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We revisit the stability analysis for three classical configurations of multiple fluid
layers proposed by Goldstein [“On the stability of superposed streams of fluids of
different densities,” Proc. R. Soc. A. 132, 524 (1931)], Taylor [“Effect of variation
in density on the stability of superposed streams of fluid,” Proc. R. Soc. A 132, 499
(1931)], and Holmboe [“On the behaviour of symmetric waves in stratified shear
layers,” Geophys. Publ. 24, 67 (1962)] as simple prototypes to understand stability
characteristics of stratified shear flows with sharp density transitions. When such flows
are confined in a finite domain, it is shown that a large shear across the layers that is
often considered a source of instability plays a stabilizing role. Presented are simple
analytical criteria for stability of these low Richardson number flows. C 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4904871]

I. INTRODUCTION

Stability of stratified shear flows have been studied extensively and linear stability analysis
has led a number of remarkable results, including Miles-Howard’s theorem,1,2 Howard’s semicircle
theorem,2 and Synge’s generalization of Rayleigh’s inflexion point theorem.3

For given density and velocity profiles, their linear stability characteristics can be determined
in a straightforward manner by solving numerically an eigenvalue problem. Nevertheless, it is often
cumbersome to solve the eigenvalue problem repeatedly when a large number of physical parameters
are involved and, more importantly, it is sometimes difficult to identify the underlying instability
mechanisms. Therefore, relatively simple flow configurations for which stability analysis can be per-
formed analytically have sometimes been adopted and the analytic solutions have helped one better
understand numerical solutions of the eigenvalue problem for general stratified shear flows.

When the density variation is rather abrupt over a thin vertical distance, it is customary to
model the corresponding density profile as fluid layers of different densities. When it is combined
with a simple velocity profile such as a linear profile, its stability characteristics can be investigated
more conveniently from the analytic solution of the linear stability problem over a wide range of
parameters. Goldstein4 and Taylor5 indeed considered linear shear flows embedded in three fluid
layers in an unbounded domain and discovered that relatively short wavelength disturbances can be
unstable even though they are stable in a homogeneous fluid. This contradicts what is commonly
believed for the role of stratification since stratification is often assumed to ensure stability. As illus-
trated originally by Taylor5 using the simple flow configuration, stratification may lead to instability
for a shear flow for which only stationary waves are possible in the homogeneous case.

Stratification can also alter qualitatively the character of instability of shear flows, as clearly
put in evidence by Holmboe6 for a piecewise linear shear current as the three-layer configuration
is modified to the two-layer one. Unlike the homogeneous and three-layer cases, where unstable
disturbances travel approximately with the mean velocity (referred to as the Kelvin-Helmholtz
instability), two unstable waves excited by the Holmboe instability can travel in opposite directions
in the two-layer case. Similar observations were made later experimentally7,8 and numerically9,10

for continuously stratified flows. Therefore, simple flow configurations, such as those considered
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by Goldstein,4 Taylor,5 and Holmboe6 could serve prototypes to explain the role of stratification in
shear flows.

When a fluid domain is bounded by rigid boundaries, the thickness of the domain becomes
another important parameter, but its effects are sometimes neglected in stability analysis. From
numerical solutions of the linear stability problem in a finite domain, there seems to be a general
agreement9 that as the top and bottom boundaries are moved in from infinity, relatively short waves
that are unstable in an unbounded domain are stabilized although long waves could become unsta-
ble. As the two boundaries are moved closer, it could happen that the long waves become stabilized
again and the flow could be stable to disturbances of arbitrary wavenumber.

In fact, it was previously shown in Ref. 11, Figure 4, and Ref. 12, the bottom panels of Figure
3 that such scenario can happen at low Richardson numbers, defined by −gρ′/ρU ′2, where g is
the gravitational acceleration, ρ(z) is the density, U(z) is the mean horizontal velocity, and the
prime represents differentiation with respect to the vertical coordinate z. On the other hand, this
does not always remain true at intermediate values of the Richardson number. This seems to be
counterintuitive. In general, a continuously stratified shear flow at low Richardson number due to a
large velocity gradient is expected to be unstable when the Richardson number is less than a quarter
although this condition is a necessary one for instability. This rather surprising stability feature of
low Richardson number flows in a finite fluid domain has not been fully explored yet and it is the
topic of this paper.

Here we consider three elementary flows proposed by Goldstein,4 Taylor,5 and Holmboe6 to
provide a better understanding of this peculiar stability feature of low Richardson number flows.
With recourse to the theory of plane algebraic curves, as used previously by Taylor,5 explicit criteria
for stability are obtained. In the case of small density variations for which the Boussinesq approx-
imation has been often adopted, it has been shown13 that great care should be taken to ensure
validity of a simplified analysis based on such approximation. Therefore, the classical Boussinesq
approximation is also questioned in capturing the stability feature of low Richardson number flows.

II. FORMULATION

The stability of an inviscid, incompressible, stratified shear flow depends upon the vertical varia-
tion of density ρ(z) and the mean horizontal velocity U(z). The behavior of a small two-dimensional,
monochromatic disturbance of wavenumber k and wave speed c is governed14 by

φ′′ +
ρ′

ρ

(
φ′ − U ′

U − c
φ

)
+


− g ρ′

ρ (U − c)2 −
U ′′

U − c
− k2


φ = 0, (1)

where the prime indicates differentiation with respect to z, g is the gravitational acceleration, and φ

is the complex amplitude of the stream function.
To simplify the analysis, piecewise linear velocity and piecewise constant density profiles are

often adopted. In the same spirit, we consider the following three flow configurations suggested
by Goldstein,4 Taylor,5 and Holmboe,6 who first examined their stability characteristics in an un-
bounded domain. Here we investigate the effects caused by the presence, at finite distance, of two
rigid walls confining the fluid with a special emphasis on the case when a large shear across the
layers is present.

