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By Ricardo Barros and Wooyoung Choi

We consider a strongly nonlinear long wave model for large amplitude internal
waves in two-layer flows with the top free surface. It is shown that the model
suffers from the Kelvin–Helmholtz (KH) instability so that any given shear
(even if arbitrarily small) between the layers makes short waves unstable.
Because a jump in tangential velocity is induced when the interface is
deformed, the applicability of the model to describe the dynamics of internal
waves is expected to remain rather limited. To overcome this major difficulty,
the model is written in terms of the horizontal velocities at the bottom and the
interface, instead of the depth-averaged velocities, which makes the system
linearly stable for perturbations of arbitrary wavelengths as long as the shear
does not exceed a certain critical value.

1. Introduction

Large amplitude oceanic internal waves is a ubiquitous phenomenon that despite
being known for centuries, has only been recently the subject of scientific
studies. They manifest on the surface of the sea by long isolated stripes of
highly agitated features that are defined as audibly breaking waves and white

Address for correspondence: W. Choi, Department of Mathematical Sciences and Center for Applied
Statistics, New Jersey Institute of Technology, Newark, NJ 07102-1982, USA; e-mail: wychoi@njit.edu

STUDIES IN APPLIED MATHEMATICS 122:325–346 325
C© 2009 by the Massachusetts Institute of Technology



326 R. Barros and W. Choi

water. These waves have amplitudes that can exceed 100 m, wavelengths of
order of km, and move with speeds of order of 1 m/s.

To understand this phenomenon, the Euler equations (or even the
Navier–Stokes equations) for density-stratified flows should be solved; however,
these equations are not easily amenable to analytical investigations and, even
today, numerical simulations for models based on the Euler equations are
computationally too expensive. For these reasons, simple analytical models
describing some of the essential physics found in these full hydrodynamic
equations are still desirable. Long wave models of Miyata [1] and Choi and
Camassa [2] for a two-layer system under the rigid-lid assumption, combining
both relative simplicity and full nonlinearity, have been developed and have
been found to be a good approximation to the Euler equations even for the
strongly nonlinear regime as long as its traveling wave solutions are concerned
[3]. The model also shows excellent agreement with laboratory experiments of
Grue et al. [4] and Michallet and Barthelemy [5] for the shallow and deep
water configurations, respectively.

On the other hand, the presence of a top free surface might have some
important effects that cannot be captured by the rigid-lid model. One example
is the generalized solitary waves that can only exist for the free-surface case
(see [6, 7]). In this case, internal solitary waves with multi-humped profiles
have been observed by Barros and Gavrilyuk [8]. Also, on the hyperbolicity
of the two-layer shallow water equations, distinct features between the two
configurations can be found [9]. These indicate that the free-surface effects
could be worth to explore.

Strongly nonlinear models describing large amplitude waves in a two-layer
fluid with the top free surface were first derived by Choi and Camassa [10]
by using asymptotic analysis, and more recently by Barros, Gavrilyuk, and
Teshukov [11] by using a variational approach. These two models agree and are
a two-layer generalization of the Su–Gardner equations [12] (also referred to
as the Green–Naghdi equations [13] in the literature). Liska, Margolin, and
Wendroff [14] also derived a similar set of equations by assuming that the
vertical velocity is a linear function of the vertical coordinate. Unfortunately,
due to the complex form in which they are presented, the equations of Liska
et al. [14] are not easily amenable to analytical investigations and are even
difficult to compare with the set of equations to be used in this paper.

The one-dimensional version of the strongly nonlinear long wave model
(see [10, 11]) is written in terms of the layer thicknesses hi and the
depth-averaged velocities ūi (i = 1 and 2 represent the lower and upper layers,
respectively):

h1t + (h1ū1)x = 0,

h2t + (h2ū2)x = 0,
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where g is the gravitational acceleration, ρi are the fluid densities with ρ2 < ρ1

for stable stratification, and the subscripts x and t represent partial differentiation
with respect to space and time, respectively. We have also introduced the
density ratio ρ < 1 defined by ρ = ρ2/ρ1, the second-order material derivative
of h1 with respect to the averaged velocity field ū2 denoted here by D2

2h1,
where D2 = ∂t + ū2∂x , and the nonlinear dispersive terms Gi given by

Gi = ūi xt + ūi ūi xx − ūi x
2.

The system is endowed with a Hamiltonian structure and the momentum
equations can be found as the Euler–Lagrange equations for an approximate
Lagrangian to the Euler equations for two-layer flows with the free surface [11].
This same structure holds also for its traveling-wave solutions, which revealed
in [8] as a valuable tool to characterize these solutions. In their paper, Barros
and Gavrilyuk [8] have shown quite a rich diversity of solitary-wave solutions
that is absent in the rigid-lid case. In particular, the multi-humped solitary-wave
solutions exhibited there show the richness and complexity of the Hamiltonian
system with two degrees of freedom describing traveling-wave solutions.

Unfortunately, a major difficulty is expected in solving numerically this
model for the study of the propagation of solitary waves. Although no
background shear is present when the interface is flat, a jump in tangential
velocity, leading to a Kelvin–Helmholtz (KH) instability, is induced when
the interface is deformed since the model was derived under the inviscid
assumption, which requires only continuity of normal velocity. The same
difficulty is present for the rigid-lid configuration, as pointed out by Jo and
Choi [15]. In an attempt to overcome this difficulty, Jo and Choi [16] proposed
the use of a low-pass filter to remove unstable short waves which enables one
to simulate the propagation of a single solitary wave of large amplitude for a
long time. The drawback of this approach is the difficulty of applying the same
technique to general time-dependent problems.

