range between 0 and 2� is introduced to
the wavemaker whose motion was characterized by the JON-
SWAP spectrum,

S���� =
5

16

�p
4Hs

2

�5 exp�−
5

4
	�p

�

4��exp�−�� − �p�2/2�2�p

2�,

�13�

where Hs is the significant wave height, � is the peak en-
hancement factor, �p is the peak frequency, and � is a func-
tion of wave frequency defined by �=0.07 for ���p, while
�=0.09 for ���p. In our experiments, we fixed the signifi-
cant wave height Hs and the peak frequency fp to be Hs

=0.1 m and fp=�p / �2��=1 Hz, respectively, but we con-
sidered two different values of the peak enhancement factor:
�=3.3 and �=20. Additionally, a low-pass filter with a cutoff
frequency of 1.2 Hz was applied at the wavemaker to gener-
ate a nonequilibrium wave spectrum and the higher fre-
quency components were therefore excited by nonlinearity as
the waves propagate downstream. From the linear dispersion
relation given by kp=4�2fp

2 /g, the peak wave number kp

corresponding to the peak wave frequency fp=1 Hz is given
by kp=4.03 m−1. Therefore, the peak wavelength is �p

=2� /kp=1.56 m.
In this paper, as mentioned previously, we consider only

long-crested waves propagating in the x-direction and the
wave probes are aligned with the wave propagation direction
over a distance of 22.8 m. Since the width of the basin is
large compared with the characteristic wavelength in our ex-
periments, viscous energy dissipation that occurs mostly on
sidewalls is assumed to be negligible at the center of the
basin where our wave probes are located. The first wave
probe that is our probe of reference is 17.8 m away from the
wavemaker �equivalent to 11.4 peak wavelengths� and the
waves measured even at the first wave probe are fully devel-
oped and nonlinear. To test their applicability in describing
the evolution of nonlinear random wave fields, we initialize
the two wave models �the PS and MNLS models� using mea-
surements at the first probe and examine how accurately
these models predict the surface elevation at other probe lo-
cations downstream.

There are two important physical parameters that char-
acterize the evolution of irregular waves: the characteristic
wave steepness and the bandwidth. When the characteristic
wave steepness is estimated by �p=kpHs /2, it is found to be
�p=0.201 �or Hs / �2�p�=0.032� for Hs=0.1 m. Notice that
these waves can no longer be considered linear and the wave
steepness could be locally much larger than this estimate. As
can be seen later, even the weakly nonlinear assumption is
inapplicable. The effect of the spectral bandwidth is exam-
ined by choosing two different peak enhancement factors:
�=3.3 and �=20. For example, when �f is defined as half
the spectrum width at the half peak amplitude of the theoret-
ical JONSWAP spectrum, its dependence on � is found to be
�f / fp=0.095 and 0.056 for �=3.3 and �=20, respectively.
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From the Benjamin–Feir theory46 for Stokes waves, it is
well-known that the ratio of the wave steepness to the fre-
quency difference between a carrier wave and its perturba-
tion, which measures the nonlinear and dispersive effects of
wave groups, respectively, has to be greater than a critical
value for modulational instability to occur. A similar measure
called the Benjamin–Feir index � has been also introduced
for irregular waves �Alber,47 Crawford et al.,48 and
Janssen49� as

� =
�p

��2�f/fp�
, �14�

where �f is the spectral bandwidth. Beyond the critical
Benjamin–Feir index known to be �crit=1, an irregular wave
field is expected to be unstable so that wave focusing could
occur. The wave field becomes more unstable as its band-
width decreases or its steepness increases. In our experi-
ments, the Benjamin–Feir indices are �=1.49 for �=3.3 and
�=2.25 for �=20. Therefore, wave focusing due to modula-
tional instability is expected to occur more strongly for the
case of �=20.