(i) Taylor-Goldstein’s configuration

U(z) =




u2 if h < z < H
u2 − u1

2h
z +

u1 + u2

2
if −h < z < h

u1 if −H < z < −h
, ρ(z) =




ρ2 if h < z < H
ρ3 if −h < z < h
ρ1 if −H < z < −h

, (2)
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(ii) Taylor’s configuration

U(z) = u2 − u1

2h
z +

u1 + u2

2
, −H < z < H, ρ(z) =




ρ2 if h < z < H
ρ3 if −h < z < h
ρ1 if −H < z < −h

, (3)

(iii) Holmboe’s configuration

U(z) =




u2 if h < z < H
u2 − u1

2h
z +

u1 + u2

2
if −h < z < h

u1 if −H < z < −h
, ρ(z) =




ρ2 if 0 < z < H
ρ1 if −H < z < 0

. (4)

Here we assume that the rigid boundaries are placed equidistantly from z = 0, but the results can be
extended to allow non-equidistant rigid walls.

For these configurations, in each subdomain, where ρ = constant and U ′′ = 0, Eq. (1) can be
solved explicitly as linear combinations of exp(±kz). Then, at each level z = z0, where ρ(z) or
U ′(z) is discontinuous, the continuity of pressure and normal velocity at this surface requires the
following jump conditions:


ρ

(U − c) φ′ −

(
U ′ +

g

U − c

)
φ
 
= 0, ⟦φ⟧ = 0, (5)

respectively. Here we have used ⟦·⟧ to denote a jump across the interface. By imposing these jump
conditions along with no flux conditions at the rigid boundaries, the dispersion relation between the
wave speed c and the wavenumber k is then obtained as a polynomial equation (of degree 4) for c.

In practice, however, the coefficients of the resulting polynomial equation are complex enough
to make rather difficult the task of fully describing the stability features of these flows. To avoid
this difficulty, following Taylor5 and Ovsyannikov,15 we adopt a geometrical approach, where this
polynomial equation in a single variable c is interpreted as a plane algebraic curve, which is found
effective to study stability of these flows.

III. TAYLOR-GOLDSTEIN’S CONFIGURATION

A. Stability analysis for a bounded domain

With introducing variables p and q defined by

p = (u1 − c)/2gh, q = (u2 − c)/2gh, (6)

the eigenvalue equation for c resulting from (5), together with the boundary conditions, can be
written as an algebraic curve of degree 4 on the (p, q)-plane,

�
β1 p2 + γ3 pq + γ3 − 1

� �
β2 q2 + pq + γ2 − 1

�
= γ3 β3 p2q2. (7)

The coefficients βi in the expression are defined by

β1 = α coth [α(r − 1)/2] + γ3 (α coth α − 1), (8)

β2 = γ2 α coth [α(r − 1)/2] + α coth α − 1, β3 = α2csch2α, (9)

where α = 2kh is the dimensionless wavenumber, r = H/h (>1) is the depth ratio, and γ2 = ρ2/ρ3
(<1) and γ3 = ρ3/ρ1 (<1) are the density ratios. Hereafter, we assume that γ2, γ3 are strictly posi-
tive, and r < ∞, unless clearly stated otherwise, which will be referred to as “in general” when
making an assertion.

Then, as shown by Taylor,5 the stability problem is equivalent to finding the intersection
between the curve described by (7) and the line of equation given, from (6), by

q = p + (u2 − u1)/


2gh. (10)
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Notice that from definition (6), p is real if and only if the wave speed c is real. Therefore, the flow
is stable if line (10) intersects curve (7) at four points, and unstable otherwise.20 We remark that
Taylor5 used an equation similar to (7) in the limit of r → ∞, i.e., for the unbounded domain case.

To determine the number of intersections between curve (7) and line (10) as the relative ve-
locity increases, the behavior of an algebraic curve at infinity, described here by the asymptotes at
infinity, is important as the q-intercept is proportional to the magnitude of the relative velocity.

It is convenient to express curve equation (7) as P(p, q) ≡ 4
k=0 Pk(p, q) = 0, where Pk(p, q)

is a homogeneous polynomial in p and q of degree k, since the factors of the highest degree
polynomial define the slopes of the asymptotes to the curve. In the three examples to be considered
in this paper, no odd degree polynomials show up in the curve equation. This leads to symmetry
about the origin, so that P(−p,−q) = P(p, q), and allows us to use the following results (Primrose,16

Theorem 2, pp. 7–8): (i) any simple factor ap + bq of P4(p, q) will have associated an asymptote
to the curve, defined by the equation ap + bq = 0; (ii) if ap + bq is a repeated factor of P4(p, q),
so that P4(p, q) = (ap + bq)2Q(p, q), then it will have associated at most two possible asymptotes
ap + bq = t0, where t0 is a real root of Q(b, − a) t2 + P2(b, − a) = 0. In both cases, using homo-
geneous coordinates, (b, − a, 0) is a point at infinity. However, only in (ii) the point (b, − a, 0)
is a singular point (see Appendix C). As a result, nonlinear branches at infinity do not exist and
the behavior of the curve at infinity is hence completely described by its asymptotes, as mentioned
earlier.

