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A higher-order strongly nonlinear model is derived to describe the evolution
of large amplitude internal waves over arbitrary bathymetric variations in a
two-layer system where the upper layer is shallow while the lower layer is
comparable to the characteristic wavelength. The new system of nonlinear
evolution equations with variable coefficients is a generalization of the deep
configuration model proposed by Choi and Camassa [1] and accounts for both
a higher-order approximation to pressure coupling between the two layers and
the effects of rapidly varying bottom variation. Motivated by the work of
Rosales and Papanicolaou [2], an averaging technique is applied to the system
for weakly nonlinear long internal waves propagating over periodic bottom
topography. It is shown that the system reduces to an effective Intermediate
Long Wave (ILW) equation, in contrast to the Korteweg-de Vries (KdV)
equation derived for the surface wave case.

1. Introduction

Modeling internal waves is of great interest in the study of ocean and
atmosphere dynamics. Large amplitude internal ocean waves, for example,
are often observed in many areas where the variation of temperature and salt
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Figure 1. Two-fluid system configuration.

concentration generates density stratification. They can interact with bottom
topography and submerged structures as well as surface waves. In particular,
in oil recovery in deep oceans, these highly nonlinear internal waves can affect
offshore operations and submerged structures. Another example, in the context of
atmosphere dynamics, is the effect on the topographic form drag which is of
importance in the study of pollution dispersion in an urban area.

Finding accurate reduced models is a first step toward better understanding
the characteristics of large amplitude internal waves and developing efficient
computational methods to solve a wide range of practical problems in the ocean
and the atmosphere. To describe the nonlinear internal wave motions in water
of great depth, various models have been proposed, ranging from classical
weakly nonlinear models such as the Intermediate Long Wave (ILW) equation
and the Benjamin-Ono (BO) equation [3–7] to high-order nonlinear models [1,
8–11]. A strongly nonlinear long wave model of Choi and Camassa [1] for the
deep configuration that is known to approximate well large amplitude internal
solitary waves is of particular interest, but is valid only for the case of flat or
slowly varying bottom.

In this paper, for a two-layer fluid of finite depth, a higher-order nonlinear
model is derived to study the interaction of nonlinear internal waves with large
amplitude bottom topography that might vary rapidly over the characteristic
length scale of internal waves. As shown in Figure 1, two layers of constant
densities are bounded by a horizontal rigid lid at the top and arbitrary
topography at the bottom. The thickness of the lower layer is assumed to be
much greater than that of the upper layer, but is comparable to the characteristic
wavelength. The new long wave model, accounting for higher-order nonlinear
effects through a more accurate pressure coupling between the two layers,
describes the evolution of the internal wave elevation together with the mean
(horizontal) water velocity for the upper layer. The effects of rapidly varying
and steep topography are represented in the model by variable coefficients
with the aid of the conformal mapping technique, as described in [12].
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By using a multi-scale averaging strategy, Rosales and Papanicolaou [2]
obtained an effective Korteweg-de Vries (KdV) equation for weakly nonlinear
and weakly dispersive long surface waves over rapidly varying and periodic
bathymetry for which wave reflection is negligible. Other more recent results
can be found in the literature [13, 14], all containing effective KdV equations.
In the present work, the analysis is carried over for internal waves, with an
additional technical difficulty of expanding a singular integral operator acting
on a multi-scale function. Under the weakly nonlinear assumption, to leading
order, it is shown that the higher-order model can be reduced to an effective
ILW equation when considering unidirectional internal waves over rapidly
varying and periodic bathymetry.

We intend to use this higher-order model to study the interaction of
internal waves with bottom topography, including topics such as wave
multiple-scattering, and related interesting phenomena that arise. To mention
a few, connected with our previous experience for surface waves, we have
the apparent diffusion of long waves interacting with a random topography
[15–20], as well as the time reversal refocusing of pulses [21–24], viewed
as a tool for waveform inversion. Namely, from the scattered wave field one
can reconstruct numerically the initial wave profile. Having the effective ILW
model, for the periodic case, is a very useful tool in validating new numerical
methods designed to capture long wave-microstructure interaction.

The paper is organized as follows. In Section 2, the physical setting is
defined together with a brief description of our previous results. In Section 3,
we introduce the higher-order, depth-averaged, upper layer equations that are
equivalent to the shallow water equations with a leading-order dispersive
term. Then, in Section 4, the lower layer pressure that brings in information
from the bathymetry is expanded to the next-order term, in comparison with
previous work. In Section 5, a new, higher-order, strongly nonlinear model is
presented. Also its weakly nonlinear version is given. A dispersive analysis
compares the new models with the (full) Euler equations. Finally, in Section 6,
by considering a rapidly varying periodic bathymetry, a multi-scale averaging
theory is presented and an effective ILW model is deduced. The conclusions
are given in Section 7 while the appendix contains a proof for expanding the
singular integral operator.

