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Abstract

We present a fifth-order nonlinear spectral model describing the spectral evolution of
nonlinear surface gravity waves in water of finite depth. Using the equivalence between
pseudo-spectral and spectral formulations, it is shown that the spectral model can be easily
obtained using a truncated Hamiltonian from the pseudo-spectral formulation. The fifth-
order model is written explicitly in terms of two canonical variables (the Fourier transforms
of the surface elevation and the free surface velocity potential) and preserves the Hamiltonian
structure of the original water wave problem. Under discrete approximation, the time-
periodic solutions of the spectral model for progressive and standing waves are shown to be
consistent with the classical solutions of Stokes and Rayleigh, respectively, when truncated
at the third order.

1 Introduction

For three-dimensional water waves, the free surface boundary conditions can be written (Za-
kharov 1967), in terms of the surface elevation ζ(x, t) and the free surface velocity potential
Φ(x, t), as

∂ζ

∂t
+∇Φ · ∇ζ =

(
1 + |∇ζ|2

)
W,

∂Φ

∂t
+

1

2
|∇Φ|2 + gζ =

1

2

(
1 + |∇ζ|2

)
W 2, (1.1)

where x is the the horizontal coordinate, t is time, ∇ is the horizontal gradient, and g is the
gravitational acceleration. In (1.1), Φ(x, t) ≡ φ(x, z = ζ, t) and W ≡ ∂φ/∂z(x, z = ζ, t) are
the velocity potential and the vertical velocity evaluated at the free surface, respectively, where
φ and z are the three-dimensional velocity potential and the vertical coordinate, respectively.
The two equations in (1.1) can be regarded as a system of nonlinear evolution equations for ζ
and Φ once W is expressed in terms of ζ and Φ. Depending upon how to close this system,
various theoretical models have been developed.

A theoretical model particularly useful for numerical computations of the evolution of
broadband nonlinear surface waves was proposed by West et al. (1987), who wrote W in an
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infinite series that depend on ζ and Φ. By substituting the infinite series into (1.1), a closed
system of nonlinear evolution equations for ζ and Φ was obtained. After assuming the wave
steepness is small, the series can be truncated at a desired order of nonlinearity and the resulting
system has been studied numerically using a pseudo-spectral method by numerous researchers,
including, for example, Tanaka (2001a, b), Bateman et al. (2001), Choi et al (2005), and Goullet
& Choi (2011). Similar approaches have been proposed by Dommermuth & Yue (1987), Criag
& Sulem (1993), and Clamond & Grue (2001).

An alternative approach to describe the evolution of broadband nonlinear waves was pro-
posed by Zakharov (1968), who obtained a nonlinear integro-differential equation in spectral
space for a single complex amplitude, which is a linear combination of the Fourier transforms of
ζ and Φ. As a number of multiple integrals are required to be evaluated, the evolution equation
of Zakharov is less efficient for numerical computations than the pseudo-spectral model of West
et al. (1987). Nevertheless, his evolution equation is so useful for further analysis to describe
the time evolution of wave spectra. For example, in his seminal work, Zakharov (1968) reduced
the third-order equation to a relatively simpler form for resonant four-wave interactions. This
equation is also often referred to as the (reduced) Zakharov equation, which has been studied
numerically (Annenkov & Shrira 2001). The spectral models of Zakharov (1968) have been
further extended to the fourth order by Stiassnie & Shemer (1984) to describe the five-wave
interactions of gravity waves. Later the spectral models were reformulated by Krasitskii (1994)
directly from a Hamiltonian approach along with canonical transformations to simplify the
Hamiltonian. For the earlier development of of the spectral formulation, see, for example, Yuen
& Lake (1982) and Mei et al. (2005).

As one can imagine, the formulation of Zakharov (1968) should be equivalent to that of
West et al. (1987). Therefore, it is expected to be straightforward to recover one formulation
from the other. This is particularly useful if one is interested in a spectral model valid at a
high order as the pseudo-spectral model of West et al. (1987) can be found conveniently at any
order of nonlinearity through recursion formulas. Here it is shown that a fifth-order spectral
model can be indeed obtained in a straightforward manner from the pseudo-spectral model of
West et al. (1987) by taking advantage of its Hamiltonian structure.