A recent work by Choi, Barros, and Jo [17] addresses the problem with more
promising results for a two-layer system bounded by rigid walls. Adopting
the idea of Nguyen and Dias [18] for a weakly nonlinear model, Choi
et al. [17] expressed the strongly nonlinear model in terms of the horizontal
velocities at certain preferred vertical levels, instead of the depth-averaged
velocities. Through local stability analysis under the assumption that the



328 R. Barros and W. Choi

velocity jump varies slowly in space, it was shown that the new form of the
strongly nonlinear model changes the dispersion relation in a way that internal
solitary waves become stable to perturbations of arbitrary wavelengths as long
as their amplitudes do not exceed a certain critical value. In fact, this critical
amplitude is found to be close enough to the maximum amplitude for a wide
range of physical parameters, which opens the possibility of using the model
for real applications in the strongly nonlinear regime.

In this paper, we will first show that our original strongly nonlinear model
with the top free surface suffers from the KH instability. Then, following Choi
et al. [17], we propose a strongly nonlinear model that is asymptotically
equivalent to the original one, but has a different dispersive behavior for short
waves. Compared with the rigid-lid model, the free-surface model given by (1)
yields a much more complex dispersion relation due to the two extra degrees of
freedom. It will be shown analytically that, by considering the velocities at the
bottom and the interface, the dispersion relation is modified in a way that this
KH instability is contained up to a certain critical shear between the layers.

2. Shear instability for the original strongly nonlinear model

By looking for solutions (h1, h2, ū1, ū2) ∼ exp[i(kx − ωt)] of the system of
Equations (1) linearized about ūi = Ui and hi = H i, we obtain the following
linear dispersion relation between ω and k:[(

1 + 1

3
k2 H 2

1

)
(c − U1)2 − gH1

] [(
1 + 1

3
k2 H 2

2

)
(c − U2)2 − gH2

]

+ ρH1 H2

[
k2

(
1 + 1

12
k2 H 2

2

)
(c − U2)4 − g2

]
= 0, (2)

where k is the wave number, ω is the wave frequency, and c = ω/k is the wave
speed. In (2), the horizontal velocities U i induced by a slowly varying solitary
wave are assumed to be locally constant. We will prove that, for any given shear
between layers, there exists a critical wave number kcr such that Equation (2)
has complex roots for k >kcr. This implies that the strongly nonlinear internal
wave model (1) is always linearly unstable to short-wavelength perturbations.
To prove this, we write Equation (2) in terms of nondimensional variables:

c̄ = c√
gH1

, H = H2

H1
, K = k H1, F = U2 − U1√

gH1
, (3)

and assume without loss of generality that u1/
√

gH1 = 1 (by choosing a
moving reference frame such this condition is met). Then, the dispersion
relation becomes

a0c̄ 4 + a1c̄ 3 + a2c̄ 2 + a3c̄ + a4 = 0, (4)
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where the coefficients are functions of ρ, H , F, and K (see Appendix A). We
remark that the strongly nonlinear model under the rigid-lid approximation
yields a quadratic equation for the wave speed c. In the free-surface case, as
a consequence of the two extra degrees of freedom, the dispersion relation
becomes a quadratic equation. For this equation, we seek relations involving
these parameters for which Equation (4) has only real roots. Notice that the
system is always linearly stable for F = 0 since the dispersion relation (2)
reduces to a biquadratic form with four distinct real solutions (see [8]).

Several attempts have been made in the past to obtain conditions in terms of
the literal coefficients of a polynomial, concerning a special root distribution (see
[19] and references therein). Among them, Jury and Mansour [19] presented a
series of algorithms involving characteristic expressions for a quartic equation,
allowing a full characterization of the root distribution in a much more concise
form than the one provided by previous approaches. Similar criteria involving
only inner determinants were also obtained by Fuller [20]. Following this
elegant exposition, when considering the inner determinants 
3, 
5, 
7:1

7 =

a0 a1 a2 a3 a4 0 0

0 a0 a1 a2 a3 a4 0

0 0 a0 a1 a2 a3 a4

0 0 0 4a0 3a1 2a2 a3

0 0 4a0 3a1 2a2 a3 0

0 4a0 3a1 2a2 a3 0 0

4a0 3a1 2a2 a3 0 0 0

,

with 
3 and 
5 being defined as the determinants of the inner matrices with
dimensions 3 × 3 and 5 × 5, respectively (as denoted by the two inner squares
in the definition of 
7), we have the following result (see [20], p. 778):

THEOREM 1. Equation (4) with a0 > 0 has its roots all real if and only if
one of the two following sets of conditions holds: (a) 
3 > 0, 
5 > 0, 
7 � 0;
(b) 
3 � 0, 
5 = 0, 
7 = 0.

For this theorem to be valid, the highest-order coefficient a0 in (4) must
be positive. In our case, this requirement is always satisfied, as shown in
Appendix A.