2. Physical setting

We start with a two-fluid configuration. The coordinate system is positioned at
the undisturbed interface between two layers. The displacement of the interface
is denoted by η(x , t) and we assume that it is smooth and has compact support
(see Figure 1). The density of each inviscid, immiscible, incompressible and
irrotational fluid is ρ1 for the upper fluid and ρ2 for the lower fluid. For a stable
stratification, let ρ2 > ρ1. Similarly, (ui, wi) denote the velocity components
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and pi the pressure, where i = 1, 2. The upper layer is assumed to have a
characteristic thickness of h1, much smaller than the characteristic wavelength
L at the interface. Hence, the upper layer will be in the shallow water regime. At
the lower layer, the irregular bottom is described by z = h2(h(x/l) − 1), h < 1.
The function h can be discontinuous or even multivalued. See, for example,
Figure 1 where a polygonal shaped topography is sketched. Moreover, the
characteristic depth for the lower layer h2 is comparable with the characteristic
wavelength L, hence, characterizing an intermediate depth regime. When a
rapidly varying bottom is taken into account, the horizontal length scale for
bottom irregularities l is such that h1 < l � L . In this work, subscripts ξ , x, z
and t stand for partial derivatives with respect to spatial coordinates and time.

Introducing the nondimensional dispersion parameter β = (h1/L)2, it
follows from the shallowness of the upper layer that O(

√
β) � 1. The physical

variables regarding the upper layer are nondimensionalized (with a tilde) as
follows [1, 12]:

x = Lx̃, z = h1 z̃, t = L

U0
t̃, η = h1η̃,

p1 = (
ρ1U 2

0

)
p̃1, u1 = U0ũ1, w1 =

√
βU0w̃1,

where U0 = √
gh1 is the characteristic shallow layer speed. In a weakly

nonlinear theory, η is usually scaled by a small characteristic amplitude a such
that α ≡ a/h1 � 1. Notice that here η is of the same order as the layer’s depth.
This will lead to a strongly nonlinear model.

For the lower layer, the intermediate depth regime implies h2/L = O(1)
and, therefore, the nondimensionalization should be different [1, 12]:

x = Lx̃, z = Lz̃, t = L

U0
t̃, η = h1η̃,

p2 = (
ρ1U 2

0

)
p̃2, u2 =

√
βU0ũ2, w2 =

√
βU0w̃2,

together with the velocity potencial φ = √
βU0Lφ̃.

One starts with the Euler equations in both (upper and lower) layers, together
with a rigid lid condition at the top of the upper layer and an impermeability
condition at the irregular bottom topography. Also one has continuity conditions
at the interface: namely, a kinematic condition at the interface together with
no pressure jumps. Considering the shallow water regime for the upper layer
together with potential theory for the lower layer, the following reduced model
arises from these Euler equations. This asymptotic reduction makes use of a
terrain-following horizontal coordinate ξ [25] and was obtained in [12]:


ηt − 1

M(ξ )
[(1 − η)u]ξ = 0,

ut + 1

M(ξ )
u uξ + 1

M(ξ )

(
1 − ρ2

ρ1

)
ηξ =

√
β

ρ2

ρ1

1

M(ξ )
Th[((1 − η)u)ξ t ].

(1)
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This is a variable coefficient Boussinesq-type system for the internal wave
profile η and the upper depth-averaged velocity u. The variable coefficient
M(ξ ) has information from the topography, due to the conformal mapping of a
flat strip onto the lower fluid domain [12, 25]. The map goes from (ξ , ζ ) to
(x , z) coordinates. Then, one can write the Jacobian along the undisturbed
interface as |J |(ξ , 0) = zζ (ξ , 0)2 ≡ M(ξ )2. As will be shown below, system
(1) is a dispersive model, where dispersion comes in through the term with a
Hilbert transform on a strip (of width h) given by

Th[ f ](ξ ) ≡ 1

2h

∫
f (ξ̃ ) coth

(
π

2h
(ξ̃ − ξ )

)
d ξ̃ . (2)

The singular integral must be interpreted as a Cauchy principal value. If the
bottom is flat, M(ξ ) = 1 and we obtain the same system derived by Choi and
Camassa [1] for the deep configuration.

3. Higher-order upper layer equations

We are interested in wave interaction with large amplitude topographies.
Therefore, our reduced model must be able to account for a higher-order
pressure coupling between the two layers. In other words, we want to investigate
when this higher-order term does indeed play a role in the dynamics. Hence,
our goal in this section is to improve the order of approximation of system (1)
by computing a more accurate approximation for the pressure term: instead of
an order β approximation, we include the next-order term of O(β3/2).

We start with the layer-mean equations for the upper fluid [1, 26–28]. For
convenience, they are repeated here:

ηt − ((1 − η)u)x = 0, (3)

ut + uux = −p1x + O(β2), (4)

where p1x is the mean-layer value for p1x . For a better approximation of p1x ,
we need to expand p1(x , z, t) with one more term: p1(x , z, t) = p(0)

1 +
β p(1)

1 + O(β2), so its vertical derivative is expanded as p1z(x , z, t) = p(0)
1z +

β p(1)
1z + O(β2). From the vertical (Euler) momentum equation, we have p1z =

−1 −β(w1t + u1w1x +w1w1z). We clearly see the O(1) hydrostatic contribution
to the pressure (p(0)

1z = −1) together with a nonhydrostatic correction p(1)
1z =

−(w(0)
1t + u(0)