2 Pseudo-spectral formulation

2.1 Expansion

By expansing W in Taylor series about z = 0, it was shown by West et al. (1987) that the
expression for W can be written in infinite series as

W =
∞∑
n=1

Wn, Wn =
n−1∑
j=0

Cj [Φn−j ] for n ≥ 1 , (2.1)

where Φn are given by

Φ1 = Φ, Φn =
n−1∑
j=1

Aj [Φn−j ] for n ≥ 2 , (2.2)
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and operators An and Cn are defined, with 4 = ∇2, by

A2m = (−1)m+1 ζ2m

(2m)!
4m, A2m+1 = (−1)m

ζ2m+1

(2m+ 1)!
4mL, (2.3)

C2m = (−1)m+1 ζ2m

(2m)!
4mL, C2m+1 = (−1)m+1 ζ2m+1

(2m+ 1)!
4m+1. (2.4)

The linear operator L[f ] is given by L[f ] = F−1
[
−k tanh(kh)F [f ]

]
, where h is the water depth,

and F and F−1 represent the Fourier transform and its inverse, respectively. Alternatively, the
linear operator L can be written as L[f ] =

∫
K(x−ξ) f(ξ) dξ, where the kernel K(x) is defined

in Fourier space as F [K(x)] = −k tanh(kh).
Although the expansion for W given by (2.1) requires no formal introduction of a small

parameter, except for the existence of Taylor series, the series given by (2.1)–(2.2) can be
considered as an expansion in terms of (small) wave steepness, in particular, when the infinite
series need to be truncated for numerical simulations or further approximations. From ζ∇ =
O(ε) and ζL = O(ε), where ε = a/λ with a and λ being the characteristic wave amplitude and
wavelength, respectively, one can see that Φn = O(εn) and Wn = O(εn). Therefore, the rate of
convergence is expected to improve as ε decreases.

2.2 System of West et al. (1987)

By substituting into (1.1) the expansion for W given by (2.1), the evolution equations for ζ and
Φ are given by

∂ζ

∂t
=
∞∑
n=1

Qn(ζ,Φ) ,
∂Φ

∂t
=
∞∑
n=1

Rn(ζ,Φ) , (2.5)

where Qn and Rn are given by

Q1 = W1 , Q2 = W2 −∇Φ·∇ζ , Qn = Wn + |∇ζ|2Wn−2 for n ≥ 3 , (2.6)

R1 = −g ζ , R2 = −1
2 |∇Φ|2 + 1

2W1
2 , R3 = W1W2 ,

Rn = 1
2

n−2∑
j=0

Wn−j−1Wj+1 + 1
2 |∇ζ|

2
n−4∑
j=0

Wn−j−3Wj+1 for n ≥ 4 . (2.7)

Here the expressions of Wn are given by (2.1). Notice that Qn = O(εn) are linear in Φ while
Rn = O(εn) are quadratic in Φ.

For small amplitude waves, the system (2.5) can be linearized, with W1 = −L[Φ], to

∂ζ

∂t
= −L[Φ],

∂Φ

∂t
= −gζ , (2.8)

which can be combined into ∂2ζ/∂t2 = gL[ζ]. The same equation also holds for Φ. Substituting
(ζ,Φ) ∼ exp[i(k·x− ωt)] into (2.8) yields the linear dispersion relation given by

ω2 = g k tanh kh , (2.9)
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where we have used L
[
eik·x

]
= −k tanh kh eik·x. While the leading-order terms (Q1 and R1)

represent linear dispersive effects, Qn and Rn for n ≥ 2 describe nonlinear dispersive effects
and nonlinear wave interactions.

Following West et al. (1987), the system given by (2.5) has been studied extensively
in recent years using a pseudo-spectral method based on Fast Fourier Transform (FFT), for
example, by Tananka (2001a, b) and many others. For numerical computations, after assuming
ζ and Φ are doubly periodic in space so that they can be written in Fourier series, the linear
operators 4 and L in (2.3)–(2.4) are evaluated in Fourier space:

4 = −k2
j , L = −kj Tj , (2.10)

where j = (j, l), kj = (jKx, lKy), kj = |kj|, Tj = tanh(kjh), and with Kx and Ky being the
fundamental wavenumbers in the x and y directions, respectively. Then the two nonlinear
operators An and Cn defined by (2.3) and (2.4) are computed as

A2m = − ζ2m

(2m)!
k2m
j , A2m+1 = − ζ2m+1

(2m+ 1)!
k2m+1
j Tj , (2.11)

C2m =
ζ2m

(2m)!
k2m+1
j Tj , C2m+1 =

ζ2m+1

(2m+ 1)!
k2m+2
j . (2.12)

In (2.11), to compute A2m[f ], the Fourier transform of f is multiplied by −k2m
j /(2m)! in Fourier

space and, then, its inverse Fourier transform is multiplied by ζ2m in physical space. Finally,
after evaluating its right-hand sides up to a desired order of nonlinearity, the system given by
(2.5) is integrated in time.