We should point out that the Benjamin–Feir index and
the wave steepness in our study are larger than those consid-
ered in previous studies including, for example, Onorato et
al.42 and Janssen,49 where the Benjamin–Feir indices were
less than 2. Therefore, stronger modulational instability is
expected to occur in our experiments, which suggests the

development of a more “rogue sea” state with the possible
occurrence of wave breaking. Since the waves in our experi-
ments fall locally into a strongly nonlinear wave regime, the
cubic nonlinear Schrödinger equation compares poorly with
our experiments and, instead, the MNLS equation is adopted
in addition to the PS model. Considering that the time scale
of the modulational instability normalized with respect to the
peak wave period is O��p

−2� and the group velocity corre-
sponding to the peak frequency is Cgp

=g / �2�p�
�0.78 m /s, the distance over which the modulational insta-
bility is expected to appear should be O �24 m�. Since the
distance between the first and last wave probes is 22.8 m
�about 14 peak wavelengths�, modulational instability is ex-
pected to be observed in our experiments.

B. Observation

We first consider the spatial evolution of the surface el-
evation for the case of �=3.3 and examine how wave groups
evolve as they propagate downstream. As shown in Fig. 1�a�,
we choose a time series of 120 s long at the first wave probe
in which a number of wave groups are identified. Notice that
we follow the wave groups with the group velocity based on
the peak frequency Cgp

�0.78 m /s. It is interesting to notice
that most wave groups propagate approximately with the
peak group velocity although some wave groups move
slightly faster.
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FIG. 1. �Color online� Evolution of the wave field characterized by the JONSWAP spectrum with Hs=0.1 m and �=3.3 in a reference frame moving with the
group velocity based on the peak frequency Cgp

: �a� Experimental measurements; �b� linear theory based on the first probe measurement.
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Due to nonlinearity and dispersion, the wave groups
evolve continuously in space and sometimes interact with
each other. Over the distance where our wave probe mea-
surements are available �which correspond approximately to
14 peak wavelengths�, almost one cycle of focusing-
defocusing process is observed, for example, for the wave
group that appears around t=105 s at the first probe. Wave
focusing results in large wave slope and often leads to wave
breaking, which is difficult to model numerically. When no
wave breaking occurs, this focusing-defocusing process
might recur, as observed in Stokes waves with small side-
band perturbations although it is not clear if this phenom-
enon is still observable in irregular wave fields. We will look
more closely at the evolution of steep wave groups in
Sec. IV where our measurements are compared with numeri-
cal solutions.

To examine how nonlinear our wave groups are, the nu-
merical solution of the linear model with M =1 is shown in
Fig. 1�b� by initializing the model with the experimental
measurement at the first probe, such that the linear solution
matches with the measurement at the first wave probe �see
Sec. IV A, for a detailed description of the model initializa-
tion�. We can see clearly that, under linear wave theory, wave
groups show little focusing and are often broadened due to
dispersion. We also notice that the linear wave groups propa-
gate at a speed slower than the group velocity based on the
peak frequency. For clarity, a more detailed comparison be-
tween the linear solution and our experimental measurement

for the wave group observed for the first 50 s is given in Fig.
2 at three different probe locations: x=0, 10.8, and 22.8 m
�corresponding to 0, 6.92, and 14.62 peak wavelengths away
from the first probe�. The linear solution at x=10.8 m
�x /�p�6.92� starts to deviate from our measurement and
fails to capture the focused peak observed around t=64 s at
the last wave probe located at x=22.8 m �x /�p�14.62�.
Therefore, we can conclude that our wave fields are truly
nonlinear, as discussed in Sec. III A.

For the case of �=20, similar conclusions can be drawn,
but stronger wave focusing is observed experimentally, as
shown in Fig. 3�a�. The linear solution is considerably dif-
ferent from measurements at downstream probes. For ex-
ample, see the evolution of the wave group around t=85 s at
the first probe. We also remark that the local maximum am-
plitude of the wave envelope for �=20 becomes much
greater than that for �=3.3 although the significant wave
heights are the same. This can be understood from the fact
that the bandwidth for �=20 is smaller than that for �=3.3,
leading to a larger Benjamin–Feir index for �=20. Thus,
focusing due to modulational instability is enhanced for �
=20, as discussed in Sec. III A.