For prescribed values of ρ and H , thanks to the built-in function RegionPlot
of MATHEMATICA 6.0, we can visualize the stable (shaded) and unstable

1Notice that 
7 is precisely the discriminant of the quartic Equation (4) and hereafter will be denoted
by 
.
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Figure 1. Shear instability of the original strongly nonlinear model (1) on the (F , K )-plane
for different physical parameters: ρ = 1/10 (left-hand side) and ρ = 9/10 (right-hand side).
In both cases, we have considered H = 1. In this figure, the shaded and unshaded regions
represent the stable and unstable regions, respectively.

(unshaded) regions on the (F , K )-plane, as shown in Figure 1. For H = 1, a
clear distinction between two different density ratios is displayed in this figure.
For the case of a small density ratio on the left-hand side, we detect two ranges
of the Froude number, for any given K, for which the system is stable. The
same does not hold for large density ratios. We see on the right-hand side that,
while two branches of stability persist for small values of K, one of the
branches no longer exists when K exceeds a certain wave number. Are these
observations made for H = 1 still valid for different values of H? Moreover,
for fixed values of ρ and H , how can one predict which scenario applies? To
answer these questions, we adopt a geometrical representation of the problem.
Then, we will prove that the set of conditions in Theorem 1 can be reduced to

 � 0 or, equivalently, 
7 � 0, and establish the relation between the number
of branches of stability and the number of roots of the discriminant 
, which
depends on ρ, H , F , and K.

2.1. A geometrical formulation of the problem

The approach to be found here was inspired by the work of Ovsyannikov [21],
where the problem of finding the real solutions of a quadratic equation is
solved geometrically by finding the intersection points between two curves on
the plane. To show this, we rewrite (2) as

[(
1 + 1

3
H 2 K 2

)
p2 − 1

] [(
1 + 1

3
K 2

)
q2 − 1

]

+ ρ

[
H 2 K 2

(
1 + 1

12
H 2 K 2

)
p4 − 1

]
= 0, (5)
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by defining

c − U1 = q
√

gH1, c − U2 = p
√

gH2. (6)

As a consequence of (6), it can be noticed that p and q are related by

q =
√

H p + F, (7)

and, therefore, finding the solutions of (2) is equivalent to finding the solutions
of the system of equations for p and q given by (5) and (7).

On the (p, q)-plane, Equation (5) defines a family of fourth-order curves
(with two axes of symmetry) depending on ρ, H , and K. On the other hand,
the slope and the initial ordinate of the straight line (7) are specified with H
and F, respectively. Then, each intersection point between the fourth-order
curves and the straight line represents a real solution of the system given by
Equations (5) and (7).

This geometrical representation illustrates clearly how the number of real
solutions varies with increasing values of F and, more importantly, shows that
the system has at least two and at most four real solutions (see Figure 2). As a
result, we can reduce the set of conditions in Theorem 1 to 
 � 0.

The case of 
 = 0 separating the two scenarios (two or four real solutions)
corresponds to the special case for which the straight line described by (7)
becomes tangent to the curve (5) (see [9]).

For fixed ρ and H , the determinant 
 can be written as a fifth-degree
polynomial function of F2 whose coefficients depend on K. Then, the number

–3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3

q

p

Figure 2. Solutions of the system given by Equations (5) and (7) represented by the
intersection points between fourth-order curves (solid lines) and straight lines (dashed lines) for
fixed values of ρ = 1/3, H = 1, and K = 1. Different straight lines correspond to different
values of the Froude number F and lead to a different number of solutions of the system.
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Figure 3. Curve separating the regions of one or three real roots of 
 for three different
values of H (from the left to the right, we have set H = 10, H = 1, and H = 1/10). Inside
of the region on the (K , ρ)-plane below the curve, 
 has three real roots. Otherwise, 
 has a
single real root. This explains the distinction between the cases presented in Figure 1. It is
worth noting that more intricate cases are found for intermediate density ratios.

of positive real roots of 
 is important since it determines the number of
branches of stability on the (F , K )-plane. More precisely, two cases have to be
considered:2 (a) one real root for 
 and consequently one single branch of
stability; (b) three real roots for 
 and, consequently, two branches of stability
on the (F , K )-plane. Notice that 
 = 0 represents the boundaries between the
stable and unstable regions in Figure 1 and a line of K= constant can intersect
with the boundaries once or three times depending on the magnitude of K.
Without going into detail, we just point out that it is possible to analytically
distinguish the two listed cases and to display, for any fixed value of H , the
regions on the (K , ρ)-plane corresponding to each one of these two cases, as
shown in Figure 3.

2.2. Kelvin–Hemlholtz instability

We will now prove that the time-dependent strongly nonlinear model suffers
from the KH instability by showing that F tends to zero as K approaches to ∞
along the neutral stability curve defined by 
 = 0. Then, we can conclude
that, for any nonzero shear (even if arbitrarily small) between layers, there
exists a critical wave number beyond which the dispersion relation given by
(4) has complex solutions.

To study this limit, it is convenient to consider 
 as a polynomial on the
variable K. Let b0 be the highest-order coefficient of this polynomial (with
degree 26). Along the neutral stability curve of 
 = 0, the limit as K → ∞

2In general, the quintic equation 
 = 0 could have five positive real roots, but this case is ruled out by
the geometrical representation of the problem, since this would imply the existence of five tangency
points between the straight line (7) and the curve (5), which is impossible.
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leads to b0 = 0. Since b0 is given by

b0 = −147456 ρ (4 + 3ρH )H 14 F10,

we conclude that this can happen only if F = 0, and so the result follows.
Whenever the interface is displaced from its equilibrium position, a jump in

tangential velocity is induced in the strongly nonlinear model. Therefore, the
model becomes ill-posed and not suited for the numerical study of the dynamics
of large amplitude internal solitary waves. To overcome this difficulty, we
will adopt the idea of Choi et al. [17] for the rigid-lid model and derive a
regularized free-surface model that inhibits this KH instability.