2.3 Hamiltonians

Zakharov (1968) showed that the totoal energy defined by

E =
1

2

∫ (
g ζ2 + Φ

∂ζ

∂t

)
dx , (2.13)

is the Hamiltonian for the water wave problem so that the evolution equations for ζ and Φ can
be written as

∂ζ

∂t
=
δE

δΦ
,

∂Φ

∂t
= −δE

δζ
, (2.14)

where δE/δζ and δE/δΦ represent the functional derivatives of E with respect to the two
conjugate variables ζ and Φ, respectively. Therefore, the total energy E is conserved. From
(2.5), the total energy E defined in (2.13) can be expanded, in infinite series, as

E =
1

2

∫ (
g ζ2 + Φ

∞∑
n=1

Qn

)
dx =

∞∑
n=2

En , (2.15)

where Qn are given by (2.7) and the n-th order energy En is given by

E2 =
1

2

∫ (
gζ2 + ΦQ1

)
dx, En =

1

2

∫
ΦQn−1 dx for n ≥ 3 . (2.16)
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2.4 Fifth-order model

When truncated at O
(
ε5
)
, the fifth-order nonlinear evolution equations for ζ and Φ can be

obtained as

∂ζ

∂t
=

5∑
n=1

Qn(ζ,Φ) ,
∂Φ

∂t
=

5∑
n=1

Rn(ζ,Φ) , (2.17)

where Qn and Rn are given, explicitly, by

Q1 = −L[Φ] , (2.18)

Q2 = −∇·(ζ∇Φ)− L
[
ζL[Φ]

]
, (2.19)

Q3 = −L
[
ζL
[
ζL[Φ]

]
+ 1

2ζ
2∇2Φ

]
−∇2

(
1
2ζ

2L[Φ]
)
, (2.20)

Q4 = −L
[
ζL[ζL[ζL[Φ]] + 1

2ζ
2∇2Φ] + 1

2ζ
2∇2

(
ζL[Φ]

)
− 1

6ζ
3∇2L[Φ]

]
−∇2

(
1
2ζ

2L
[
ζL[Φ]

]
+ 1

3ζ
3∇2Φ

)
, (2.21)

Q5 = −L
[
ζL
[
ζL
[
ζL
[
ζL[Φ]

]
+ 1

2ζ
2∇2Φ

]
+ 1

2ζ
2∇2

(
ζL[Φ]

)
− 1

6ζ
3∇2L[Φ]

]
,

+1
2ζ

2∇2
(
ζL
[
ζL[Φ]

]
+ 1

2ζ
2∇2Φ

)
− 1

6ζ
3∇2L

[
ζL[Φ]

]
− 1

24ζ
4∇2∇2Φ

]
−∇2

(
1
2ζ

2L
[
ζL
[
ζL[Φ]

]
+ 1

2ζ
2∇2Φ

]
+ 1

3ζ
3∇2 (ζL[Φ])− 1

8ζ
4∇2L[Φ]

)
, (2.22)

R1 = −g ζ , (2.23)

R2 = −1
2∇Φ·∇Φ + 1

2(L[Φ])2 , (2.24)

R3 = L[Φ]
(
L
[
ζL[Φ]

]
+ ζ∇2Φ

)
, (2.25)

R4 = L[Φ]L
[
ζL[ζL[Φ]] + 1

2ζ
2∇2Φ

]
+∇2

[
1
4ζ

2(L[Φ])2
]

+ 1
2

(
L[ζL[Φ]] + ζ∇2Φ

)2

+1
2ζ(∇2ζ)(L[Φ])2 − 1

2ζ
2(∇L[Φ])2 , (2.26)

R5 = L[Φ]L
[
ζL
[
ζL
[
ζL[Φ]

]
+ 1

2ζ
2∇2Φ

]
+ 1

2ζ
2∇2

(
ζL[Φ]

)
− 1

6ζ
3∇2L[Φ]

]
+∇2

(
1
2ζ

2L[Φ]L
[
ζL[Φ]

]
+ 1

3ζ
3L[Φ]∇2Φ

)
− ζ2 (∇L[Φ]) ·

(
∇L

[
ζL[Φ]

]
+ 2

3ζ∇(∇2Φ)
)

+1
6ζ

3(∇2L[Φ])(∇2Φ) +
(
L [ζL[Φ]] + ζ∇2Φ

) (
L
[
ζL
[
ζL[Φ]

]
+ 1

2ζ
2∇2Φ

]
+ 1

2ζ(∇2ζ)L[Φ]
)
.