In what follows, we will compare our numerical solu-
tions of the PS model and the MNLS equation with experi-
mental measurements and examine their capability in pre-
dicting nonlinear irregular wave fields not only in wave
amplitude but also in phase.
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FIG. 2. �Color online� Comparison of the surface elevation with Hs=0.1 m and �=3.3 between experimental measurements �dot-line� and numerical solutions
of the linear model �solid line� at x=0 m, x=10.8 m, and x=22.8 m �from top to bottom�.
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IV. NUMERICAL SOLUTIONS

A. Initialization

Before presenting our numerical solutions compared
with laboratory experiments, we outline the procedure to ini-
tialize the wave models.

Since we have only point measurements of the surface
elevation �as a function of time� at 20 different locations, it is
not straightforward to initialize the PS model which requires
initially the surface elevation and the velocity potential fields
in the entire computational domain. When we denote by �1�t�
a time history of the surface displacement at the first probe
which without loss of generality is assumed to be located at
x=0, the surface elevation and the velocity potential can be
expressed, based on linear theory, as a linear superposition of
sinusoidal waves propagating in the x-direction,

��x,t� = �
n

anei�knx−�nt� + C . C . ,

�15�
��x,t� = �

n

cnei�knx−�nt� + C . C . ,

where �n=2�n /T with T being the total time interval for
�1�t� and the wave numbers kn are computed using the deep-
water linear dispersion relation, kn=�n

2 /g. The coefficients an

in Eq. �15� with x=0 are found from the Fourier expansion
of �1�t�, �1�t�=�an exp�−i�nt�, obtained from the surface el-

evation measurement over 120 s with a sampling rate of
0.02 s. An alternative way to generate �1�t� at x=0 is to use
an oscillating pressure, as in Smith8 where a similar set of
equations is solved for water of finite depth with bottom
topography.

On the other hand, cn is found from the linear relation-
ship between � and �, which yields cn=−i��n /kn�an. Then,
we initialize the PS model by evaluating Eq. �15� at t=0 and
solve evolution equations �1� by decomposing the computa-
tional domain into two regions: the linear and nonlinear re-
gions. In the first region upstream of the first probe, the lin-
ear equations �M =1� are solved so that the waves reaching
the first probe match exactly with experimental measure-
ments at the first probe, whereas the nonlinear equations with
M �1 are solved in the second region which is downstream
of the first probe. Thus, the waves beyond the first probe
propagate nonlinearly. This is implemented simply by multi-
plying the nonlinear terms in evolution equations �1� by a
smooth Heaviside-like function varying from 0 to 1. The
width of the transition region centered at the first probe is
about 2 grid points. At the downstream probe locations, our
numerical solutions of the PS model for the surface elevation
are recorded as time series and are compared with laboratory
measurements.

With this initialization scheme, our numerical solutions
for the surface elevation match with experimental measure-
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FIG. 3. �Color online� Evolution of the wave field characterized with the JONSWAP spectrum with Hs=0.1 m and �=20 in a reference frame moving with
speed the group velocity based on the peak frequency, Cgp

: �a� Experimental measurements; �b� linear theory based on the first probe measurement.
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ments at the first probe, but the velocity potential �therefore,
the fluid velocity� might be inaccurate since we use the linear
relationship between the free surface elevation and the ve-
locity potential to initialize the velocity potential. This error
could result in some discrepancy between numerical solu-
tions and experimental measurements at downstream probe
locations, but is found small, as can be seen later. This could
be explained by the fact that the linear velocity potential is
valid up to the third-order in Stokes expansion for infinitely
deep-water waves.