1 w
(0)
1x + w

(0)
1 w

(0)
1z ). Again continuity of pressure at the interface

(p1 = p2) enables the calculation of the leading-order nonhydrostatic correction
arising from the lower layer. After some manipulations and asymptotics with the
Euler equations along the upper layer, Choi and Camassa [1] describe a pressure
approximation in a compact format: p(1)

1z = (z − 1) G1(x , t) + O(β), where
G1(x , t) = uxt + uuxx − uxux. Integrating the expression for p1 with respect to
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z from z = η(x , t), differentiating once in x, and depth-averaging leads to

p1x = ηx + Px (x, t) − β

η1

(
1

3
η3

1G1(x, t)

)
x

+ O(β2), (5)

where η1 = 1 − η and P(x , t) = p1(x , η(x , t), t) = p2(x , η(x , t), t).
Substituting (5) in (4), we have

ut + uux = −
(

ηx + Px (x, t) − β

η1

(
1

3
η3

1G1(x, t)

)
x

)
+ O(β2). (6)

One can establish the following interesting connection with well known
water wave models [1]. If the lower fluid layer is neglected and P is regarded
as the external pressure applied to the free surface, Equations (3) and (6) are
the complete set of evolution equations for surface waves as derived by Su and
Gardner [29] and independently by Green and Naghdi [30]. One should note
that having the rigid lid at the top and the free surface (interface) below it, the
connection between models is established by reflecting the present one about
the x-axis, namely, when gravity is considered reversed.

4. Improved approximation for the pressure at the interface

Now we show how an order O(β3/2) approximation arises for Px(x , t) =
(p2(x , η(x , t), t))x from the (lower layer) Euler equations. The β1/2 factor
comes from the scaling in the lower layer.

In nondimensional variables, the lower Bernoulli law at the interface is

P(x, t) = −ρ2

ρ1

(√
βφt + β

2

(
φ2

x + φ2
z

) + η + C(t)

)∣∣∣∣
z=√

βη(x,t)

.

By expanding in a Taylor series about z = 0, we obtain that

P(x, t) = −ρ2

ρ1

[
η +

√
β(φt |z=0 +

√
βηφt z|z=0)

+ β

2

(
φ2

x

∣∣
z=0

+ φ2
z

∣∣
z=0

) + C(t)

]
+ O(β

3
2 ). (7)

From the kinematic condition

φz = ηt +
√

βηxφx , (8)

we have that φz = ηt + O(
√

β) at z = √
βη(x, t). It then follows that

φz|z=0 = ηt + O(
√

β) and φt z|z=0 = ηt t + O(
√

β). Substituting in (7) leads to

P(x, t) = −ρ2

ρ1

[
η +

√
β φt |z=0 + βηηt t + β

2

(
φ2

x

∣∣
z=0

+ η2
t

) + C(t)

]
+ O(β

3
2 ).



Higher-Order Internal Wave Model 281

Notice that all quantities are evaluated at z = 0; therefore, taking x-derivatives,
we obtain:

Px (x, t) = −ρ2

ρ1

[
ηx +

√
β φt x |z=0 + β

(
ηηt t + 1

2
η2

t + 1

2
φ2

x

∣∣
z=0

)
x

]
+ O(β

3
2 ).

(9)

In the previous work (c.f. (2.16) in [12]), Px(x , t) was computed only up to
the O(

√
β) term, so that it was enough to approximate φx |z=0 up to order

√
β.

In the higher-order pressure expression (9) this calculation can still be used to
approximate φ2

x |z=0. We recall that in [12], we were able to express φx |z=0 in
terms of the Hilbert transform on the strip Th[ f ](ξ ), where h = h2/L . In other
words we found that

φx |z=0 ≡ φx (x(ξ, 0), 0, t) = 1

M(ξ )
Th[M(ξ̃ )ηt (x(ξ̃ , 0), t)](ξ ) + O(

√
β) (10)

where the time independent metric coefficient M(ξ ) is a smooth function [12,
25]. We also call attention to the fact that by using the Hilbert transform
we are keeping the full dispersive nature of the lower layer potential theory
problem. This will become evident in the next section.

To approximate the O(β1/2) term in (9), it becomes necessary to obtain a
higher-order approximation for φt x |z=0, namely, up to order β, in contrast with
(10). Again we can restrict our analysis to a linear (lower layer) potential theory
problem having an undisturbed interface. There, the velocity potential satisfies
an upper Neumann boundary condition (in φz|z=0), which will be determined
up to order β. This is done through the kinematic condition at the free interface.

Taking the nonlinear kinematic condition (8) and subsituting the
Taylor expansion φz(x,

√
βη) = φz(x, 0) +√

βηφzz(x, 0) + O(β), we have
φz(x, 0) = ηt +√

βηxφx (x, 0) +√
βηφxx (x, 0) + O(β), where the Laplace

equation has been used. Then this is the same as

φz(x, 0) = ηt +
√

β(ηφx (x, 0))x + O(β). (11)

Substituting (10) in (11) and observing that along the undisturbed interface
∂ξ = M(ξ )∂ x , we have that

φz(x, 0) = ηt +
√

β

M(ξ )

(
η

1

M(ξ )
Th[M(ξ̃ )ηt ]

)
ξ

+ O(β).