For Taylor-Goldstein’s configuration, the highest degree polynomial P4(p, q) is given by

P4(p, q) ≡ pq
�
β1 p2 + {β1β2 + γ3(1 − β3)} pq + γ3β2 q2�, (11)

from which it is found that, regardless of parameters, curve (7) has two asymptotes: p = 0 and
q = 0. It can be further proven that the asymptote p = 0 for large negative values of q can only be
connected to the asymptote q = 0 for large negative values of p in the third quadrant. By symmetry,
such a real connected component should also exist in the first quadrant (cf. Figure 1). As a conse-
quence, the intersection between the curve and the line can never be empty. Moreover, the curve
cuts the axes at four points close to the origin. These points belong to the contour represented in
Figure 1 by an oval, which guarantees stability of the flow with a small relative velocity between the
layers (i.e., small |u2 − u1|/


2gh), as the line given by Eq. (10) with a small intercept will cut the

curve at four distinct points.
To examine if there are any additional asymptotes to the curve, we have to take into account the

terms in the bracket in (11) and consider the following quadratic equation for v ≡ p/q:

β1 v
2 + [β1β2 + γ3(1 − β3)] v + γ3β2 = 0. (12)

FIG. 1. Plots on the (p, q)-plane of the curve defined by Eq. (7) for r = 2, γ2 = 2/3, and γ3 = 3/4. (a) α = 0.1, (b) α = 1.0.
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FIG. 2. Stability diagrams on the (α, J )-plane for Taylor-Goldstein’s configuration with γ2 = 2/3 and γ3 = 3/4. The total
depth ratios are r = ∞, 10, and 2 (from left to right). The dark shaded region corresponds to a stable region with four real
roots and the light shaded region corresponds to the unstable region with two complex and two real roots. Hereafter, the same
color scheme will be adopted.

The discriminant of this quadratic equation fully determines the number of real roots and, when
positive, two extra asymptotes to the curve exist. Since β1 > 0, β2 > 0, and 0 < β3 6 1, it follows
from Viète’s formulas that, if (12) has two distinct real roots, both of them are negative. This means
that the associated asymptotes have negative slopes and lie therefore on the second and fourth
quadrants. Figure 1(b) supports such scenario and suggests that in the presence of such asymptotes,
stability of a flow with a very large relative velocity is possible.

Figure 1 shows two of possible scenarios obtained for two different sets of parameters. To fully
describe the planar curve, a rather lengthy discussion is needed; thus, the details are left to the Ap-
pendices, and it will be simply noted here that the two configurations presented in Figure 1 are, in
general, the only possible scenarios.

This geometrical approach is of course equivalent to the standard analytical approach, where
the quartic equation for the phase velocity c is obtained by substituting (6) into (7). Then, using
Fuller’s root location criteria,17–19 the stability diagram on the (α, J)-plane can be drawn, as shown
in Figure 2, where the Richardson number J is defined for this configuration by

J =
(
ρ1 − ρ2

ρ3

)
2gh

(u1 − u2)2 . (13)

As shown in Figure 2, for any fixed Richardson number J, there is always a limited range of
wavenumbers for which a single unstable wave appears. This band of wavenumber for instability
becomes narrower as J increases. As the depth ratio r decreases, the boundary effects can be
perceived by a destabilizing effect on the long waves as the upper branch of the stability boundary
rises. On the other hand, the shorter waves become more stable as the lower branch of the stability
boundary moves to the left. Such phenomenon was reported for continuously stratified flows in the
numerical work of Hazel.9

From this observation, one can further imagine that in a bounded domain with certain physical
parameters, the lower branch of the stability boundary could move further to the left so that it
actually starts to rise along the J-axis. For such parameters, the three-layer configuration would then
become stable for small values of J, or large values of |u1 − u2|/


2gh, while remaining unstable

for large and intermediate Richardson number. This observation has not been fully explored yet and
the condition under which it is valid has not been known. Notice that such stability feature would
yield, in the non-dispersive limit (α → 0), two disconnected regions of stability, characterized
respectively by a small/large shear across the layers. This peculiar scenario has been found earlier
in hyperbolic models for multilayer flows (Refs. 15, 19, and 21), but only in the absence of linear
shear.

B. A condition for stability for arbitrarily low Richardson number flows

For Taylor-Goldstein’s configuration at low Richardson number to be stable, it is necessary and
sufficient that two extra asymptotes at infinity, governed by Eq. (12), exist for all α.
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FIG. 3. Stability diagrams on the (α, J )-plane for Taylor-Goldstein’s configuration for different parameters. (a) r = 2,
γ2 = 0.998, and γ3 = 0.8. (b) r = 4, γ2 = 0.99, and γ3 = 0.1. Dark shaded: stable region; light shaded: unstable region.

As a first step, we consider the long wave limit of Eq. (12), which can be reduced, as α → 0, to

v2 +

(
2γ2

r − 1

)
v + γ2γ3 = 0, (14)

where v = p/q. Distinct real roots for this equation ensure the existence of such additional asymptotes.
Multiple roots could, in principle, also provide the asymptotes, but it can be shown that this scenario
does not apply here. This implies that in order for this stability feature to hold, it is necessary that

γ3/γ2 < 1/(r − 1)2. (15)

Although the condition given by (15) is valid as α → 0, a further inspection of the stability diagram
seems to indicate that it should suffice for any values of α, relying on the monotonic behavior of
stability boundaries as functions of the wavenumber α. In fact, it can be shown that the discriminant
of Eq. (12) under the same condition as (15) becomes positive and has two distinct real roots for
any values of α by observing β1 > 2/(r − 1) and β2 > 2γ2/(r − 1) for fixed parameters r , γ2, and γ3.
This proves that condition (12) is not only necessary but also sufficient for four asymptotes to exist
and, therefore, stability.

This is the main result of the section: the three-layer system is stable for small values of J, i.e.,
0 6 J 6 Js, when inequality (15), or, equivalently, in dimensional form, ρ3

2/(ρ1ρ2) < h2/(H − h)2
is satisfied. Such examples are shown in Figures 3 and 4.

It should be mentioned that if the top and bottom boundaries are placed at arbitrary levels
z = H2 and z = −H1, then stability criterion (15) should be replaced by γ3/γ2 < [(r1 − 1)(r2 − 1)]−1,
with each depth ratio ri defined by ri = Hi/h.