On the other hand, since the MNLS equation for A�x , t�
is written as a spatial evolution equation, it should be
straightforward to initialize A from a time history of the sur-
face elevation measured at the first wave probe, but it is
found that A has to be initialized with care. In order to find
the envelope of �1�t�, we compute the following complex
quantity: �1�t�+ iH��1�t��=��t�ei��t� and, from Eq. �10� with-
out the higher-order corrections, initialize the complex am-
plitude A as A�0, t�=�ei��+�pt�. Once the numerical solution
of the MNLS equation for A�x , t� is obtained, the surface
elevation is reconstructed using Eq. �10� with the higher-
order corrections. Without the higher-order correction terms,
poor agreement between numerical solutions and experimen-
tal measurements is observed at downstream probe locations.
On the other hand, with the higher-order correction terms,
the reconstructed surface elevation at the first probe location,
��0, t�, will not match with the original time series �1�t� since
any higher-order corrections in Eq. �10� have been neglected
in initializing A. To overcome this difficulty, we initialize A
by applying to A�0, t� a low-pass filter with cutoff frequency
whose value is increased from 3�p until a reasonable corre-
lation �99% or better� between �1�t� and ��0, t� is obtained.
With this initialization technique, the numerical solutions of

the MNLS equation are found to agree reasonably well with
laboratory experiments over a certain distance, as discussed
later.

B. Numerical solutions compared with laboratory
experiments

Now we present our numerical solutions of the MNLS
equation and the PS model and their comparison with experi-
mental measurements for the surface elevation at 20 wave
probes spanning 22.8 m �about 14 peak wavelengths�. In
particular, we focus on the spatial evolution of wave groups
over a time window of about 120 s in which large peaks due
to wave focusing are found to form. We should point out that
the MNLS equation should be of limited success in describ-
ing the evolution of strongly nonlinear wave groups since the
weakly nonlinear and small-bandwidth assumptions in deriv-
ing the MNLS equation might not be applicable here. To
follow the same wave groups, the time window is shifted, at
downstream probe locations, according to the group velocity
based on the peak frequency, Cgp

�0.78 m /s.

1. �=3.3

For the case of �=3.3, while its numerical solutions
show good agreement with our experimental measurements
for relatively small wave groups, the MNLS equation fails to
describe large wave groups at the 10th and 20th wave probes
located at x=10.8 m and x=22.8 m �which correspond to
x /�p�6.92 and x /�p�14.62, respectively�, as shown in Fig.
4. At x=10.8 m, a major discrepancy between the numerical
and experimental results appears in the wave group around
t=50 when the largest peak forms. At the last probe �at
x /�p�14.62�, the MNLS equation predicts poorly this
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FIG. 4. �Color online� Comparison for the surface elevation with Hs=0.1 m and �=3.3 between experimental measurements �dots� and numerical solutions
of the MNLS equation �solid line� at x=0 m, x=10.8 m, and x=22.8 m �from top to bottom�.
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strongly nonlinear wave group observed over a period of
56 s� t�70 s. The phase error between the measured and
computed times when the largest peak is formed is about 2 s
�two wave periods� at the last wave probe location. Notice
that the largest peak corresponds to the crest of the envelope
of the wave group and is expected to move with the group
velocity. This implies that the error in the average group
velocity is about 6.8% from �Cg /Cgp=Cgp�t /L, where �Cg

and �t are the group velocity and phase errors, respectively,
while L is the distance between the first and last wave
probes. We remark that this comparison is based on our ini-
tialization scheme for A to incorporate the higher-order non-
linear corrections when the surface elevation � is recon-
structed. Otherwise, the comparison between numerical
solutions of the MNLS equation and laboratory experiments
is worse than what we presented here. In addition, the NLS
equation shows poor comparison with laboratory experi-
ments and, therefore, its solutions are not presented here.