Also noting that φζ (ξ , 0) = M(ξ ) φz(x(ξ , 0), 0) and Th[φζ (ξ, 0)] = φξ (ξ, 0),
we arrive at

φx (x, 0) = 1

M(ξ )
φξ (ξ, 0)

= 1

M(ξ )
Th

[
M(ξ̃ )ηt +

√
β

(
η

1

M(ξ̃ )
Th[M(ξ ′)ηt ]

)
ξ

]
+ O(β).
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From

φt x (x, 0) = 1

M(ξ )
Th

[
M(ξ̃ )ηt +

√
β

(
η

1

M(ξ̃ )
Th[M(ξ ′)ηt ]

)
ξ

]
t

+ O(β),

together with (3), ηt t = ((1 − η) u)xt = ((1 − η) u)ξ t/M(ξ ), we have

√
β φt x |z=0 =

√
β

M(ξ )
Th[((1 − η)u)ξ t ]

+ β

M(ξ )
Th

[
η

M(ξ̃ )
Th[((1 − η)u)ξ ]

]
ξ t

+ O(β
3
2 ),

which is the higher-order expression we were seeking. Note that the Hilbert
transform iterate is the (new) correction term. It is our future goal to understand
the role of this O(β) term in the internal wave/topography dynamics.

Summarizing, the higher-order pressure term connecting the top and lower
layer is

Px (x, t) =

−ρ2

ρ1

(
ηx +

√
β

M(ξ )
Th[((1 − η)u)ξ t ] + β

M(ξ )
Th

[
η

M(ξ )
Th[((1 − η)u)ξ ]

]
ξ t

+ β

2M(ξ )

( {
1

M(ξ )
Th[((1 − η)u)ξ ]

}2 )
ξ

+ β

M(ξ )

(
ηηt t + 1

2
η2

t

))
+ O(β

3
2 ).

This additional order of approximation is compatible with the
nonhydrostatic/weakly dispersive correction added to the upper shallow water
layer model (c.f. O(β) term in (6)). It is also relevant to comment that
compositions of the Hilbert operator Th arises not only in this case, but also in
the fully dispersive Boussinesq model obtained by Matsuno [31], Artiles and
Nachbin [32] or Craig and Sulem [33] for surface gravity waves. In these
references the authors were expanding Dirichlet-to-Neumann (DtN) operators
about the undisturbed free surface.

In the next section, we perform a Fourier dispersion analysis of these models.

5. The higher-order strongly nonlinear model

Consider system (3) and (6) in curvilinear coordinates


ηt = 1

M(ξ )
((1 − η)u)ξ ,

ut + 1

M(ξ )
u uξ = − 1

M(ξ )
ηξ + β

(1 − η)

1

3M(ξ )

(
(1 − η)3G1

)
ξ
− Px + O(β2),
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where G1 in curvilinear coordinates reads,

G1(ξ, t) = 1

M(ξ )
uξ t + u

M(ξ )

(
1

M(ξ )
uξ

)
ξ

− 1

M(ξ )2
uξ uξ .

With the higher-order pressure, the strongly nonlinear model becomes


ηt = 1

M(ξ )
((1 − η)u)ξ ,

ut + 1

M(ξ )
u uξ + 1

M(ξ )

(
1 − ρ2

ρ1

)
ηξ = ρ2

ρ1

√
β

M(ξ )
Th [(1 − η)u]ξ t

+ β

1 − η

1

3M(ξ )

(
(1 − η)3G1

)
ξ
+ ρ2

ρ1

β

M(ξ )

(
η((1 − η)u

)
ξ t

M(ξ )
+ 1

2
((1 − η)u)2

ξ

)
ξ

+ β

M(ξ )

ρ2

ρ1
Th

[
η

M(ξ )
Th[(1 − η)u]ξ

]
ξ t

+ β

2M(ξ )

ρ2

ρ1

({
1

M(ξ )
Th[((1 − η)u)ξ ]

}2
)

ξ

+ O(β
3
2 ). (12)

We remark that the higher-order evolution equations for the flat bottom case
are obtained with M(ξ ) = 1.

For the weakly nonlinear regime introduce η∗, u∗ such that η = αη∗, u =
αu∗, with α = O(

√
β), a typical scaling used for solitary waves. After dropping

the asterisks, we have


ηt = 1

M(ξ )
[(1 − αη)u]ξ ,

ut + α

M(ξ )
u uξ + ρ1 − ρ2

M(ξ )ρ1
ηξ = ρ2

ρ1

√
β

M(ξ )
Th[(1 − αη)u]ξ t + β

3M(ξ )

(
uξ t

M(ξ )

)
ξ

+ O(β
3
2 ).

(13)
When the linear dispersive term β

3M(ξ ) (
1

M(ξ ) uξ t )ξ is omitted from the
higher-order weakly nonlinear model, it has exactly the same form as the
lower-order strongly nonlinear model (1). This might imply that the weakly
nonlinear higher-order model should be a good model for moderate amplitude
internal waves. Namely, one can work with a simple system of equation
and capture accurately the dynamics of waves of moderate amplitude. One
of our future goals is to study numerically the regime of validity of the
above statements. Furthermore, by having this additional term, that arises from
G1 (in the upper layer modeling), the phase speeds from this higher-order
model become substantially more accurate when compared to the exact linear
dispersion relation, which is very important in time reversal experiments. This
will be shown in the next subsection. In conclusion, the weakly nonlinear
higher-order model might have a large domain of validity, yet to be thoroughly
explored in the near future.