C. Boussinesq approximation

It is of interest to examine if a similar stability condition as (15) can be obtained with the
Boussinesq approximation, which has been widely adopted in stability analysis for stratified shear
flows. Following Goldstein,4 when we assume ρ1,2 = ρ0(1 ± ε), with 0 < ε < 1, and ρ3 = ρ0, the
stability criterion (15) reads

ε2 < 1 − (r − 1)2. (16)

This shows that Taylor-Goldstein’s configuration at low Richardson number is stable only if r < 2
for this particular stratification.

The classical Boussinesq limit can be obtained by taking the limit of ε → 0 in such a way
that the Richardson number J, defined by J = 4 εgh/(u1 − u2)2, remains finite, or, equivalently, the
Froude number defined by F = |u1 − u2|/(2gh)1/2 is small such that F = O(ε1/2). The requirement
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FIG. 4. Phase speeds (top panel) and growth rates (bottom panel) for three different Richardson numbers for Taylor-
Goldstein’s configuration. The physical parameters considered here are the same as in Figure 3(a): r = 2, γ2 = 0.998,
and γ3 = 0.8.

on the magnitude of the shear across the layers indicates that the classical Boussinesq limit to (16)
should be taken with care.

From γ2 = 1 − ε, γ3 = 1 − ε +O(ε2), β1 = β +O(ε), and β2 = β +O(ε), where β is defined in
(8) with γ3 = 1, the Boussinesq approximation yields the algebraic curve given by

�
β p2 + pq − ε

� �
β q2 + pq − ε

�
= β3 p2q2, (17)

where we have assumed p = O(q) = O(ε1/2) from the fact that F = O(ε1/2). Since the highest
degree polynomial P4(p, q) of (17) is identical to (11) with γ2 = γ3 = 1 and is independent of ε,
it is identical to that for the homogeneous fluid case for which the configuration is known to be
stable for any depth ratio r that lies in 1 < r < 2 (Rayleigh,22 Vol. II, p. 388). Therefore, the flow in
Taylor-Goldstein’s configuration under the Boussinesq approximation is stable for large shear if and
only if 1 < r < 2.

Although this result is consistent with (16) for small ε, we should remark that (17), valid for
small p and q, should not be used to draw a conclusion on the curve behavior for large p and q. This
shows that care must be taken to interpret the stability characteristics of low Richardson number
flows from any analysis based on the Boussinesq approximation.

On a final note, we would like to point out that extra symmetries are obtained under the Boussi-
nesq approximation. Curve (17) is not only symmetric about the origin, as the original curve (7), but
is also symmetric with respect to the lines q = p and q = −p. As a consequence, the curve can be
expressed simply in terms of p2 + q2 and pq, which leads to a biquadratic form on the wave speed
relative to the mean flow (see Appendix D).

IV. RESULTS FOR OTHER CONFIGURATIONS

A. Taylor’s configuration

For Taylor’s configuration, the algebraic curve in the (p, q)-plane is given by
�(β1 + 1) p2 + (γ3 − 1) pq + γ3 − 1

� �(β2 + γ2) q2 − (γ2 − 1) pq + γ2 − 1
�
= γ3 β3 p2q2, (18)
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with β1 through β3 given in (8)–(9). Once again, by examining the highest degree polynomial, we
find that p = 0 and q = 0 are the asymptotes to curve (18). The existence of additional asymptotes
depend on the number of real roots of the quadratic equation for v ≡ p/q,

(1 − γ2)(β1 + 1) v2 + [(β1 + 1)(β2 + γ2) − (γ2 − 1)(γ3 − 1) − γ3β3] v + (γ3 − 1)(β2 + γ2) = 0. (19)

Notice that if real roots exist for this equation, they must have opposite signs. Any line with slope
1 will then intersect the curve at least three times.23 Therefore, this configuration is stable at large
shear if and only if such asymptotes exist.

Contrary to Taylor-Goldstein’s configuration, the discriminant here is always greater or equal
to zero. Therefore, stability is, in general, expected for Taylor’s configuration with a large shear.
Caution should be taken on identifying whether multiple roots can, or not, provide the aforemen-
tioned asymptotes. However, it is found that discriminant vanishes only for a degenerate case of a
two-layer flow (γ2 = 1 or γ3 = 1) with a linear shear current, known to be stable. Hence, in Taylor’s
configuration, the flow with a large shear is stable for all physical parameters.

We notice that the finite-depth effect is not essential to stabilize this flow with a large shear.
This is in great contrast with Taylor-Goldstein’s configuration, where, for infinite depth, the upper
branch of the stability curve passes through the origin regardless of physical parameters involved
(see Figure 2(a)).

We investigate now if the Boussinesq approximation is able to capture such stability feature. Sim-
ilarly to what was discussed for Taylor-Goldstein’s configuration, the Boussinesq limit is described
by the curve

�(β + 1)p2 − ε
� �(β + 1)q2 − ε

�
= β3 p2q2. (20)

In this case, the highest degree polynomial P4(p, q) is proportional to p2q2 and does not have simple
factors. By applying Theorem 2(ii) (Primrose,16 pp. 7–8) described in Sec. III A, we conclude the
existence of parallel vertical (and horizontal) lines of equation p = t± (and q = t±), where t± are
distinct real roots of [(β + 1)2 − β3]t2 = ε(β + 1). An anomaly is produced when r = ∞ and α → 0,
for which the higher-order coefficient vanishes and the curve degenerates into a circle of equation
p2 + q2 = ε. This implies that the Boussinesq approximation fails to capture stability of the flow
with a large shear when r = ∞ (compare Figures 5(a) and 5(b)) while it predicts stability for finite r .