Our results agree with the previous work of Trulsen and
Stansberg29 where validity of the NLS and MNLS equations
is examined with laboratory experiments on bichromatic
waves. It is suggested that the range of validity of these
weakly nonlinear models in terms of the propagation dis-
tance depends on the wave steepness. For example, when the
dimensionless distance is defined by �=�2kcx, where � and
kc are the wave steepness and the center frequency, respec-
tively, Trulsen and Stansberg29 claimed that the range of va-
lidity is �=1 for the NLS model as well as the linear model

and �=3 for the MNLS model. Beyond �=5, neither NLS
nor MNLS model is found reliable. Although this conclusion
is for regular waves, we notice that our numerical solutions
of the MNLS equation start to deviate from laboratory mea-
surements at the last probe located at x=22.8 m which is
equivalent to �=3.71 with kp=4.02 and �p=0.201.

Now we compare in Fig. 5 the numerical solution of the
third-order PS model �M =3� with experimental measure-
ments. At two downstream probe locations �at x=10.8 m
and x=22.8 m�, our numerical solution of the third-order
model, in general, agrees better with experimental measure-
ments than that of the MNLS equation in both wave ampli-
tude and phase.

However, some discrepancy still exists at the last wave
probe over 10 s between 58 s and 68 s during which the
largest wave group is observed. This indicates that third-
order nonlinearity might be insufficient and a higher-order
nonlinear model needs to be used. In order to clarify a source
of this discrepancy, the fifth- and seventh-order �M =5 and 7,
respectively� PS models are solved numerically. In Fig. 6, we
follow the largest wave group with Cgp

at five different probe
locations �x=0, 4.8, 10.8, 16.8, and 22.8 m away from the
first probe� and show close-up views of the numerical solu-
tions of the third-, fifth-, and seventh-order PS models com-
pared with experimental measurements. Notice that a large
peak is observed around t=41.5 s from a time series mea-
sured at x=4.8 m �x /�p�3.08� and the third-order model

�a�

0 10 20 30 40 50

�0.10

�0.05

0.00

0.05

0.10

Ζ

�b�

20 30 40 50 60

�0.10

�0.05

0.00

0.05

0.10

Ζ

�c�

30 40 50 60 70 80

�0.10

�0.05

0.00

0.05

0.10

Time �s�

Ζ

FIG. 5. �Color online� Comparison for the surface elevation with Hs=0.1 m and �=3.3 between experimental measurements �dots� and numerical solutions
of the third-order nonlinear model �solid line� at x=0 m, x=10.8 m, and x=22.8 m �from top to bottom�.
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starts to deviate from our experimental measurements at x
=10.8 m �x /�p�6.92� when a large peak is observed
around t=48 s. Beyond this wave probe, the third-order PS
model fails to follow the crest of this wave group. However,
the higher-order numerical solutions are still in good agree-
ment with experimental measurements up to x=16.8 m
�x /�p�10.77�. At the last wave probe located at x
=22.8 m �x /�p�14.62�, in terms of the instant when the
largest peak is observed, a small phase error of approxi-
mately 0.25 s �a quarter peak wave period� is observed be-
tween the fifth-order solution and experimental measure-
ments. Notice that, compared with experimental
measurements, the numerical solutions seem to overestimate
the local wave amplitude when focusing occurs, which re-
sults in a phase shift at downstream probe locations. We
remark that the difference between the fifth- and seventh-
order solutions is quite small and is hardly noticeable in Fig.
6. This implies that a source of this small discrepancy is not

the order of nonlinearity, but should be attributed to other
causes, such as, for example, uncertainty in initializing the
velocity potential, viscous effects, and, most importantly,
weak three-dimensionality observed in our experiments.

From our comparison of numerical solutions with labo-
ratory experiments, it can be concluded that the fifth-order
PS model accurately predicts the location and time of the
occurrence of large wave peaks. The comparison between the
numerical solution of the fifth-order PS model and laboratory
measurements at all 20 probes is shown in Fig. 7.

