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Abstract
We consider resonant triad interactions of gravity-capillary

waves and investigate in detail special resonant triads that

exchange no energy during their interactions so that the

wave amplitudes remain constant in time. After writing the

resonance conditions in terms of two parameters (or two

angles of wave propagation), we first identify a region in

the two-dimensional parameter space, where resonant tri-

ads can be always found, and then describe the variations

of resonant wavenumbers and wave frequencies over the

resonance region. Using the amplitude equations recovered

from a Hamiltonian formulation for water waves, it is shown

that any resonant triad inside the resonance region can

interact without energy exchange if the initial wave ampli-

tudes and relative phase satisfy the two conditions for fixed

point solutions of the amplitude equations. Furthermore, it

is shown that the symmetric resonant triad exchanging no

energy forms a transversely modulated traveling wave field,

which can be considered a two-dimensional generalization

of Wilton ripples.

K E Y W O R D S
gravity-capillary waves, resonant triad interactions, symmetric Wilton

ripples

1 INTRODUCTION

Resonant interactions of weakly nonlinear waves on the surface of water have been considered one

of the main mechanisms for the long-term evolution of wave spectrum and have been studied exten-

sively since the pioneering work of Phillips.1 For surface gravity waves, resonant interactions occur
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among four waves, whose time evolution can be studied with a system of four amplitude equations2,3

as confirmed experimentally by Longuet-Higgins and Smith4 and McGoldrick et al.5 A more general

theory of resonant four-wave interactions was developed by Zakharov6 and has been further extended

by numerous researchers. See, for example, an extensive review of Dias and Kharif7 and a textbook of

Mei et al.8

While it can be neglected for surface waves of relatively long wavelengths, the surface tension must

be included for short waves of a few centimeters or less. For surface gravity-capillary waves, as shown

in Ref. 9, resonant wave interactions occur among three waves that satisfy the following conditions for

wavenumber vectors 𝒌𝑗 and wave frequencies 𝜔𝑗 (𝑗 = 1, 2, 3)

𝒌1 = 𝒌2 + 𝒌3, 𝜔1 = 𝜔2 + 𝜔3, (1)

where 𝜔𝑗 and 𝑘𝑗 = |𝒌𝑗| satisfy the linear dispersion relation given by

𝜔2
𝑗
= 𝑔𝑗𝑘𝑗𝑇𝑗 , 𝑔𝑗 = 𝑔 + 𝜎𝑘2𝑗 , 𝑘𝑗 = |𝒌𝑗|, 𝑇𝑗 = tanh(𝑘𝑗𝑑), (2)

with 𝑔 and 𝜎 being the gravitational acceleration and the surface tension coefficient divided by the fluid

density, respectively, and 𝑑 is the water depth.

The nonlinear evolution of a resonant triad has been studied theoretically using a system of three

equations for the complex wave amplitudes of the triad 𝑗 (𝑗 = 1, 2, 3). The system was first obtained

via a method of multiple scale expansion9 or a variational formulation.10 McGoldrick9 showed that

the solutions of the amplitude equations can be written in terms of Jacobian elliptic functions and, in

general, the resonant triad exchanges their energies (proportional to |𝑗|2 with 𝑗 = |𝑗| exp(i𝜑𝑗))
periodically in time, while the total energy is conserved in the absence of viscosity. Laboratory exper-

iments were also performed by McGoldrick,11 Bannerjee and Korpel,12 Henderson and Hammack,13

and Perlin et al.14 They observed the periodic exchange of energy through (often successive) resonant

triad interactions. See a review of Hammack and Henderson.15

In this paper, we consider a special resonant triad interaction during which no energy exchange

between the three waves occurs. In other words, even though they interact resonantly, their amplitudes

or |𝑗| remain unchanged in time. The only sign of their interaction can be observed in their phases

𝜑𝑗 . When this happens, each wave under this special resonance would propagate with its own con-

stant speed whose nonlinear correction to the linear wave speed is proportional to wave steepness,

as discussed in detail in Section 5. This is more significant than Stokes's correction for monochro-

matic waves that is proportional to the square of wave steepness. Simmons10 discussed possible triad

solutions of constant amplitudes |𝑗| in addition to time-periodic and constant-phase (𝜑𝑗) solutions.