From this analysis, another limitation of Boussinesq approximation can be perceived. Notice
that when r is large enough, β + 1 ≈ α(1 + coth α), and hence, the roots t± = ±

√
ε/2α become

good approximations for the asymptotes p = t± (and q = t±) to the curve. Unless α = O(1), the
assumptions p = O(q) = O(ε1/2) for F = O(ε1/2) can be easily violated. As a result, for large r
and small α, while the “internal” modes can be well described quantitatively by the Boussinesq
approximation, discrepancies are expected to be found for the “external” modes (see Figure 6).

FIG. 5. Comparison of stability diagrams for r = ∞, γ2 = 0.95, and γ3 = 0.92. Dark shaded: stable region; light shaded:
unstable region for Taylor’s configuration. (a) With Boussinesq approximation; (b) without Boussinesq approximation;
(c) planar curve in the long wave limit α → 0 supporting the stability result displayed in (b).
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FIG. 6. Comparison between the curves with (solid line) and without (dashed line) Boussinesq approximation for Taylor’s
configuration. The physical parameters considered here are ε = 10−2, r = 200, α = 10−3, γ2 = 1 − ε, and γ3 = 1/(1 + ε).
The dotted line represents the line of equation q = p + 1/10. Notice that the inner components of the two curves are
almost indistinguishable, yielding an excellent agreement for two of the roots (“internal” modes) of the dispersion relation.
In contrast, the outer components differ substantially and thus the discrepancies for the “external” modes.

B. Holmboe’s configuration

Assuming the same background velocity profile as in Taylor-Goldstein’s configuration,
Holmboe6 has illustrated how stratification can change qualitatively the character of instability
when the thickness of density transition layer vanishes, leading to a two-layer configuration. Along
with the classical Kelvin-Helmholtz instability, a second mode of instability, characterized by two
unstable counter propagating waves, should be present.

Here, we will show that a flow at low Richardson number can also be stable for this physical
configuration, and a necessary, and possibly sufficient, condition for this to happen shall be presented.

The eigenvalue equation for this configuration can be expressed by the following curve:

(λ1p + q)(p + λ1q) {λ2(p + q)2 + 2(ρ − 1) �2 + q2 − p2�} − ρλ3q(p + q)2

= λ3 p(p + λ1q)(p + q)2, (21)

where ρ = ρ2/ρ1 (<1) is the density ratio and the new coefficients are defined as follows:

λ1 = α
�
coth [α(r − 1)/2] + coth (α/2)� − 1, (22)

λ2 = α(ρ + 1) coth (α/2), λ3 = α2csch2(α/2). (23)

As in previous sections, we will describe here what happens in general, leaving thus the
degenerate cases left to the Appendix C. This said let 0 < ρ < 1 and r < ∞.

For Holmboe waves to exist, four complex values of c should be obtained as solutions of the
eigenvalue problem. This could never happen in the three-layer configurations considered previ-
ously. Hence, a rather different qualitative behavior of the curve is expected.
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FIG. 7. Plots on the (p, q)-plane of the curve defined by Eq. (21) for r = 2 and ρ = 0.9. (a) α = 0.1, (b) α = 3.0.

In Figure 7, two plots of curve equation (21) reveal the existence of an eight-shaped curve
around the origin, yielding stability of the flow with a small relative velocity between the layers. On
the other hand, for intermediate values of p and q, there is the possibility of an empty intersection
between the curve and line (10), implying the appearance of two unstable Holmboe waves. We point
out that this scenario persists only up to a certain Richardson number (cf. Figure 8), and, therefore,
Holmboe waves can only be observed for a limited range of values of the Richardson number J,
defined by J = 4(1 − ρ)gh/(u1 − u2)2. For larger values of J, only one-sided instability should be
expected.24,25,13

As before, in order for the flow with a small value of J to be stable to arbitrary disturbances, it
is necessary for the curve to have four asymptotes in the long wave limit (α → 0), where the highest
degree polynomial P4(p, q) of Eq. (21) is found to be

(v + 1)(v3 + R v2 + ρR v + ρ) = 0, (24)

FIG. 8. Stability diagrams on the (α, J )-plane for Holmboe’s configuration with ρ = 0.7. (a) r = 1.5, (b) r = 1.4. The dark
shaded region corresponds to a stable region, the light shaded region corresponds to the unstable region with two complex
and two real roots, and the white region corresponds to the unstable region with four complex roots.
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FIG. 9. Region on the (ρ, r )-plane where condition (25) holds and Holmboe’s configuration is possibly stable at low
Richardson number.

with v = p/q, and R defined by R = (r + 1)/(r − 1). It is shown in Appendix C that v = −1 is in fact
a simple root of (24), from which it follows p + q = 0 is an asymptote to the curve in the long wave
limit, which remains true for any other values of α, as shown in Figure 7.

On the other hand, if multiple roots are considered, the cubic factor in (24) can be written as
(v − v1)2(v − v2), where v1 and v2 (both different from −1) can be found explicitly. Then, by The-
orem 2(ii) (Primrose,16 pp. 7–8), we find that curve (21) (in the limit α → 0) possesses only two
asymptotes: q = −p and q = p/v2. This implies instability at large shear. Hence, long waves with
small J are stable if and only if the roots of (24) are all real and distinct, or, equivalently

−4R3ρ2 + (R4 + 18R2 − 27)ρ − 4R3 > 0. (25)

Inequality (25) becomes a necessary condition for stability of low Richardson number flows in
Holmboe’s configuration (see Figure 9). Based on the monotonic behaviour of the outer stability
boundaries as functions of α in Figure 8, the strict inequality in (25) seems to be a sufficient condition
for stability, but its proof is nontrivial so that no conclusion on the sufficiency is drawn here.