To examine the evolution of these wave groups over a
much longer distance �beyond 22.8 m�, we solve the fifth-
order PS model in a computational domain of 200 m �130
peak wavelengths�, as shown in Fig. 8. Since the wave
groups propagate over a large distance, we have to follow
them with the group velocity with a leading-order nonlinear
correction, which is given by Cgp

= 1
2 �g /kp�1/2�1
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FIG. 6. �Color online� Comparison for the surface elevation with Hs=0.1 m and �=3.3 between experimental measurements �dotted line� with numerical
solutions of the third-order �dashed line�, fifth-order �thick solid line�, and seventh-order �thin solid line� PS models at x=0 m, x=4.8 m, x=10.8 m, x
=16.8 m, and x=22.8 m �from top to bottom�.
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+ 5
2kp

2�Hs /2�2+¯��0.85 from kinematic consideration of
Cgp

=d� /dk. A number of wave groups of different ampli-
tudes can be identified at the first probe from a density plot
in Fig. 8�a�. We notice that different wave groups travel with
different speeds and interact as they propagate downstream.
To better illustrate the dynamics of these wave groups, the
detailed evolution of wave envelopes is shown in Fig. 8�b�
for wave groups observed at the first wave probe for 0 s
� t�50 s and 90� t�110. The spatial evolution of the
largest peak observed around t=36 s is complicated due to
its interaction with neighboring wave groups, but the recur-
rence of wave focusing is obvious. A rather isolated wave
group around t=105 s shows clearly the recurrence of the
focusing-defocusing process, as evidenced in Fig. 8�c�,
which has been reported previously for regular waves with
sideband perturbations.

2. �=20

For the case of �=20, as mentioned previously, the
Benjamin–Feir index is large ��=2.25� and, as a conse-
quence, stronger wave focusing is observed. For example, in
Fig. 1, steep waves are recorded during a time period of
34 s� t�42 s at the first probe. Therefore, the MNLS
equation is not expected to show good agreement with ex-
perimental measurements although the small-bandwidth as-
sumption should be more relevant to �=20 than �=3.3. In

fact, the formation of the largest wave group is not captured
correctly by the MNLS equation, as shown in Fig. 9.

When the third-order PS model is solved, Fig. 10 shows
the third-order solution compare reasonably well with labo-
ratory measurements at the tenth wave probe located at x
=10.8 m �x /�p�6.92�, except for the largest wave group
centered at t�47 s. Compared with the case of �=3.3, the
difference between numerical solution and laboratory mea-
surement at the tenth probe is relatively large; in fact, the
numerical solution overestimates the amplitude of the high-
est peak. Similar observations can be made at the last probe
where the difference is more pronounced. It is interesting to
notice that the MNLS equation seems to perform as good as
the third-order PS model.

As shown in Fig. 11, even though the fifth-order PS
model is solved, little improvement is achieved, which is
different from the case for �=3.3. This indicates that the
order of nonlinearity is not a major cause of discrepancy for
the case of �=20. In fact, our numerical solutions show the
emergence of very steep waves at the fifth probe, as can be
seen at x=4.8 m around t�40.75 s. Since this particular
wave is so steep, a higher-order computation seems to be
necessary, but we should point out that a seventh-order com-
putation failed, which usually indicates wave breaking, as
shown by Tian et al.15 Experimentally, for the case of �
=20, combined spilling/plunging wave breaking has been
observed sporadically although its exact locations and times
were not recorded. Therefore, the discrepancy between nu-
merical solutions and experiment measurements should be
attributed to multiple wave breaking that occurs between the
first and tenth probes, which also introduces non-negligible
three-dimensionality, but more detailed experiments might
be necessary to make any further conclusion.

V. CONCLUDING REMARKS

Two mathematical models for nonlinear surface waves,
the PS model and the MNLS equation, are adopted to test
their applicability in describing the evolution of nonlinear
irregular wave fields and their numerical solutions are com-
pared with laboratory experiments in which strong focusing
of wave groups and their interactions are observed. It is
found that the third-order PS model is, in general, reliable in
predicting the evolution of nonlinear wave groups, but, when
strong focusing occurs, a higher-order PS model such as the
fifth-order model should be used. On the other hand, the
MNLS model could be an effective model when it is initial-
ized appropriately, but its validity is found limited to weakly
nonlinear, narrow-band wave fields, as expected.