3. Derivation of a regularized model

In this section, we will derive a new strongly nonlinear model that is
asymptotically equivalent to the original model (1), but has a different dispersive
behavior for short waves. The strategy presented here is similar to the one found
in [17], where the depth-averaged velocities ūi in the original equations are
replaced by ûi , the velocities evaluated at certain vertical levels ẑi , neglecting
all the terms of O(ε4) or higher, where ε is the small parameter representing
the ratio of a typical vertical scale to a typical horizontal scale. First, we will
show how the velocities ūi and ûi are related. Then, using this relationship, we
will propose a new model to describe large amplitude internal solitary waves
and, by means of local stability analysis, show that the KH instability can
indeed be suppressed up to a certain critical shear between layers.

3.1. Relationship between the depth-averaged velocities and the horizontal
velocities at particular depth levels

We first consider the mass conservation laws in nondimensional variables:

uix + wi z = 0, (8)

where the vertical coordinate z is measured upward from the flat bottom. We
assume, accordingly to Choi and Camassa [10], that the components f = (ui,
wi) of the vector velocity can be asymptotically expanded as

f (x, z, t) = f (0) + ε2 f (1) + O(ε4).

Set i = 1 and integrate (8), using the boundary condition w1(x , z = 0, t) = 0,
to obtain

w1 = −z u(0)
1x − ε2

∫ z

0
u(1)

1x dz + O(ε4).
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It follows that the leading order of the vertical velocity is given by

w
(0)
1 = −z u(0)

1x .

Assuming that the flow is irrotational so that

uiz = ε2wi x ,

or equivalently

u(1)
1z = w

(0)
1x ,

leads to the relation

u(1)
1z = −z u(0)

1xx ,

which can be integrated to produce

u(1)
1 = u1

∣∣
z=0

− 1

2
u(0)

1xx z2.

Combining the results, we may write

u1 = u(0)
1 + ε2

(
−1

2
u(0)

1xx z2

)
+ O(ε4), (9)

where the value of the horizontal velocity at the bottom is irrelevant here since
it can be absorbed by the leading-order term (that is only a function of x and
t). By the definition of the depth-averaged velocities, it follows that

ū1 = u(0)
1 + ε2

(
−1

6
u(0)

1xx h2
1

)
+ O(ε4).

On the other hand, we can deduce from (9) that the horizontal velocity u1 is
evaluated at a particular level 0 � ẑ1 � h1(x, t):

û1 = u(0)
1 + ε2

(
−1

2
u(0)

1xx ẑ2
1

)
+ O(ε4).

As a result, the following relation between ū1 and û1 holds:

û1 = ū1 + ε2

(
−1

2
û1xx ẑ2

1 + 1

6
û1xx h2

1

)
+ O(ε4),

which we can write in dimensional variables as

ū1 = û1 + 1

2
û1xx ẑ2

1 − 1

6
û1xx h2

1 + O(ε4). (10)



Inhibiting Shear Instability Induced by Internal Solitary Waves 335

We proceed in a completely analogous way with the lighter fluid (i = 2).
This time, we integrate (8) to obtain

w2 = w2
∣∣

z=h1

− (z − h1) u(0)
2x − ε2

∫ z

h1

u(1)
2x dz + O(ε4),

which is precisely

w
(0)
2 = −u(0)

2x (z − h1) + h1t + u(0)
2 h1x ,

when the kinematic boundary condition is imposed at the interface. Using the
fact that the flow is irrotational allows us to write

u(1)
2z = −u(0)

2xx (z − h1) + g(x, t),

with g(x , t) defined by

g(x, t) = u(0)
2x h1x + (

h1t + u(0)
2 h1x

)
x
.

Integrating the last relation leads to

u(1)
2 = u2

∣∣
z=h1

− 1

2
u(0)

2xx (z − h1)2 + g(x, t) (z − h1),

and, considering that the integration constant is irrelevant, as mentioned before,
we may write

u2 = u(0)
2 + ε2

(
−1

2
u(0)

2xx (z − h1)2 + g(x, t) (z − h1)

)
+ O(ε4). (11)

By the definition of the depth-averaged velocities, we have

ū2 = u(0)
2 + ε2

(
−1

6
u(0)

2xx h2
2 + 1

2
g(x, t) h2

)
+ O(ε4).

On the other hand, we know from (11) that at a particular vertical level
h1 � ẑ2 � (h1 + h2), the horizontal velocity u2 is given by

û2 = u(0)
2 + ε2

(
−1

2
u(0)

2xx (ẑ2 − h1)2 + g(x, t) (ẑ2 − h1)

)
+ O(ε4),

and consequently

û2 = ū2 + ε2

(
− 1

2
û2xx (ẑ2 − h1)2 + ĝ(x, t) (ẑ2 − h1)

+ 1

6
û2xx h2

2 − 1

2
ĝ(x, t) h2

)
+ O(ε4),
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where we have introduced ĝ(x, t) defined by

ĝ(x, t) = û2x h1x + (h1t + û2h1x )x .