(2.27)

The expressions of the corresponding Hamiltonians En (n = 2, · · · , 6) are explicitly given by

E2 =
1

2

∫ (
g ζ2 − ΦL[Φ]

)
dx, (2.28)

E3 =
1

2

∫ {
ζ∇Φ · ∇Φ− ζ (L[Φ])2

}
dx, (2.29)

E4 = −1

2

∫
ζL[Φ]

(
L [ζL[Φ]] + ζ∇2Φ

)
dx, (2.30)
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E5 = −1

2

∫ {
ζ
(
L [ζL[Φ]]

)2
+ 1

3ζ
3
(
∇2Φ

)2

+ζL[Φ]
(
L
[
ζ2∇2Φ

]
+ 1

2ζ∇
2(ζL[Φ])− 1

6ζ
2∇2L[Φ]

)}
dx , (2.31)

E6 = −1

2

∫ {
ζL
[
ζL
[
ζL[Φ]

]] (
L [ζL[Φ]] + ζ∇2Φ

)
+ L [ζL[Φ]]

(
ζ2∇2(ζL[Φ])− 1

3ζ
3∇2L[Φ]

)
+
(

1
2ζ

2∇2Φ
)
L
[

1
2ζ

2∇2Φ
]

+ ζ2L[Φ]
(

1
2∇

2
(
ζ2∇2Φ

)
− 1

12ζ
2∇2

(
∇2Φ

))}
dx . (2.32)

When truncated at O(ε3), the system given by (2.17) becomes the third-order system obtained
by Choi (1995), who showed that the truncated system also preserves the Hamiltonian structure.
Likewise, it can be shown that the fifth-order model given by (2.17) is a Hamiltonian system.

3 Spectral Formulation

3.1 System for continuous spectrum

To obtain a nonlinear system in spectral space, ζ and Φ are expressed as

ζ(x, t) =

∫
a(k, t) e−ik·xdk, Φ(x, t) =

∫
b(k, t) e−ik·xdk , (3.1)

where a(k, t) and b(k, t) representing the Fourier transforms of ζ and Φ, respectively. Notice
that a(−k, t) = a∗(k, t) and b(−k, t) = b∗(k, t), with the asterisks representing the complex
conjugates, as ζ and Φ are real-valued functions.

One way to find such a system is to take the Fourier transform of (2.5), which would yield
the nonlinear evolution equations for a(k, t) and b(k, t) as

∂a

∂t
− kT b =

∞∑
n=2

qn ,
∂b

∂t
+ g a =

∞∑
n=2

rn , (3.2)

where qn and rn representing the Fourier transforms of Qn and Rn given by (2.6)–(2.7) can be
written as

qn =

∫∫
··
∫
α

(n)
0,1,···, n b1 a2 a3 · · · an δ0−1−···−n dk1dk2 · · · dkn , (3.3)

rn =

∫∫
··
∫
β

(n)
0,1,···, n b1 b2 a3 · · · an δ0−1−···−n dk1dk2 · · · dkn . (3.4)

In (3.3)–(3.4), we have used the following short-hand notations

aj = a(kj , t), bj = b(kj , t), δj−l = δ(kj − kl), k0 = k , (3.5)

where δ is the Dirac delta function. Under the third-order approximation, the system given by
(3.2) was derived first by Zakharov (1968) for infinitely deep water and by Stiassnie & Shemer
(1984) for finite depth water. The system has been also extended to O(ε4) by Stiassnie &
Shemer (1984).

Although it is straightforward, finding the explicit expressions of α
(n)
0,1,···, n and β

(n)
0,1,···, n by

taking the Fourier transform of (2.5) is lengthy and cumbersome, in particular, as the order
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of nonlinearity increases. An alternative and more convenient way is to use the Hamiltonian,
as shown by Krasitskii (1994), whose approach will be adopted here to obtain the fifth-order
system. From (2.16), the n-th order Hamiltonian Hn = En/(2π)2 can be written in spectral
space as

H2 =
1

2

∫∫ (
g a1 a2 + k1T1 b1 b2

)
δ1+2 dk1dk2 , (3.6)

Hn =
1

2

∫∫
··
∫
h

(n)
1,2,3,···, n b1 b2 a3 · · · an δ1+···+n dk1dk2 dk3 · · · dkn for n ≥ 3 . (3.7)