V. CONCLUDING REMARKS

We have proved that the basic flows proposed by Taylor,5 Goldstein,4 and Holmboe6 can all be
stable at low Richardson number, provided that certain criteria are met. These findings are relevant
for two reasons: first, this observation has not been fully explored yet; second, the recourse to the
theory of plane algebraic curves allows us to derive simple explicit criteria for this feature to hold.

Our theoretical results may seem at first not consistent with the literature, view that these
physical configurations were originally proposed as prototypes to a better understanding of unstable
processes in stratified shear flows (see the recent review by Carpenter et al.26). However, in the
literature the stability analysis often discards the confinement of the flow by two rigid walls and
relies almost exclusively on the Boussinesq approximation. These two missing ingredients may
have important consequences on the stability characteristics of the flow, especially when dealing
with regimes characterized by a large shear across the layers, as shown in this paper. A simplified
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analysis under the typical assumptions should thus be taken with caution. Further supporting evi-
dences of this claim can be found in Barros and Choi,13 where the wavelengths and phase speeds of
Holmboe waves have been examined extensively with and without the Boussinesq approximation.

In the limit of zero Richardson number with zero density jumps, the stability results of homo-
geneous shear flows are always recovered from our analysis. On the other hand, when there is
stratification, we should remark that the zero-Richardson number limit due to large shear is different
from the homogeneous case, as shown, e.g., in Figure 2(c). Nonetheless, we stress that the Boussi-
nesq approximation always yields the homogeneous results in the zero-Richardson number limit,
but may fail to describe the stability characteristics of the flow at this regime.

We also point out that the stability feature found in this work is not aligned with what was
presented by Hazel,9 when studying the effect of boundaries on “tanh” profiles for both the density
and the mean horizontal velocity. In Hazel’s case, as the boundaries are brought closer and closer
together, we should recover Howard’s stability result on the homogeneous hyperbolic tangent shear
layer,27 for which no signs of instability are expected to be found for r < 1.1997 (see Figure 3
in Ref. 9). In contrast with this situation, our flow remains mainly unstable, and stability can only
be found at low Richardson number. This discrepancy seems to arise since the vertical length scale
for density variation was fixed in Hazel’s case as the thickness of the fluid domain was reduced. If
the thickness of the density transition layer was reduced as well in Hazel’s study, our result should
have been recovered although more numerical studies for continuously stratified shear flows should
be performed to confirm this argument.

Finally, since there are evidences of linearly stable gravity waves in new regimes, a new long
internal wave phenomenon in a stratified flow with a large shear might as well be possible, which
would be interesting to explore.
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APPENDIX A: DEGENERATE CASES FOR THE TAYLOR-GOLDSTEIN CONFIGURATION

The form in which we have presented curve equation (7) suggests some limit cases to be consid-
ered: γ2 → 1, γ3 → 1, γ3 → 0, and β3 → 0. An algebraic curve is said to be degenerate if it can split
up into two or more curves. We will see below that this is precisely what happens in each one of the
cases just mentioned.

Case γ3 → 0. Curve (7) reduces in this limit to
�
α coth(α(r − 1)/2) p2 − 1

� �
β2 q2 + pq + γ2 − 1

�
= 0.

The geometrical locus of the equation is the union of two vertical lines and an hyperbola with
asymptotes q = 0 and β2 q + p = 0. When intersected by any line with slope 1 four points are
obtained, thus the flow is always stable. This is not surprising since the limit corresponds precisely
to the case when ρ3 = ρ2 = 0, i.e., to the regime of surface gravity waves with constant current.

Case γ3 → 1. In this case, curve (7) can be factorized as

p
(
β1 p2q + (β1β2 + 1 − β3) pq2 + β2q3 + (γ2 − 1)β1 p + (γ2 − 1) q

)
= 0.
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We have the union between a vertical line p = 0 and a cubic curve. The cubic has the asymptote
q = 0 and, depending on the parameters, two additional asymptotes could exist. For this to happen,
the condition

(β1β2 + 1 − β3)2 − 4β1β2 > 0

must be met. Notice that the cubic curve equation is homogeneous, and so the curve crosses the
origin regardless of the physical parameters considered. Moreover, stability at low Richardson num-
ber holds if γ2 > (r − 1)2, which on the other hand implies that such feature can only occur when
r < 2.
Case γ2 → 1. This case is very similar to the one that we have just described (γ3 → 1). The curve is
given by

q
(
β1 p3 + (β1β2 + γ3(1 − β3)) p2q + γ3β2 pq2 + (γ3 − 1) p + (γ3 − 1)β2 q

)
= 0

and splits up into an horizontal line q = 0 and a cubic curve. The cubic has the asymptote p = 0
and, depending on the parameters, two additional asymptotes can exist. Stability at low Richardson
number holds if γ3 < 1/(r − 1)2, and hence it can be observed for any finite value of r .
Case β3 → 0. This limit corresponds to letting α go to infinity. For this reason, it is convenient first
to rewrite (7) as

1
α

�
β1 p2 + γ3 pq + γ3 − 1

� 1
α

�
β2 q2 + pq + γ2 − 1

�
= γ3csch2α p2q2.

Then, in the limit when α → ∞, we get

p2 q2 = 0,

whose intersection with any line with slope 1 is composed by four points corresponding to two
distinct real roots, each with multiplicity two. This confirms that the instability band in the diagrams
of Fig. 2 is further reduced as both J and α increase.

There is a less obvious limit that consists on letting β1, or β2, go to zero. This can only happen
if r = ∞ and α = 0, in which case the curve degenerates into an algebraic curve of degree 2. More
precisely, the highest degree polynomial P4(p, q) vanishes and the curve reduces to the hyperbola

(γ2γ3 − 1) pq + (γ2 − 1)(γ3 − 1) = 0.

When intersected by any line with slope 1 two points are obtained, thus the flow is always stable,
regardless the shear across the layers (cf. Figure 2(a)).