This establishes the desired relation between ū2 and û2:

ū2 = û2 + 1

2
û2xx (ẑ2 − h1)2 − 1

6
û2xx h2

2 − ĝ(x, t) (ẑ2 − h1)

+ 1

2
ĝ(x, t) h2 + O(ε4). (12)

We point out that we have not used here the fact that ẑi = constant. Nothing
prevents us from considering ẑi = ẑi (x, t), and, therefore, any vertical level ẑi

including z = 0, z = h1(x , t) or z = (h1 + h2)(x , t) can be chosen, whenever
applicable.

3.2. Derivation of an asymptotically equivalent model with an improved
dispersion relation

We go back to (1) and substitute the expressions (10) and (12) for ū1 and ū2.
Neglecting all the terms of O(ε4) or higher will provide a new system of
nonlinear evolution equations for hi and ûi . We start with the mass conservation
law for the heavier fluid that leads to

h1t +
[

h1

(
û1 + 1

2
ẑ2

1 û1xx − 1

6
h2

1 û1xx

)]
x

= 0. (13)

Considering the mass conservation law for the lighter fluid demands care.
Substituting (12) straightforwardly into the second equation in (1) includes
indirectly some higher-order terms since the expression of ĝ(x, t) contains the
term h1t that can be expressed from (13) as

h1t = −(h1û1)x + O(ε2). (14)

To preserve asymptotic consistency in the way chosen to perturb the
dispersive behavior for short waves, we should write for the lighter fluid

h2t +
[

h2

(
û2 + 1

2
(ẑ2 − h1)2 û2xx − 1

6
h2

2 û2xx

− f̂ (x, t)(ẑ2 − h1) + 1

2
f̂ (x, t)h2

)]
x

= 0, (15)

with f̂ (x, t) given by

f̂ (x, t) = û2x h1x + [[h1(û2 − û1)]x − h1û2x ]x .
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Similarly, the momentum equation for the heavier fluid yields

û1t + û1û1x + g(h1 + ρh2)x =
[

1

2
h2

1 Ĝ1 + ρ

(
1

2
h2

2 Ĝ2 − ˆ(
D2

2h1
)
h2

)]
x

− 1

2
ẑ2

1 (û1xt + û1û1xx )x − (ẑ1t + û1 ẑ1x )ẑ1û1xx ,

(16)

where the terms Ĝi and ˆ(D2
2h1) are defined as follows:

Ĝi = ûi xt + ûi ûi xx − û2
i x ,

ˆ(
D2

2h1
) = [−(h1û1)x (û2 − û1) + h1(û2 − û1)t ]x

+û2 [h1(û2 − û1)]xx + (h1û1)x û2x − h1û2xt − û2(h1û2x )x .

Finally, taking into account all the considerations made above, we have for
the lighter fluid the following equation:

û2t + û2 û2x + g(h1 + h2)x + 1

2
(ẑ2 − h1)2(û2xt + û2 û2xx )x

+ [ẑ2t + û2 ẑ2x − [h1(û2 − û1)]x + h1û2x ](ẑ2 − h1)û2xx

+
(

−(ẑ2 − h1) + 1

2
h2

)
F̂(x, t) −

[
ẑ2t +

(
h1û1 + 1

2
h2û2

)
x

]
f̂ (x, t)

+
[

û2

(
− f̂ (x, t)(ẑ2 − h1) + 1

2
f̂ (x, t)h2

)]
x

=
(

1

2
h2

2Ĝ2

)
x

− ˆ(
D2

2h1
)
h2x

− 1

2
h2

ˆ(
D2

2h1
)

x
+

(
1

2
h2Ĝ2 − ˆ(

D2
2h1

))
h1x , (17)

where F̂(x, t) is precisely the partial time derivative f̂ t (x, t) written, by
considering (14), as:

F̂(x, t) = û2xt h1x − û2x (h1û1)xx + [−(h1û1)x (û2 − û1) + h1(û2 − û1)t ]xx

− [−(h1û1)x û2x + h1û2xt ]x .

3.3. Local stability analysis

Using local stability analysis, we will investigate how the vertical levels in
the new model formed by Equations (13) and (15)–(17) should be chosen to
inhibit the shear instability induced by internal solitary waves. By substituting
into these equations hi = Hi + h′

i and ûi = Ui + û′
i and assuming the prime

variables are small, the system linearized about ui = U i and hi = H i is given,
after dropping the primes, by

h1t + U1h1x + H1û1x + α1 H 3
1 û1xxx = 0, (18)
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h2t + U2h2x + H2û2x + α2 H 3
2 û2xxx

+
(

1

2
− θ2

)
H 2

2 [(U2 − U1)h1xxx − H1û1xxx ] = 0, (19)

û1t + U1û1x + g(h1 + ρh2)x +
[(

α1 − 1

3

)
H 2

1 − ρH1 H2

]
û1xxt

+
[
U1

(
α1− 1

3

)
H 2

1 +ρH1 H2(U1 − 2U2)

]
û1xxx

− 1

2
ρH 2

2 (û2xxt + U2û2xxx )

+ ρH2(U2 − U1)2 h1xxx = 0,

(20)

û2t + U2û2x + g(h1 + h2)x +
(

α2 − 1

3

)
H 2

2 (û2xxt + U2û2xxx )

+ H2

(
θ2 − 1

2

)
[H1(U2 − U1)û1xxx + U1(U2 − U1)h1xxx

+ H1û1xxt ] − H2U2

(
θ2 − 1

2

)
[(U2 − U1)h1xxx − H1û1xxx ]

+ 1

2
H2[(U2 − U1)2h1xxx + H1(U1−2U2)û1xxx − H1û1xxt ] = 0,

(21)
where we have introduced

θ1 = ẑ1

H1
, θ2 = ẑ2 − H1

H2
, α1 = 1

2
θ2

1 − 1

6
, α2 = 1

2
θ2

2 − 1

6
.