284 A. Ruiz de Zárate et al.

5.1. Dispersion relation for the higher-order model

Consider the improved model linearized about the undisturbed state, in flat
bottom case: 


ηt = uξ ,

ut +
(

1 − ρ2

ρ1

)
ηξ = ρ2

ρ1

√
β Th[u]ξ t + β

3
uξξ t .

By eliminating η and then letting u = Aei(kx−ωt) andTh[eikx ] = i coth( kh2
L )eikx ,

we obtain the dispersion relation

ω2 =

(
ρ2

ρ1
− 1

)
k2

(
1 + β

3
k2

)
+ ρ2

ρ1

√
β k coth

(
kh2

L

) . (14)

Observe that we have bounded phase speeds with ω2

k2 → 0 as k → ∞. The
same is true for the reduced model (1) [12]:

ω2 =

(
ρ2

ρ1
− 1

)
k2

1 + ρ2

ρ1
k
√

β coth

(
kh2

L

) , (15)

The full dispersion relation, in dimensional form,

ω2
f = g(ρ2 − ρ1)k2

ρ1k coth(kh1) + ρ2k coth(kh2)
, (16)

arises from the linearized Euler equations [1, 34]. To compare the reduced
models’ dispersion relations, we rewrite (14) and (15) in dimensional form.
The dispersion relation (15) becomes

ω2
r = g(ρ2 − ρ1)k2

ρ1

h1
+ ρ2k coth(kh2)

.

As already stated in [1], the reduced model (1) has its upper layer in the
shallow water (long wave) regime, which is clearly seen through the limit
ρ1k coth(kh1) → ρ1

h1
, as kh1 → 0.

On the other hand, relation (14) in dimensional form is

ω2
h = g(ρ2 − ρ1)k2(

ρ1

h1
+ 1

3
h1ρ1k2

)
+ ρ2k coth(kh2)

.

Notice that both approaches are fully dispersive regarding the bottom layer
since the second hyperbolic cotangent is completely retained. This is due to
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Figure 2. (a) Phase velocities for ρ1 = 1, ρ2 = 2, h1 = 1, h2 = 2, β = 0.01. Solid line: full
phase velocity, Dotted line: phase velocity for the higher-order model, dashed line: phase
velocity for the lower order model; (b) Detail from (a).

the Hilbert transform on the strip. For the improved shallow water (upper
layer) regime (kh1 near zero), we now obtain the next-order term from the full
dispersion relation, namely, that

ρ1

h1
kh1 coth(kh1) = ρ1

h1

(
1 + (kh1)2

3
+ O

(
(kh1)4

))
,

and consequently ω2
f = ω2

h + O((kh1)4), while ω2
f = ω2

r + O((kh1)2). See
also Figure 2, where the phase speeds of each of these models are compared.
The inclusion of the higher-order pressure term has improved the accuracy of
the phase speed over a much wider wavenumber band. This is very important
in reflection-transmission problems, as shown by Muñoz and Nachbin [24].

6. Effective equations in a periodic medium

In this section, we present an asymptotic (averaging) theory for the propagation
of internal waves over large amplitude rapidly varying periodic bottom
topographies. It is well known that in this regime wave reflection is negligible
[2]. Hence, one can write an unidirectional multi-scale ansatz for the internal
waves. As in [2, 14, 33], we consider a weakly nonlinear and weakly dispersive
regime, with the diverse scales and regimes ordered by a small parameter
ε � 1. In the above references, effective KdV equations were obtained for
the free surface wave dynamics. Here, we consider the higher-order model
(13) for weakly nonlinear and weakly dispersive internal waves. Representing
the topography, one has the metric term M(ξ ) = m(ξ/

√
ε), where m(·) is a

2π -periodic function. Furthermore, the nonlinearity and dispersive parameters
are scaled as follows: α = κε and β = (δε)2, where κ and δ are constants.
Instead of a KdV-type equation, here the leading order effective equation will
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be of an ILW-type, which reduces to a Benjamin-Ono-type, when the lower
layer is infinitely deep.

6.1. Multi-scale expansions

We look for special asymptotic solutions representing traveling waves. We use
the ansatz

η(t, ξ ) = η0(τ, χ, z) + √
εη1(τ, χ, z) + εη2(τ, χ, z) + · · · , (17a)

u(t, ξ ) = u0(τ, χ, z) + √
εu1(τ, χ, z) + εu2(τ, χ, z) + · · · , (17b)

where τ = εt, χ = ξ − vt, z = ξ√
ε
, and all the functions are 2π -periodic in z.

We note that the propagation velocity v, is an unknown constant.
To obtain the corresponding hierarchy of equations, we proceed as customary

by using the multi-scale expansions for the unknowns given above and
the corresponding expansions of the involved operators. For differentiation
operations, these expansions correspond to the chain rule, i.e., ∂ t → −v∂χ +
ε∂τ , ∂ξ → ε−1/2∂ z + ∂χ , but for the nonlocal operator Th we use the following
result (see the Appendix for a proof). Consider f ε(ξ ) = g(ξ,

ξ√
ε
), where g is

2π -periodic in the second variable and sufficiently regular. Then, as ε → 0, we
have the expansion

∂ξTh[ f ε(·)](ξ ) = ∂ξTh[〈g(·, ·)〉](ξ )

+ {(
ε−1/2∂z + ∂ξ

)
Hper [g(ξ, ·)](z)

}
z= ξ√

ε

+ O(ε1/2), (18)

where 〈·〉 and Hper [·] represent, respectively, averaging over the fast variable z,
and the standard Hilbert transform of a 2π -periodic function.