APPENDIX B: REMARK ON THE TAYLOR CONFIGURATION

We give here attention to the case when one of the asymptotes to curve (18) has slope 1, and
thus only three intersection points between the curve and the line q = p + F can be found. We will
see that this can only happen if r = ∞ and α → 0. Indeed, if we replace v = 1 in (19), one obtains
(after some simplifications)

(1 + β2)(γ3 + β1) − γ3β3 = 0.

Notice, however, that the left-hand side of the equation is greater or equal to (1 + β2)(γ3 + β1) − γ3,
which in turn is equal to β1(1 + β2) + γ3β2. Then, unless β1 = β2 = 0, the term is strictly positive.
This shows that an asymptote with slope 1 can only exist if r = ∞ and α → 0, which is precisely the
scenario described in Figure 5(c).

Curve (18) is defined in this case by
�
p2 + (γ3 − 1)pq + γ3 − 1

� �
γ2q2 − (γ2 − 1)pq + γ2 − 1

�
= γ3 p2q2,

and the highest degree polynomial P4(p, q) simplifies to

P4(p, q) = pq
�(1 − γ2) p2 + {γ2 − (γ2 − 1)(γ3 − 1) − γ3} pq + γ2(γ3 − 1) q2� . (B1)

If we consider the term in the brackets in (B1) and plug in linear relationship (10) between p and
q, we see that the coefficient of p2 simply vanishes. As a consequence of this the corresponding
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eigenvalue equation, when written as a polynomial equation for the wave speed c, degenerates into a
cubic equation, which explains why stability holds.

While we can call this a degenerate case, it is important to emphasize that the curve itself is not
degenerate.

APPENDIX C: SINGULAR POINTS

In finding double points (also known as singular points), it is helpful to bear in mind the result
that a non-degenerate curve of degree n cannot have more than (n − 1)(n − 2)/2 double points.16,28

We will focus on the case when P(p, q) = 0 is an algebraic curve of degree 4 and symmetric about
the origin, as in all the three cases examined in this paper. Then, P(p, q) can be expressed as4

k=0 Pk(p, q), where Pk(p, q) is a homogeneous polynomial in p and q of degree k, with P1 and P3
identically zero. Thus, we may write in homogeneous coordinates

P4(p, q) + z2P2(p, q) + z4P0 = 0,

whose double points (finite, or at infinity) are the solutions of Pp = 0, Pq = 0, Pz = 0, i.e., they
satisfy

P4,p + z2 P2,p = 0,

P4,q + z2 P2,q = 0,

z(P2 + 2z2 P0) = 0.

Double points at infinity satisfy z = 0, Pp = 0, Pq = 0, which implies that P4 has a repeated factor.
In particular, we conclude that such curves do not possess nonlinear branches at infinity, since any
time a line at infinity meets the curve in two coincident points, it does so at a double point. The
behavior of these curves at infinity is then described simply by the asymptotes at infinity.

Finite double points (with z , 0), on the other hand, are governed by the system of equations

P4,p + z2 P2,p = 0, (C1)

P4,q + z2 P2,q = 0, (C2)

P2 + 2z2 P0 = 0. (C3)

We will treat separately two different cases.
Case when P0 , 0. We can rewrite systems (C1)–(C3) by multiplying the first two equations by
2P0. Then, by using (C3), it follows that (p, q) is a solution of

2P0 P4,p − P2 P2,p = 0, (C4)
2P0 P4,q − P2 P2,q = 0, (C5)

which is a system of two homogeneous polynomials of degree 3 in the variables p and q. We can
now define v ≡ p/q to write a system of two cubic polynomials in v . The cubics have a common
root if the resultant vanishes. The result can then be used to find the candidate double points.
(i) Taylor-Goldstein’s configuration

We consider the curve on the (p, q)-plane defined by Eq. (7). One can compute the resultant of
the cubic polynomials obtained from (C4)–(C5) and find that the candidate finite double points of
the curve are solutions of

64 β1
2β2

2β3
2 (γ2 − 1)4(γ3 − 1)4γ3

2 F(α, r, γ2, γ3) = 0,

where F is defined by

F = 8 β2β2(γ2 − 1)(γ3 − 1) A1(β1, β2, β3, γ2, γ3) + B1
2(β3, γ2, γ3),

with

A1 = 1 + 2β1β2(γ2 − 1)(γ3 − 1) + γ3
�(γ2 − 2)(2 + (γ2 − 2)γ3) − 4β3(γ2 − 1)(γ3 − 1)�,

B1 = 1 +
�
2(γ2 − 2) + 4β3(1 − γ2)�γ3 +

�(γ2 − 2)2 + 4β3(γ2 − 1)� γ3
2.
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We rely on extensive numerical tests to claim that F is strictly positive. Hence, unless the curve
is degenerate (see Appendix A), double points cannot exist. This corroborates that, in general, the
curve with Eq. (7) has only two possible configurations (cf. left and right panels of Fig. 1) regardless
of the physical parameters. More importantly, the transition between the two scenarios is made
through the existence of a double point at infinity, as the value of α is increased.
(ii) Taylor’s configuration

The candidate finite double points of the curve on the (p, q)-plane defined by Eq. (18) are
solutions of

16 (β1 + 1)2(β2 + γ2)2β3
2(γ2 − 1)6(γ3 − 1)6γ3

2 G(α, r, γ2, γ3) = 0,

where G is defined by

G = (1 + β2 + β1β2 + γ2β1)2 − 2γ3 A2(β1, β2, β3, γ2, γ3) + B2
2(β3, γ2, γ3),

with

A2 = (β1 + 1)β2(1 − γ2 + β3) + (1 − γ2)(1 + γ2β1) + β3
�(β1 + 2)γ2 − 1

�
, B2 = (γ2 − 1 + β3)γ3.