By definition, 0 ≤ θ i ≤ 1 and, for example, both θ1 and θ2 are zero when
ẑ1 = 0 and ẑ2 = H1, that corresponds to prescribing the vertical levels at the
bottom and the interface, respectively. It is worth to note that, in contrast
with the rigid-lid case [17], there are no preferred levels for which the linear
dispersion relation obtained for the original strongly nonlinear model (written
in terms of the depth averaged velocities) is recovered.

By looking for solutions (h1, h2, û1, û2) ∼ exp[i(kx − ωt)] of the linearized
system formed by Equations (18)–(21), we obtain the linear dispersion relation
between ω and k. An important consideration in choosing the vertical levels θ1

and θ2 is that the wave speed must be real for all k, at least, in the absence of
background shear.

3.3.1. Linear dispersion relation in the absence of shear. Setting U 1 =
U 2 = 0 leads to the following dispersion relation in dimensionless form:

A c̄ 4 + B c̄ 2 + C = 0, (22)
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where c̄ is the nondimensional wave speed defined in (3) and the coefficients
are given by

A = 36 + 18
[(

1 − θ2
1

) + H 2
(
1 − θ2

2

) + 2ρH
]
K 2

+ 9H 2(1 − θ2)
[
(θ2 + 1)

(
1 − θ2

1

) + 2ρHθ1
]
K 4,

B = −36(1 + H ) + 6(1 + H )
[
3θ2

1 − 1 − 2H + (
3θ2

1 − 1
)
H 2

]
K 2

+ 3H 2
[−H

(
θ2

1 − 1
)(

3θ2
2 − 1

)
+ ρH 2θ2(3θ2 − 2) − (

3θ2
1 − 1

)(−1 + θ2
2 + ρ

)]
K 4,

C = (1 − ρ)H
[−6 + K 2

(
3θ2

1 − 1
)][−6 + H 2 K 2

(
3θ2

2 − 1
)]

.

It is clear that A > 0 for any parameter values. As a consequence, there are
four distinct real roots of (22) if all of the following conditions are satisfied:
(i) B2 − 4AC > 0; (i i) B < 0; (i i i) C > 0. In particular, from the condition
C > 0, it follows that 0 ≤ θ2

i ≤ 1/3. This shows, for example, that the cases
when the vertical levels are chosen at the interface and the free surface (θ1 =
θ2 = 1), or at the bottom and the free surface (θ1 = 0 and θ2 = 1), have to be
excluded. We would think, based on the rigid-lid case, that the natural choice
here would be prescribing the vertical levels at the bottom and top boundaries
[17], but, as we have shown, this cannot be the case.

Even though the dispersion relation (22) is a bi-quadratic form, it is quite
challenging to find the ranges of θ1 and θ2 for which the problem is well-posed
for any physical parameters. Our numerical tests show that the first stability
condition (i) reduces drastically the number of possible choices for these
parameters. To simplify our task, we first seek the vertical levels θ1 and θ2 that
satisfy B2 − 4AC > 0 for any physical parameters ρ and H in the limit of
K → ∞ and, then, confirm the result for arbitrary K.

When considering the limit K → ∞, our numerical search over the (θ1,
θ2)-plane rules out any pair of values (θ1, θ2) in the interior of the square
(0,

√
3/3) × (0,

√
3/3). Additionally, it can be shown that the line segments

given by θ1 = 0 (with the exception of the origin) and θ2 = √
3/3 have to be

excluded for stability in the absence of a velocity jump. This leaves us as
remaining candidates the line segments θ2 = 0 and θ1 = √

3/3.
To test these candidates, we consider now an arbitrary K. We observe that,

along each one of these line segments, the only stability criterion not trivially
satisfied is condition (i). However, it can be shown numerically that B2 − 4AC
is a concave upward parabola with no positive real roots for ρ, for any given H
and K. As a conclusion, the new nonlinear system is stable in the absence of
background shear for any pair of values (θ1, θ2) on the line segments θ2 = 0
or θ1 = √

3/3.