Nevertheless, no explicit conditions for the constant amplitude solutions were given. Recently, similar

constant-amplitude solutions were studied for the resonant four- and five-wave interactions of gravity

waves by Xu et al.16 and Shrira et al.,17 respectively.

While the resonant waves of constant amplitudes propagate with constant wave speeds, each of them

has a different wave speed and a different propagation direction. Therefore, the resulting wave field is

in general unsteady. For a resonant triad of constant amplitudes to become stationary in a moving

reference frame, or to become a traveling wave, more restrictive conditions are required beyond the

constant amplitude condition. Such solution was studied for one-dimensional gravity-capillary waves

by Wilton,18 who showed that the traveling wave solution can be found when the self-interaction of the

first harmonic of wavenumber 𝑘2 (= 𝑘3) generates the wave frequency of the second harmonic (2𝑘2 =
𝑘1) at the second order such that 2𝜔(𝑘2) = 𝜔(𝑘1). This condition is satisfied when 𝑘2 = (𝑔∕2𝜎)1∕2
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and the corresponding solution often referred to as Wilton ripples was described in terms of a special

resonant triad of constant amplitudes by McGoldrick.19

Here, we explore explicit conditions for resonant triads of two-dimensional gravity-capillary waves

that exchange no energy during their interactions. Furthermore, we attempt to find special resonant

triads producing traveling wave fields in two horizontal dimensions, which can be considered a gener-

alization of one-dimensional Wilton ripples.

Starting with a second-order nonlinear pseudo-spectral model and its Hamiltonian in Section 2, the

amplitude equations for multiple resonant triad interactions are rederived and are compared with those

obtained previously using different methods in Section 3. With re-examining the resonant conditions

given by (1), we identify in Section 4 an explicit region of resonance in a two-dimensional parameter

space and describe the variations of wavenumbers and wave frequencies in the region. After finding

the conditions for resonant triads of no energy exchange, we find traveling wave solutions resulting

from such resonant interactions in Section 5.

2 SECOND-ORDER MODELS FOR GRAVITY-CAPILLARY
WAVES

2.1 Pseudo-spectral model
The weakly nonlinear evolution of surface gravity-capillary waves of small wave steepness can be

described by a second-order asymptotic model (eg, Ref. 20) written, in terms of the surface displace-

ment 𝜁 (𝒙, 𝑡) and the surface velocity potential Φ(𝒙, 𝑡), as

𝜕𝜁

𝜕𝑡
= −[Φ] − 𝛁⋅(𝜁𝛁Φ) − [𝜁[Φ]], 𝜕Φ

𝜕𝑡
= −𝑔 𝜁 + 𝜎∇2𝜁 − 1

2𝛁Φ⋅𝛁Φ + 1
2 ([Φ])2, (3)

where ∇ is the horizontal gradient and  is the linear operator defined by

[𝑓 ] = ∫
∞

−∞
𝐾(𝒙 − 𝝃) 𝑓 (𝝃) d𝝃,  [𝐾(𝒙)] = −𝑘𝑇 ,  [

e−i𝒌⋅𝒙
]
= −𝑘𝑇 e−i𝒌⋅𝒙, (4)

with  representing the Fourier transform, 𝑘 = |𝒌|, and 𝑇 = tanh 𝑘𝑑. Although the system given by

(3) can be extended to arbitrary order of nonlinearity,21–23 the second-order model valid to 𝑂(𝜖2) with

𝜖 being the wave steepness (defined by the ratio of wave amplitude to characteristic wavelength) is

adopted here to study resonant three-wave interactions that occur at the second order of nonlinearity.

The second-order system given by (3) can also be written as Hamilton's equations:6

𝜕𝜁

𝜕𝑡
= 𝛿𝐸

𝛿Φ
,

𝜕Φ
𝜕𝑡

= −𝛿𝐸
𝛿𝜁
, (5)

where the total energy 𝐸 can be written as 𝐸 = 𝐸2 + 𝐸3 + 𝑂(𝜖4) with 𝐸𝑛 = 𝑂(𝜖𝑛) given by

𝐸2 =
1
2 ∫

(
𝑔 𝜁2 − Φ[Φ] + 𝜎∇𝜁 ⋅∇𝜁

)
d𝒙, 𝐸3 =

1
2 ∫

{
𝜁∇Φ⋅∇Φ − 𝜁 ([Φ])2

}
d𝒙. (6)
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2.2 Spectral model
The second-order model (3) can be written in spectral space, when 𝜁 and Φ are expressed as