For example, under the fifth-order approximation, h
(n)
1,2,3,···,n for n = 3, 4, 5, 6 can be written

explicitly as

h
(3)
1,2,3 = − (k1 · k2 + θ1θ2) , (3.8)

h
(4)
1,2,3,4 = −

(
k2

2 θ1 − θ1 θ2 θ2+3

)
, (3.9)

h
(5)
1,2,3,4,5 = −

[(
1
6k

2
2 − 1

2k
2
2+3 + θ1+3 θ2+4

)
θ1θ2 − k2

2 θ1θ2+3+4 + 1
3k

2
1k

2
2

]
, (3.10)

h
(6)
1,2,3,4,5,6 =

[(
θ1θ1+3 − k2

1

)
θ2θ2+4θ2+4+5 +

(
1
3k

2
2 − k2

2+4

)
θ1θ2θ1+3

+1
4k

2
1k

2
2θ2+5+6 + 1

2k
2
1k

2
1+3+4θ2 − 1

12k
4
1θ2

]
, (3.11)

where

kj = |kj | , θj = kjTj , Tj = tanh(kjh) , km+n = |km + kn| , Tm+n = tanh(km+nh) .
(3.12)

The evolution equations for a(k, t) and b(k, t) can be then obtained from Hamilton’s equations:

∂a

∂t
=
δH

δb∗
,

∂b

∂t
= − δH

δa∗
. (3.13)

From (3.6)–(3.7) and (3.13), the expressions of α
(n)
0,1,···,n and β

(n)
0,1···,n in (3.3)–(3.4) are found, in

terms of h
(n)
1,2,3,···, n, as

α
(n)
0,1,···, n = 1

2

(
h

(n+1)
−0, 1,2,···, n + h

(n+1)
1,−0, 2,···, n

)
, (3.14)

β
(n)
0,1···,n = −1

2

(
h

(n+1)
1,2,−0, 3,···, n + · · ·+ h

(n+1)
1,2,3,···, n,−0

)
. (3.15)

Notice that the interaction coefficients h
(n)
1,2,···,n in (3.8)–(3.11) are not symmetric. In other

words, except for h
(3)
1,2,3, they change when indices 1 and 2 are interchanged although their

Hamiltonians given by (3.7) remain unchanged. This is also true for indices 3, · · · , n. Never-
theless, if necessary, they can be easily made symmetric, as shown by Krasitskii (1994).

3.2 System for discrete spectrum

When a nonlinear wave field can be represented by a superposition of discrete modes, a(k, t)
and b(k, t) can be written as

a(k, t) =
∑
j

δ(k − kj) aj(t) , b(k, t) =
∑
j

δ(k − kj) bj(t) , (3.16)
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where k−j = −kj. In (3.16), the summations should be in general taken over all discrete modes
involved in nonlinear wave interactions unless an additional approximation is made.

When truncated at O(εM ), the amplitude equations for aj and bj under the M -th order
approximation are given, from (3.2), by

daj
dt
− kjTj bj =

M∑
n=2

 ∑
j1, j2, ···, jn

α
(n)
j, j1, ···, jn bj1 aj2 aj3 · · · ajn δ0−1−···−n

 , (3.17)

dbj
dt

+ g aj =
M∑
n=2

 ∑
j1, j2, ···, jn

β
(n)
j, j1, ···, jn bj1 bj2 aj3 · · · ajn δ0−1−···−n

 , (3.18)

where δ0−1−···−n = δj−j1−···−jn . The corresponding Hamiltonians are given by

H2 =
1

2

∑
j1

∑
j2

(g aj1 aj2 + kj1Tj1 bj1 bj2) δ1+2 , (3.19)

Hn =
1

2

∑
j1, j2, ···, jn

h
(n)
j1, j2, ···, jn bj1 bj2 aj3 · · · ajn δ1+2+···+n , (3.20)

from which the amplitude equations given by (3.17)–(3.18) can be obtained from the Hamilton’s
equations:

∂aj
∂t

=
∂H

∂b∗j
,

∂bj
∂t

= −∂H
∂a∗j

, (3.21)

where H =
∑

nHn. For M = 5, the expressions of h
(n)
j1, j2, ···, jn are defined by (3.8)–(3.11) and

α
(n)
j, j1, ···, jn and β

(n)
j, j1, ···, jn are given by (3.14)–(3.15).