3.3.2. A regularized model in the presence of shear. Our next step could be
to determine, through local stability analysis, θ1 and θ2 that have the greatest
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inhibiting effect upon the KH instability in the presence of shear (U 1 = U 2, or
F = 0). However, keeping in mind the complexity of the proposed model,
another important consideration regarding the choice of these values is finding
the model in its simplest form, more suited for analytical and numerical
studies. From Equations (13) and (15)–(17), it is quite obvious that this is
attained when both θ1 and θ2 are zero, which corresponds to prescribing the
vertical levels at the bottom and interface, respectively. This choice might
not inhibit the KH instability for the largest range of Froude number F,
but it would be an optimum choice for numerical computations. Indeed, in
this case, the system formed by Equations (13) and (15)–(17) simplifies
dramatically to:

h1t +
[

h1

(
û1 − 1

6
h2

1 û1xx

)]
x

= 0, (23)

h2t +
[

h2

(
û2 − 1

6
h2

2 û2xx + 1

2
f̂ (x, t)h2

)]
x

= 0, (24)

û1t + û1û1x + g(h1 + ρh2)x =
[

1

2
h2

1 Ĝ1 + ρ

(
1

2
h2

2 Ĝ2 − ˆ(
D2

2h1
)
h2

)]
x

,

(25)

û2t + û2 û2x + g(h1 + h2)x + 1

2
h2 F̂(x, t) + 1

2
h2û2 f̂ x (x, t)

=
(

1

2
h2

2Ĝ2

)
x

− ˆ(
D2

2h1
)
h2x − 1

2
h2

ˆ(
D2

2h1
)

x
+

(
1

2
h2Ĝ2 − ˆ(

D2
2h1

))
h1x .

(26)
Its dispersion relation is, as in (4), a quartic equation in c̄:

a0c̄ 4 + a1c̄ 3 + a2c̄ 2 + a3c̄ + a4 = 0, (27)

where the coefficients have now new expressions.3 Unfortunately, the solution
behavior of Equation (27) is much more complicated than that of Equation (4).
For example, for the new system, it is not clear if the conditions given by
Theorem 1 can be reduced to 
 � 0, which is the case for the original system.
A geometrical interpretation presented in §2.1 for the original model could
be adopted, but does not bring any new insight into the problem since the
corresponding fourth-order curves on the (p, q)-plane will depend not only on
ρ, H , K , but also on F. Nevertheless, our numerical tests indicate that this
reduction holds also here.

3The expressions for these coefficients are too long to be presented here.
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Figure 4. Shear instability of the model given by Equations (23)–(26) with ρ = 0.998 on the
(F, K)-plane for three different depth ratios: H = 1/10, H = 1/4, and H = 1/2. Here,
the shaded and unshaded regions represent the stable and unstable regions, respectively. The
dashed vertical lines represent the critical Froude number Fcr for each case. We remark that
in each one of these cases, only the first branch of stability is considered.

Because the highest-order coefficient a0 of Equation (27) is found to be still
positive for any given parameters, we still can apply Theorem 1 to visualize
numerically the stable and unstable regions on the (F , K )-plane for fixed ρ

and H (cf. Figure 4). To demonstrate that the KH instability is contained in the
new model, we choose a density ratio ρ = 0.998 that is relevant for oceanic
applications.

The critical Froude number Fcr denoted by dashed lines in Figure 4 is
defined as the minimum Froude number below which the system is stable for
all K. Depending on H , the critical Froude number is determined by either a
vertical asymptote, say FA, as K → ∞ or a vertical tangent to the curve of 
 =
0 defined by 
 (F , K ) = ∂K 
 (F , K ) = 0.4

Figure 5 shows the critical Froude number Fcr for varying H for both the
rigid-lid and free-surface configurations. For the rigid-lid configuration, the
regularized system is found to be linearly stable if F �

√
3

3 F rigid
0 , where F rigid

0
represents the critical Froude number obtained in the long-wave limit as K =
0 (see [17]). For the free-surface configuration, we have, in the long-wave
limit, two critical Froude numbers F−

0 and F+
0 . For density ratios close to

1, F−
0 ≈ F rigid

0 . For example, for ρ = 0.998 and H = 0.2, we have F−
0 ≈

0.048997 and F rigid
0 ≈ 0.048998. The regularized model for the rigid-lid

configuration is stable for F � 0.0283 while the new regularized model for the
free-surface case is stable for F � Fcr with Fcr ≈ 0.0263. For other values of
H , the critical Froude number for the free-surface model is found to be always
smaller than that for the regularized rigid-lid model. We stress that the original

4This statement also holds for different density ratios.
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Figure 5. Critical Froude number Fcr versus depth ratio H for ρ = 0.998: The free surface
model (dotted line) and the rigid-lid model (solid line). For the free-surface case (dotted line)
the curve is continuous but not regular at the transition points between the two possible
scenarios for the critical Froude number (vertical asymptote or vertical tangent) (cf. Figure 4).

model is always unstable, which means its critical Froude number is zero.
Therefore, the new system given by (23)–(26) is indeed regularized for a wide
range of depth ratios relevant for real applications.

4. Concluding remarks

Motivated by the fact that the strongly nonlinear model for a two-layer
system (1) written in terms of the depth-averaged velocities suffers from the
KH instability, we derived a new model written in terms of the horizontal
velocities at the bottom and the interface. The two systems are asymptotically
equivalent for long waves, but the dispersive behaviors of short waves are
different. Through local stability analysis, the new system is found regularized
and the KH instability is contained as long as the shear between the two layers
does not exceed a certain critical Froude number.

It was shown that other vertical levels could have been considered. The
choice of θ1 = θ2 = 0 was made mainly by the simplicity requirement for the
model; hence, this might not be the best possible choice regarding the greatest
inhibiting effect upon the KH instability. Nonetheless, the new regularized
model can serve as an effective mathematical model for large amplitude
internal waves propagating under the effect of the top free surface.