It is confirmed both experimentally and numerically that
the Benjamin–Feir index defined by a ratio between wave
steepness and bandwidth proposed by Alber,47 Crawford et
al.,48 and Janssen49 is a good indicator of wave focusing
events in irregular wave fields.

Based on our results for long-crested waves, the PS
model is expected to describe the evolution of short-crested
waves well. Although the PS model has been used to study
the development of statistical properties of short-crested
waves, it has not been fully validated, in terms of the ampli-
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FIG. 9. �Color online� Comparison of the surface elevation for �=20 between experimental measurements �dotted line� and numerical solutions of the MNLS
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tude and phase of surface elevations, with laboratory experi-
ments yet. Initializing the model with a finite number of
wave probe measurements is a nontrivial task for short-
crested waves and, therefore, an ingenious arrangement of
wave probes has to be designed.

Once wave breaking occurs, the PS model fails to de-
scribe postbreaking wave fields unless energy dissipation due
to wave breaking is parametrized correctly into the model. A
preliminary attempt using eddy viscosity terms has been
made by Tian et al.17 and the result is found promising.
When the eddy viscosity is carefully chosen from laboratory
measurements, it has been shown that the measured surface
elevation matches well with the numerical solution not only
in amplitude but also in phase. An improved eddy viscosity
model combined with a reliable breaking criterion is under
development and will be incorporated into the PS model. In
addition, wind forcing effects need to be modeled properly
before the PS model is served as an effective theoretical tool
to study the dynamics of nonlinear ocean waves. A combined
experimental and theoretical study to parametrize wind ef-
fects on steep surface waves is in progress and the PS model
with new parametrizations for energy dissipation due to
wave breaking and wind forcing will be further validated
with laboratory experiments.
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APPENDIX A: EXPANSION

Following West et al.1 with a slight modification to in-
clude the effect of finite depth, Wn can be found by expand-
ing the vertical velocity W�x , t����	 /�z��x ,z=� , t�, in a
Taylor series, as

W = �
n=1

�

Wn, Wn = �
j=0

n−1

C j��n−j� for n 
 1, �A1�

where �n is defined by

�1 = �, �n = − �
j=1

n−1

A j��n−j� for n 
 2. �A2�

In Eqs. �A1� and �A2�, when all physical variables are writ-
ten in Fourier series,

f�x,t� = � a�t�eik·x, �A3�

An and Cn can be found as
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FIG. 10. �Color online� Comparison of the surface elevation for �=20 between experimental measurements �dots� and the third-order PS model �solid line�
at x=0 m, x=10.8 m, and x=22.8 m �from top to bottom�.

016601-13 A numerical and experimental study Phys. Fluids 23, 016601 �2011�



A2m =
�2m

�2m�!
k2m, A2m+1 =

�2m+1

�2m + 1�!
k2m+1 tanh�kh� ,

�A4�

C2m =
�2m

�2m�!
k2m+1 tanh�kh�, C2m+1 =

�2m+1

�2m + 1�!
k2m+2,

�A5�

where k= �k�. The first few terms of Wn and �n given by Eqs.
�A1� and �A2� can be written explicitly as

W1 = k tanh�kh��1, W2 = k tanh�kh��2 + �k2�1,

W3 = k tanh�kh��3 + �k2�2 +
1

2!
�2k3 tanh�kh��1, . . . ,

�A6�

�1 = �, �2 = − �k tanh�kh��1,

�A7�

�3 = − �k tanh�kh��2 −
1

2!
�2k2�1, . . . .

Notice that Wn=O��n�=O��n� and they are found recur-
sively as functions of � and �.

From W1=−L���, the operator L in Eqs. �6� and �7� can
be evaluated in Fourier space as L���=−k tanh�kh��.
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