When kj = (jKx, lKy), (3.16) represent the Fourier series of ζ and Φ and equations (3.17)–
(3.18) determine their evolution of the Fourier coefficients, aj and bj. If a finite number of
Fourier modes are used for numerical computations, solving the ordinary differential equations
given by (3.17)–(3.18) is equivalent to solving (2.5) using the pseudo-spectral method described
in §2.2. Unfortunately, the evaluation of the right-hand sides is computationally expensive
and, therefore, solving a dynamical system is in general less effective than the pseudo-spectral
method based on FFT.

3.3 Time-periodic solutions of the third-order spectral model

Under the third-order approximation (M = 3), the amplitude equations for aj and bj can be
written, from (3.17)–(3.18), as

daj
dt

= kj Tj bj +
∑
j1,j2

(
kj·kj1 − kj Tj kj1 Tj1

)
bj1aj2 δ0−1−2

+
∑

j1,j2,j3

[
kj Tj

(
kj1 Tj1 kj1+j2 Tj1+j2 − 1

2k
2
j1

)
− 1

2k
2
j kj1 Tj1

]
bj1aj2aj3 δ0−1−2−3 , (3.22)

dbj
dt

= −g aj +
∑
j1,j2

1
2

(
kj1·kj2 + kj1 Tj1 kj2Tj2

)
bj1bj2 δ0−1−2
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+
∑

j1,j2,j3

[
kj1Tj1

(
−kj2Tj2 kj−j1Tj−j1 + k2

j2

)]
bj1bj2aj3 δ0−1−2−3 . (3.23)

When we assume that the waves are propagating in the x-direction so that kj = (kj , 0)
with kj = jk and (aj, bj) = (aj , bj), equations (3.22)–(3.23) describe the evolution of the Fourier
coefficients of ζ and Φ. Furthermore, we assume that the first harmonics are initially dominant
and all other higher-harmonics are excited through nonlinearity so that

aj = O(ε) , a0 = O(b0) = O(b2j) = O(a2j) = O(ε2), a3j = O(b3j) = O(ε3) . (3.24)

Then, the third-order system (3.22)–(3.23) can be approximated by four ordinary differential
equations: for the j-th mode,

daj
dt
− kj Tj bj = 2k2

j (1− TjT2j) a
∗
jb2j − k2

j

(
1 + T 2

j

)
a2jb

∗
j

−2k3
jTj (1− TjT2j) |aj |2 bj − k3

jTja
2
j b
∗
j , (3.25)

dbj
dt

+ g aj = −2k2
j (1− TjT2j) b

∗
jb2j + 2k3

jTj (1− TjT2j) aj |bj |2 + k3
jTj a

∗
j b

2
j , (3.26)

and, for the 2j-th mode,

da2j

dt
− k2j T2j b2j = 2k2

j (1− Tj T2j) ajbj , (3.27)

db2j
dt

+ g a2j = 1
2k

2
j

(
1 + T 2

j

)
b2j . (3.28)

The Hamiltonian for the system is given, by imposing (3.24) to (3.19)–(3.20), by

H =
(
g |aj |2 + kjTj |bj |2

)
+
(
g |a2j |2 + k2jT2j |b2j |2

)
+1

2

[
h

(3)
j,j,−2j b

2
j a
∗
2j + h

(3)
−j,−j,2j b

∗
j

2 a2j + 2h
(3)
2j,−j,−j b2j b

∗
j a
∗
j + 2h

(3)
−2j,j,j b

∗
2j bj aj

]
+1

2

[
h

(4)
j,j,−j,−j b

2
j a
∗
j

2 + h
(4)
−j,−j,j,j b

∗
j

2 a2
j

+
(
h

(4)
j,−j,j,−j + h

(4)
j,−j,−j,j + h

(4)
−j,j,j,−j + h

(4)
−j,j,−j,j

)
|bj |2 |aj |2

]
=
(
g |aj |2 + kjTj |bj |2

)
+
(
g |a2j |2 + k2jT2j |b2j |2

)
−1

2k
2
j

(
1 + T 2

j

) (
b2j a

∗
2j + b∗j

2 a2j

)
+ 2k2

j (1− TjT2j)
(
b2j b

∗
j a
∗
j + b∗2j bj aj

)
−1

2k
3
jTj

(
b2j a

∗
j

2 + b∗j
2 a2

j

)
− 2k3

jTj (1− TjT2j) |bj |2 |aj |2 , (3.29)

where we have used h
(3)
2j,−j,−j = h

(3)
−j,2j,−j and h

(3)
−2j,j,j = h

(3)
j,−2j,j . Here the amplitude equations

of the third-harmonics (a3j and b3j) as not written as they have no effect on the dynamics of
the first harmonics of interest unless the higher-order nonlinearity is included. Therefore, we
consider only the first two harmonics here.
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3.3.1 Progressive waves