6.2. Effective evolution equation

The hierarchy of equations starts at order ε−1/2. We have that

η0,z = 0, (19a)

u0,z = 0. (19b)

Thus, η0 = η0(τ , χ ) and u0 = u0(τ , χ ), that is the leading-order terms do not
depend on the fast variable z. Our goal is to write closed effective equations
for the leading-order wave elevation η0(τ , χ ).

At order ε0, one gets

−vm(z)η0,χ − u0,χ = u1,z (20a)

−vm(z)u0,χ −
(

ρ2

ρ1
− 1

)
η0,χ =

(
ρ2

ρ1
− 1

)
η1,z. (20b)



Higher-Order Internal Wave Model 287

After averaging over a period in z, we arrive at

v〈m〉η0,χ + u0,χ = 0, (21a)

v〈m〉u0,χ +
(

ρ2

ρ1
− 1

)
η0,χ = 0. (21b)

To assure the existence of nontrivial solutions, one needs that

det


 v〈m〉 1(

ρ2

ρ1
− 1

)
v〈m〉


 = 0,

that is

v2 =
ρ2

ρ1
− 1

〈m〉2
. (22)

As a consequence, we obtain that u0(τ , χ ) = −v〈m〉η0(τ , χ ). To leading order
(due to the invariance in χ ) η0 and u0 are right-travelling waves, as expected.

Introducing the notation, ū = 〈u(·)〉, ũ(z) = u(z) − ū for 2π -periodic
functions in z, subtracting (20) and (21), and integrating over z we get that

η̃1 = − v
ρ2

ρ1
− 1

η0,χb(z) (23a)

ũ1 = −vu0,χb(z) (23b)

where b(z) solves db(z)/dz = m̃(z) with the additional condition 〈b〉 = 0.
The equations of order ε1/2 read as

−vm(z)η1,χ − u1,χ = u2,z − κ(η0u0)z = u2,z (24a)

−vm(z)u1,χ −
(

ρ2

ρ1
− 1

)
η1,χ =

(
ρ2

ρ1
− 1

)
η2,z − κ

2

(
u2

0

)
z
− vδ

ρ2

ρ1
Hper [u0]χ z

=
(

ρ2

ρ1
− 1

)
η2,z. (24b)

After averaging in z, using (23), and noting that 〈m(z)b(z)〉 = 0, we get

v〈m〉η̄1,χ + ū1,χ = 0, (25a)

v〈m〉ū1,χ +
(

ρ2

ρ1
− 1

)
η̄1,χ = 0, (25b)
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which are compatible when ū1,χ = −v〈m〉η̄1,χ . Proceeding by integration as
before we obtain

η̃2 = v2

ρ2

ρ1
− 1

η0,χχm1(z) + v
ρ2

ρ1
− 1

u0,χχb1(z) − v
ρ2

ρ1
− 1

ū1,χb(z) (26a)

ũ2 = v2

ρ2

ρ1
− 1

u0,χχm1(z) + vη0,χχb1(z) − vη̄1,χb(z) (26b)

where db1(z)/dz = b(z) with 〈b1〉 = 0, and dm1(z)/dz = m(z)b(z) with
〈m1〉 = 0.

Next, at order ε, we have the equations

−vm(z)η2,χ − u2,χ + m(z)η0,τ + κ(η0u0)χ = [u3 − κ(η0u1 + u0η1)]z, (27a)

−vm(z)u2,χ −
(

ρ2

ρ1
−1

)
η2,χ + m(z)u0,τ + κ

2

(
u2

0

)
χ
=

[(
ρ2

ρ1
− 1

)
η3 − κu0u1

]
z

− vδ
ρ2

ρ1
Th[u0,χχ ] − vδ

ρ2

ρ1
Hper [u1,χ ]z − vδ

3

[
u0,χ z

m(z)

]
z

. (27b)

Averaging with respect to z, we get that

v〈m〉η̄2,χ + ū2,χ = 〈m〉η0,τ + κ(η0u0)χ − v〈m̃η̃2,χ 〉, (28a)

v〈m〉ū2,χ +
(

ρ2

ρ1
− 1

)
η̄2,χ = 〈m〉u0,τ + κ

2

(
u2

0

)
χ

− v〈m̃ũ2,χ 〉

+ vδ
ρ2

ρ1
Th[u0,χχ ]. (28b)

It is easy to establish that 〈m̃η̃2,χ 〉 = 〈m̃ũ2,χ 〉 = 0. Furthermore, since (28)
are linear in η̄2,χ , ū2,χ with an associated singular matrix, a nontrivial solution
exists when the compatibility condition(

ρ2

ρ1
− 1

)
{〈m〉η0,τ + κ(η0u0)χ }

− v〈m〉
{
〈m〉u0,τ + κ

2

(
u2

0

)
χ

+ vδ
ρ2

ρ1
Th[u0,χχ ]