We rely on extensive numerical tests to claim that G is strictly positive. Similarly to what has
been done in Appendix A for the Taylor-Goldstein configuration, it can be easily recognized that
the limits β3 → 0, γ2 → 1, γ3 → 1, and γ3 → 0 all correspond to degenerate cases for Taylor’s
configuration. Bearing in mind that no singular points at infinity exist for this configuration, since
we have shown in Sec. IV A that P4(p, q) has no repeated factors, we can state that, in general, no
singular points (finite, or at infinity) exist. As a conclusion, one single configuration can exist for
curve (18).
Case when P0 = 0. Without loss of generality, we can assume z = 1 and solve

P4,p + P2,p = 0,
P4,q + P2,q = 0,

P2 = 0.

In case P2 is given as a product of linear factors, insert these linear relationship between p and q
into the first two equations to get polynomial equations in one single variable. Suppose ap + bq (with
a , 0) divides P2. Then, inserting the relation p = λq, with λ = −b/a into the first two equations
yields the following system of equations:

q(D1q2 + E1) = 0,

q(D2q2 + E2) = 0,

for certain coefficients D1, D2, E1, and E2. One trivial solution is obtained when q = 0 and p = 0,
i.e., the origin is a singular point. Other solutions may exist provided that D1E2 = D2E1.
(iii) Holmboe’s configuration

Notice that curve equation (21) has its homogeneous polynomial P2(p, q) given by

P2(p, q) = 4(ρ − 1)(p + λ1q)(λ1p + q).
The fact that P2 is prescribed as the product of linear factors is essential to use what was described
above. Besides the origin, we can infer that the candidate finite double points of the curve are
solutions of

16(λ1 − 1)2(λ1 + 1)2 λ3 ρ(1 − ρ) = 0.

Four limits should be examined: λ1 → 1, λ3 → 0, ρ → 0, and ρ → 1. The first is obtained only
if r = ∞ and α → 0, under which (21) reduces to

4ρ (p + q)2�pq + q2 − q + (ρ − 1)/ρ� = 0.

The curve is degenerate, splitting up into one (double) line and one hyperbola, and the flow is stable
regardless the shear across the layers. It can be easily checked that the remaining cases produce
degenerate curves as well. This said, in general, only the origin is a finite singular point.
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FIG. 10. Transition between the two possible curve configurations for Holmboe’s basic flow (cf. Figure 7). Different values
of ρ are considered: ρ = 0.998 (full line); ρ = 0.8 (dashed line); ρ = 0.6 (dotted line).

We focus now on the non-degenerate cases and classify the possible configurations for the
algebraic curve. Similarly to what was found for the elementary flow (i) proposed by Taylor and
Goldstein, any transition between different configurations will be made at the expense of a singu-
lar point at infinity. To find these, we only need to examine when the highest degree polynomial
P4(p, q), given by

P4(p, q) = (p + q)(p + λ1q){(λ1p + q) �(λ2 − 2)q + (λ2 + 2)p� − λ3p(p + q)}−
−ρ (λ1p + q) [2(p − q)(p + λ1q) + λ3q(p + q)]  , (C6)

has a repeated factor. To do that it is convenient to define v ≡ p/q and look for multiple roots of the
polynomial equation P4(v,1) = 0. It is clear that v = −1 is a solution. It would be a multiple root
provided that λ1 → 1 or ρ → 1, which can be discarded, since both correspond to degenerate cases.
As a result, p + q = 0 is an asymptote to curve (21), regardless of the physical parameters.

To inspect for other possible multiple roots, consider the cubic yield by the terms in the
brackets in (C6). As any odd degree polynomial equation, this cubic has at least one real root, thus
allowing two or four asymptotes at infinity to curve (21). The transition between the two scenarios
will happen when the discriminant for the cubic vanishes. Figure 10 shows, for different values
of ρ, when such transition occurs and indicates that there are precisely two different configurations
(cf. Figure 7).

APPENDIX D: SYMMETRIC INSTABILITIES UNDER THE BOUSSINESQ APPROXIMATION

One of the great advantages of using Boussinesq approximation is that the dispersion relations
obtained are considerably simplified. In terms of the algebraic curves presented in this manuscript,
the Boussinesq approximation yields extra symmetry properties. The curves preserve the symmetry
about the origin, as it is the original case without approximations, and gains symmetry with respect
to the line q = p (and also the line q = −p, as a by-product). Notice that symmetry about the origin
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implies that the curve equation contains only even powers, or only odd powers, of p and q com-
bined. If symmetry with respect to the line q = p is imposed in addition, then a4,0 = a0,4, a3,1 = a1,3,
and a2,0 = a0,2, where ai, j is the coefficient of piq j. This allows us to conclude that such curves have
the general form

P(p, q) = ap4 + bp3q + cp2q2 + bpq3 + aq4 + dp2 + epq + dq2 + f = 0.

If we rewrite the equation as

P(p, q) = a
�(p2 + q2)2 − 2(pq)2� + bpq(p2 + q2) + c(pq)2 + d(p2 + q2) + epq + f = 0, (D1)

we see that the curve can be expressed strictly in terms of p2 + q2 and pq. Let ũ = (u1 + u2)/2 be the
average velocity. Then, by definition (6) of p and q, we have

p = (ũ − c − ∆)/2gh, q = (ũ − c + ∆)/2gh,

with ∆ = (u2 − u1)/2. If we define c̃ as the wave speed relative to the mean flow, i.e., c̃ = c − ũ, then
p2 + q2 = (c̃2 + ∆2)/gh and pq = (c̃2 − ∆2)/2gh. This shows that the quartic for c̃ obtained from
(D1) is indeed a biquadratic form. As a result, if c̃ is the complex wave speed of an unstable mode,
then there exists an unstable model with wave speed −c̃∗, also referred to as symmetric instabilities.
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