When linearized, (3.25)–(3.26) can be reduced to

daj
dt

= kj Tj bj ,
dbj
dt

= −g aj , (3.30)

whose solution can be written as

aj = aj eiωjt , bj = i (g/ωj) aj eiωjt , (3.31)

so that
bj = i (g/ωj) aj . (3.32)

Here ωj > 0 satisfies the linear dispersion relation (2.9):

ω2
j = g kjTj . (3.33)

At the second order, the particular solutions of (3.27)–(3.28) for the second harmonics can be
obtained, using da2j/dt = 2ωja2j and db2j/dt = 2ωjb2j , as

a2j =
1

ω2
2j − 4ω2

j

[
4iωjk

2
j (1− TjT2j) ajbj + k3

jT2j(1 + T 2
j ) b2j

]
, (3.34)

b2j =
1

ω2
2j − 4ω2

j

[
−2gk2

j (1− TjT2j) ajbj + iωjk
2
j (1 + T 2

j ) b2j

]
, (3.35)

where ω2
2j = gk2jT2j is the natural frequency of the second harmonics of wavenumber k2j = 2kj

and we have assumed that ω2j 6= 2ωj . When substituting the linear solution (3.31) into (3.34)–
(3.35), the second harmonic solutions can be found as

a2j = α2j a
2
j e2iωjt , α2j = gk2

j

(
4− 3TjT2j + T2j/Tj

4ω2
j − ω2

2j

)
= kj

(
3− T 2

j

2T 3
j

)
, (3.36)

b2j = iβ2j a
2
j e2iωjt , β2j =

g2k2
j

ωj

(
3− 2TjT2j + T 2

j

4ω2
j − ω2

2j

)
= ωj

(
3 + T 4

j

4T 4
j

)
, (3.37)

where we have used, for the last expressions of α2j and β2j ,

T2j = 2Tj/(1 + T 2
j ) . (3.38)

From (3.31), a2j and b2j given by (3.36)–(3.37) can be expressed, in terms of aj and bj , as

a2j = α2j a
2
j +O(ε3) , b2j = iβ2j a

2
j +O(ε3) . (3.39)

To study the nonlinear behavior of the first harmonics (aj and bj), although not necessary,
it is convenient to use a single amplitude equation, for example, for aj . After substituting (3.32)
and (3.39) into the right-hand sides of (3.25)–(3.26), the time evolution equation for aj correct
to O(ε3) can be found as

d2aj
dt2

+ ω2
j

(
1 + αj |aj |2

)
aj = 0 , (3.40)
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where αj is given by

αj = k2
j

[
16Tj + (1− 18T 2

j + 9T 4
j )T2j

2Tj(2Tj − T2j)

]
= k2

j

(
9T 4

j − 10T 2
j + 9

2T 3
j

)
> 0 . (3.41)

Similarly, the amplitude equation for bj can be found as

d2bj
dt2

+ ω2
j

(
1 + βj |bj |2

)
bj = 0 , βj =

(
ω2
j /g

2
)
αj . (3.42)

For a time-periodic solution of (3.40), aj(t) is written as

aj(t) = Aj eiΩjt , Ωj = ωj

[
1 + δj +O(ε4)

]
, (3.43)

where δ = O(ε2) is the nonlinear correction to the wave frequency. By substituting (3.43) into
(3.40), one can find, at the order of O

(
ε3
)
, that

δj =
1

2
αjA

2
j =

(
9T 4

j − 10T 2
j + 9

4T 3
j

)
k2
jA

2
j , (3.44)

which is the nonlinear frequency correction of Stokes waves in water of finite depth, as shown,
for example, in Whitham (1976, §13.13). As a special case, for infinitely deep water (Tj → 1
and T2j → 1), the expression of αj , δj , and a2j are given by

αj = 4k2
j , δj = 2 k2

jA
2
j , a2j = kjA

2
j e2iωjt . (3.45)

This solution corresponds to that of Stokes (1847), where the wave amplitude aj is defined as
aj = 2Aj so that δj = k2

ja
2
j/2.