}
= 0,

is satisfied. Finally, after some straightforward calculations, we get the following
equation for the leading-order interface elevation η0,

η0,τ − 3κv

4

(
η2

0

)
χ

+ ρ2

ρ1

δv

2〈m〉Th[η0,χχ ] = 0. (29)
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We can rewrite this equation in the t, ξ coordinates, after plugging back the
parameters α and β, as

η0,t + vη0,ξ − 3αv

4

(
η2

0

)
ξ
+ ρ2

ρ1

√
βv

2〈m〉Th[η0,ξξ ] = 0. (30)

This is an ILW equation analogous to those considered in the literature for
the case of a flat bottom [1, 5, 6]. Actually, all these coincide when we set
〈m〉 = 1. Furthermore, within the same order of approximation, we can readily
get a regularized version of (30)

η0,t + vη0,ξ − 3αv

4

(
η2

0

)
ξ
− ρ2

ρ1

√
β

2〈m〉Th[η0,ξ t ] = 0. (31)

The influence of the bottom appears in the effective ILW equation only through
the average metric coefficient, which also is present in v = 〈m〉−1

√
(ρ2 − ρ1)/ρ1.

In the limit where h → ∞, one gets from (30) the Benjamim-Ono equation
(BO) and from (31) the regularized BO equation. Of course, in this case,
the bottom is not felt anymore, but it indicates the connection between these
important equations. It is also worth noticing that (30) and (31) admit a one
parameter family of solitary wave solutions.

7. Conclusions

We derived a higher-order, strongly nonlinear, one-dimensional Boussinesq-type
model for the evolution of internal waves in a two-layer system. The system
has variable coefficients expressing large changes in the bathymetry. The
presence of the higher-order term, in the pressure coupling between layers,
will be further investigated concerning the interaction of internal waves and
large amplitude bathymetric variations. The bathymetry has an arbitrary, not
necessarily smooth, profile.

A simpler model is considered, namely a weakly nonlinear higher-order
system, and shown to have very good dispersive properties. It was also studied
through an averaging analysis, for internal waves in the presence of large
amplitude, rapidly varying, periodic bathymetries. The averaging strategy leads
to an effective ILW equation.

Models with a higher-order pressure approximation are the objective of
ongoing research and future numerical experimentation, in particular, having
solitary waves travel over a disordered topography. A future goal is the careful
study of regimes where the apparent diffusion and time-reversal of internal
waves can be observed [15, 18, 21, 22].
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Appendix A: Multi-scale Expansion of the Nonlocal Operator

In this appendix, we present an asymptotic expansion involving the Hilbert
operator on a strip of width h

Th[ f ](ξ ) =
∫

dkeikξ (i coth(hk)) f̂ (k), (A.1)

where the Fourier transform f̂ is given as

f̂ (k) = 1

2π

∫
dξe−ikξ f (ξ ).

Let f ε(ξ ) = g(ξ,
ξ√
ε
), where g is 2π -periodic in the second variable. Our

aim is to obtain a multi-scale expansion for ∂ξTh[ f ε(·)](ξ ) as ε → 0. We have
the following result.

PROPOSITION A.1. Let f ε(ξ ) = g(ξ,
ξ√
ε
) be such that for p > 3/2, s > 3/2 +

q , q > 0, ∫
dk

∑
m �=0

(1 + k2)s |m|2p|(Fg)(k, m)|2 < ∞.

The (full) Fourier transform (Fg) of the function g(ξ , z) is given by

(Fg)(k, m) = 1

(2π )2

∫
dξ

∫ 2π

0
dze−i(kξ+mz)g(ξ, z), k ∈ R, m ∈ Z.

Then, as ε → 0, we have the following asymptotic expansion

∂ξTh[ f ε(·)](ξ ) = ∂ξTh[〈g(·, ·)〉](ξ )

+ {(
ε−1/2∂z + ∂ξ

)
Hper [g(ξ, ·)](z)

}
z= ξ√

ε

+ rε(ξ ), (A.2)

where 〈·〉 represents the mean value of a 2π -periodic function, and r ε(ξ ) =
O(εq/2), uniformly in ξ . Also Hper [·] is the Hilbert transform for 2π -periodic
functions.

We note that in the context of calculating the effective evolution equation,
we require q ≥ 1.

Proof : Using the Fourier representation

g(ξ, z) =
∫

dk
∑
m∈Z

ei(kξ+mz)(Fg)(k, m),
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together with Equation (A.1), we get that

∂ξTh[ f ε(·)](ξ ) =
∫

dk
∑
m∈Z

ei(k+ m√
ε

)ξ i

(
k + m√

ε

)
i coth

[
h

(
k + m√

ε

)]
(Fg)(k, m)

= ∂ξTh[〈g(·, ·)〉](ξ ) +
∫

dk
∑
m �=0

ei(k+ m√
ε

)ξ i

(
k + m√

ε

)

× i coth

[
h

(
k + m√

ε

)]
(Fg)(k, m).