No numerical evidence supporting the result from local stability analysis
is presented in this paper, but, based on our previous experience with the
regularized rigid-lid model [17], the new model will be of value for future
numerical investigation. Considering the richness of solitary wave solutions
of the original free surface model, it is of interest to study numerically the
dynamics of such waves using the regularized free surface model for a wide
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range of physical parameters, including front wave solutions of the maximum
wave amplitude.

For the rigid-lid case, the Froude number induced by a solitary wave at
the maximal interfacial displacement can be related analytically to the wave
amplitude. Therefore, it can be stated that, when the regularized strongly
nonlinear model is used, internal solitary waves are stable to perturbations
of arbitrary wavelengths if the wave amplitudes are smaller than a critical
value. It would be interesting to obtain an analogous result for the free surface
case, but no analytic relationship between the Froude number and the wave
amplitude has been found yet.
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Appendix A: Linear Dispersion for the Original Strongly Nonlinear Model

The linear dispersion relation for the original model (1) is found in dimensionless
form as:

a0c̄ 4 + a1c̄ 3 + a2c̄ 2 + a3c̄ + a4 = 0,

where the expressions for the coefficients are the following:

a0 = (3ρH + 4)H 2 K 4 + 12(H 2 + 3ρH + 1)K 2 + 36,

a1 = −12(F + 1)H (H 2 K 2 + 12)ρK 2 − 8(F + 2)(K 2 + 3)(H 2 K 2 + 3),

a2 = 2[(H 2(9Hρ + 2)K 4 + 6(H 2 + 18ρH + 1)K 2 + 18)F2

+ 6[H 2(3Hρ + 2)K 4 + 6(H 2 + 6ρH + 1)K 2 + 18]F

− 18(−2K 2 + H − 5) + 3H K 2(36ρ + H ((3Hρ + 4)K 2 + 10) − 2)],

a3 = −12H K 2(H 2 K 2 + 12)ρ(F + 1)3 − 8[(K 2 + 3)(H 2 K 2 + 3)F2

+ 3(K 2 + 2)(H 2 K 2 + 3)F + 6K 2+H (2H K 4 + 3(H − 1)K 2 − 9) + 9],

a4 = (F + 1)2 H 2(3Hρ(F + 1)2 + 4)K 4 + 12(3Hρ(F + 1)4

+ F2 + 2F − H + 1)K 2 − 36ρH.

Appendix B: Stability Behavior of the New Regularized System for High
Wavenumbers

By considering the limit of K → ∞ along the neutral stability curve given by

 = 0, we are able to find vertical asymptotes F = FA, as described in
Section 3.3.2, as roots of the highest-order coefficient of 
 as a polynomial in
the variable K. This time, these roots are found as roots of a fifth-degree
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polynomial P in the variable y = F2:

P(y) = d0 y5 + d1 y4 + d2 y3 + d3 y2 + d4 y + d5,

whose coefficients are given below:

d0 = 96 ρ (3H + 2ρ)3,

d1 = −8[162(2ρ + 1)H 4 + 108(7 − 9ρ)ρH 3 + 9ρ2(13ρ + 96)H 2

+ 12(28 − 27ρ)ρ3 H + 4(8 − 11ρ)ρ4],

d2 = 4H [164ρ5 − 2(79H + 146)ρ4 + 4(H (279H − 190) + 32)ρ3

− 9H (H (155H + 59) − 80)ρ2 + 108(H − 5)(H − 2)H 2ρ

+ 432H 3(H + 1)],

d3 = H 2[48(7ρ − 18)H 4 − 72(ρ(23ρ − 64) + 8)H 3 + 12(ρ(ρ(167ρ − 364)

+ 140) − 72)H 2 + ρ(ρ((644 − 505ρ)ρ + 1352) − 1248)H

+ 24(ρ − 1)2ρ2(19ρ − 16)],

d4 = −4H 3[12(3ρ − 4)H 4 + ((148 − 193ρ)ρ + 48)H 3 − (ρ − 1)(49(ρ − 4)ρ

+ 48)H 2 − (ρ − 1)2(ρ(47ρ + 4) + 48)H − (ρ − 1)3ρ(35ρ − 32)],

d5 = 16H 4(ρ − 1)(H + ρ − 1)4.

This quintic equation has one, three, or five nonnegative real roots FA
2,

depending on the parameters considered (see Figure B1). Notice that, even

Figure B1. Number of real roots of the polynomial P through the (H , ρ)-plane. In the
dashed region, P has three real solutions. Otherwise, P has one or five real roots, as specified
in the figure. Bearing in mind that y = F2, it is essential to guarantee that these roots are all
nonnegative. It can be proven that this is true everywhere, except for the darker shaded region
on the upper-left corner, where despite of having three real roots, only one is nonnegative. In
this figure, the dashed line is defined by H = 1 − ρ and corresponds to the exceptional case
when P(0) = 0.
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if these values do not have to lead to the critical Froude number Fcr (see
Figure 4), these are still candidates for Fcr.

Additionally, given fixed parameter values ρ and H , if all the roots FA are
positive, this implies that the new derived model is able to contain the KH
instability up to a certain critical Froude number Fcr > 0, less or equal to the
minimum of these roots FA.

Finally, we remark that this feature cannot be achieved for every parameter
values since, for H = 1 − ρ, we have d5 = 0 or, equivalently, P(0) = 0.
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