3.3.2 Standing waves

For standing wave solutions, we must have

aj = a−j = a∗j , bj = b−j = b∗j , a0 = 0 , (3.46)

so that ζ and Φ can be written as

ζ(x, t) = 2
∑
j≥0

aj(t) cos(kjx) , Φ(x, t) = 2
∑
j≥0

bj(t) cos(kjx) , (3.47)

which satisfy the side-wall boundary conditions at x = 0 and L with

kj = jπ/L , (3.48)

where L is the tank length. Then, as aj and bj are real, their evolution equations are given,
from (3.22)–(3.23), or directly from (3.25)–(3.26), by

daj
dt
− kj Tj bj = 2k2

j (1− TjT2j) ajb2j − k2
j

(
1 + T 2

j

)
a2jbj − k3

jTj (3− 2TjT2j) a
2
jbj , (3.49)

dbj
dt

+ g aj = −2k2
j (1− TjT2j) bjb2j + k3

jTj (3− 2TjT2j) ajb
2
j , (3.50)
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while the time evolution of the second harmonics a2j and b2j are governed by (3.27)–(3.28).
When we linearize (3.49)–(3.50), the leading-order solutions can be found as

aj = Aj eiωjt + C.C. , bj = i (g/ωj)Aj eiωjt + C.C. , (3.51)

where the complex conjugates (C.C.) are needed as aj and bj are real functions. At the second-
order, the particular solutions of (3.27)–(3.28) for the second harmonics can be found as

a2j =
(
α2j A

2
j e2iωjt + C.C.

)
+ γ2j |Aj |2 , b2j =

(
iβ2j A

2
j e2iωjt + C.C.

)
, (3.52)

with α2j , β2j , and γ2j given by

α2j = kj

(
3− T 2

j

2T 3
j

)
, β2j =

gkj
ωj

(
3 + T 4

j

4T 3
j

)
, γ2j = kj

(
1 + T 2

j

Tj

)
. (3.53)

For standing waves, since it is not possible to write a2j and b2j in terms of aj or bj , the system
cannot be reduced to a single equation for aj or bj . Therefore, in general, it is necessary to
solve the system given by (3.49)–(3.50) along with (3.27)–(3.28), except for the infinitely deep
water case, for which a2j = kja

2
j as α2j = kj and γ2j = 2kj .

For a time-periodic solution, we write aj and bj as

aj = Aj ei Ωjt +A3j e3i Ωjt + C.C.+O(ε5) , Ωj = ωj

[
1 + δj +O(ε4)

]
+O(ε5) , (3.54)

bj = Bj ei Ωjt +B3j e3i Ωjt + C.C.+O(ε5) , (3.55)

where Aj = O(ε), Bj = O(ε), A3j = O(ε3), B3j = O(ε3), and δj = O(ε2) have been assumed
real. By substituting (3.54)–(3.55) into (3.49)–(3.50) with (3.52), the nonlinear correction to
the wave frequency can be determined at O(ε3) as

δj =

(
9− 12T 2

j − 3T 4
j − 2T 6

j

4T 4
j

)
k2
jA

2
j , (3.56)

which has been obtained by Tadjbakhsh & Keller (1960). As pointed out by Tadjbakhsh &
Keller (1960), δj is negative for kjh > 1.058, implying that the frequency decreases as the wave
amplitude increases, which is observed for a soft spring. On the other hand, for kjh < 1.058,
δj is positive, which corresponds to the case of a hard spring.

For infinitely deep water (h→∞, Tj → 1), (3.56) can be reduced to δj = −2k2
jA

2
j , which

is the result obtained by Rayleigh (1915), where the wave amplitude is defined as aj = 4Aj so
that δj = −k2

ja
2
j/8.

4 Conclusion

Using the equivalence between the spectral formulation of Zakharov (1968) and the pseudo-
spectral formulation of West et al. (1987), we obtain an explicit fifth-order spectral model that
governs the evolution of the Fourier transforms of the surface elevation ζ and the free surface
velocity potential Φ. Compared with a lower-order one, the fifth-order model would improve
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the description of the spectral evolution of broadband nonlinear waves of finite amplitudes.
When discretized, the model provides a dynamical system for any number of discrete modes,
which would be useful to study nonlinear standing waves in a sloshing tank. Although only the
third-order solutions for traveling and standing waves have been presented, the fifth-order time-
periodic solutions can be easily obtained from the model presented here. It should be remarked
that, as the higher-order Hamiltonians are also available from the pseudo-spectral formulation
of West et al. (1987) via recursion formulas, it is straightforward to find a higher-order spectral
model although it would be complicated.
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