Recall that for the periodic function f (z), the Hilbert transform is given as

Hper [ f (·)](z) =
∑
m �=0

eimz(i sgn(m)) f̂ (m),

where f̂ (m) represents the Fourier coefficients of f (z). Consequently, to
establish the result, one needs to estimate

rε(ξ ) =
∫

dk
∑
m �=0

ei(k+ m√
ε

)ξ i

(
k + m√

ε

)

× i

{
coth

[
h

(
k + m√

ε

)]
− sgn(m)

}
(Fg)(k, m). (A.3)

First, fix a such that 0 < a < 1 and consider that |k| ≤ ε−a/2. For m �= 0 and
ε < 1, small enough, we have that |k + m√

ε
| > 1

2
√

ε
and sgn(m) = sgn(k + m√

ε
).

Consequently, we get that | coth[h(k + m√
ε
)] − sgn(m)| < c1 exp(− h

2
√

ε
), and

the low frequency part of the integral (A.3) (using the cutoff frequency ε−a/2)
can be readily estimated. In fact, we can decompose that integral into two
integrals, which correspond to the two terms of the factor k + m√

ε
in (A.3).

We present here the estimate for one of these integrals. For the other one,
we proceed in a similar way. Using the Cauchy–Schwarz inequality, we get the
following estimate

I1(ε) =
∣∣∣∣∣
∫ ε−a/2

−ε−a/2

dk
∑
m �=0

ei(k+ m√
ε

)ξ im√
ε

i

{
coth

[
h

(
k + m√

ε

)]
− sgn(m)

}
(Fg)(k, m)

∣∣∣∣∣
≤ c1√

ε
exp

(
− h

2
√

ε

) ∫ ε−a/2

−ε−a/2

dk
∑
m �=0

|m(Fg)(k, m)|

≤ c1√
ε

exp

(
− h

2
√

ε

) ∫
dk

∑
m �=0

1

|m|p1−1(1 + k2)s1/2
|m|p1 (1 + k2)s1/2(Fg)(k, m)|

≤ c1√
ε

exp

(
− h

2
√

ε

) (∫
dk

∑
m �=0

1

|m|2(p1−1)(1 + k2)s1

)1/2

×
(∫

dk
∑
m �=0

|m|2p1 (1 + k2)s1 |(Fg)(k, m)|2
)1/2

.
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If both integrals in the last inequality above are finite, then I 1(ε) → 0 faster
than any power of ε as ε → 0. For the first integral factor to be finite, it
is necessary that p1 > 3/2 and s1 > 1/2. The second factor is finite by
hypothesis. Thus, taking p1 = p and s1 = s, namely, taking the same bounds
as in the proposition’s statement, one gets that I 1(ε) ≤ O(εq/2) as ε → 0.

Now, we have to estimate the high frequency part of integral (A.3). Observe
that the function coth(x) is bounded in any set not containing a neighborhood
of 0, while near the origin the function x coth(x) → 1 as x → 0. Consequently,
there are constants c2 > 1/h, c3 > 1 such that∣∣∣∣
(

k + m√
ε

) {
coth

[
h

(
k + m√

ε

)]
− sgn(m)

}∣∣∣∣ ≤ c2 + c3

(
|k| +

∣∣∣∣ m√
ε

∣∣∣∣
)

,

k ∈ R, m ∈ Z. (A.4)

Thus, we need to estimate the three high frequency integrals corresponding
to each term in the right-hand side of the inequality above.

We proceed to estimate one of these integrals, namely, the one that produces
the most restrictive bound on s. The other integrals can be dealt with in a
similar way. Assume initially that p2 > 3/2, s2 > 1/2, then we have the
following estimates

I2(ε) =
∫

{|k|>ε−a/2}
dk

∑
m �=0

(
c3

∣∣∣∣ m√
ε

∣∣∣∣
)

|(Fg)(k, m)|

≤ c3√
ε

∫
{|k|>ε−a/2}

dk
∑
m �=0

1

|m|p2−1|k|s2
|m|p2 (1 + k2)s2/2(Fg)(k, m)|

≤ c3√
ε

(∫
{|k|>ε−a/2}

dk
∑
m �=0

1

|m|2(p2−1)|k|2s2

)1/2

×
(∫

dk
∑
m �=0

|m|2p2 (1 + k2)s2 |(Fg)(k, m)|2
)1/2

≤ c′
3√
ε

(∫ ∞

ε−a/2

dk

k2s2

)1/2
(∑

m �=0

1

|m|2(p2−1)

)1/2

×
(∫

dk
∑
m �=0

|m|2p2 (1 + k2)s2 |(Fg)(k, m)|2
)1/2

≤ c′′
3ε

[a(2s2−1)/4−1/2]

(∫
dk

∑
m �=0

|m|2p2 (1 + k2)s2 |(Fg)(k, m)|2
)1/2

.

This last integral is finite by hypothesis, so we require that a(2s2 − 1)/4 −
1/2 = q/2 (i.e., s2 = 1/2 + (q + 1)/a). Then one gets that I 2(ε) = O(εq/2)
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as ε → 0. However, as a function of a, s2(a) maps a ∈ (0, 1) onto (3/2 + q,
∞). Therefore, having imposed earlier that a ∈ (0, 1), the desired estimate
I 2(ε) = O(εq/2) will be always achieved once s2 = s > 3/2 + q. The
value of a is connected to s and therefore depends on the regularity of the
function g. �
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