𝜁 (𝒙, 𝑡) = ∫ 𝑎(𝒌, 𝑡) e−i𝒌⋅𝒙d𝒌, Φ(𝒙, 𝑡) = ∫ 𝑏(𝒌, 𝑡) e−i𝒌⋅𝒙d𝒌, (7)

where 𝑎(𝒌, 𝑡) and 𝑏(𝒌, 𝑡) represent the Fourier transforms of 𝜁 and Φ, respectively. As 𝜁 and Φ are real

functions, one can see that 𝑎(−𝒌, 𝑡) = 𝑎∗(𝒌, 𝑡) and 𝑏(−𝒌, 𝑡) = 𝑏∗(𝒌, 𝑡), where the asterisks represent

complex conjugates. Then, by taking the Fourier transform of (3), one can obtain the second-order

evolution equations for 𝑎(𝒌, 𝑡) and 𝑏(𝒌, 𝑡) in spectral space as

𝜕𝑎

𝜕𝑡
− 𝑘𝑇 𝑏 = ∫∫ 𝛼0,1,2 𝑏1 𝑎2 𝛿0−1−2 d𝒌1,2,

𝜕𝑏

𝜕𝑡
+ (𝑔 + 𝜎𝑘2)𝑎 = ∫∫ 𝛽0,1,2 𝑏1 𝑏2 𝛿0−1−2 d𝒌1,2, (8)

where d𝒌1,2 = d𝒌1d𝒌2 and the coefficients 𝛼0,1,2 and 𝛽0,1,2 are given by

𝛼0,1,2 = 𝒌0 ⋅ 𝒌1 − 𝑘0𝑘1𝑇0𝑇1, 𝛽0,1,2 =
1
2
(𝒌1 ⋅ 𝒌2 + 𝑘1𝑘2𝑇1𝑇2), (9)

with 𝒌0 = 𝒌 and 𝑇0 = 𝑇 = tanh(𝑘𝑑). In (8) and (9), just for brevity, the following short-hand notations

have been used

𝑎𝑗 = 𝑎(𝒌𝑗 , 𝑡), 𝑏𝑗 = 𝑏(𝒌𝑗 , 𝑡), 𝛿0−1−2 = 𝛿(𝒌0 − 𝒌1 − 𝒌2), (10)

where 𝛿(𝒌) is the Dirac delta function, and 𝑘𝑗 and 𝑇𝑗 are defined in (2).

As expected from (5), Equation (8) can also be written as a Hamiltonian system:

𝜕𝑎

𝜕𝑡
= 𝛿𝐻

𝛿𝑏∗
,

𝜕𝑏

𝜕𝑡
= −𝛿𝐻

𝛿𝑎∗
, (11)

where the Hamiltonian 𝐻 is given by 𝐻 = 𝐻2 +𝐻3 + 𝑂(𝜖3) with 𝐻𝑛 = 𝐸𝑛∕(2𝜋)2 given, from (6),

by

𝐻2 =
1
2 ∫ [(𝑔 + 𝜎𝑘2)𝑎 𝑎∗ + 𝑘𝑇 𝑏 𝑏∗] d𝒌, 𝐻3 =

1
2∫∫∫ ℎ1,2,3 𝑏1 𝑏2 𝑎3 𝛿1+2+3 d𝒌1,2,3. (12)

As the subscripts 1 and 2 can be interchanged without altering the integrals, ℎ1,2,3 given by

ℎ1,2,3 = −(𝒌1 ⋅ 𝒌2 + 𝑘1𝑘2𝑇1𝑇2), (13)

satisfies the symmetry condition of ℎ1,2,3 = ℎ2,1,3. Then, from (11), 𝛼0,1,2 and 𝛽0,1,2 defined in (9) can

be expressed, in terms of ℎ1,2,3, as

𝛼0,1,2 =
1
2
(ℎ−0, 1,2 + ℎ1,−0, 2), 𝛽0,1,2 = −1

2
ℎ1,2,−0. (14)

The evolution equations for 𝑎 and 𝑏 given by (8) were previously obtained by Krasitskii24 directly

from the approximate Hamiltonians given by (12). Here, it is shown that the same evolution equations

can be obtained from the pseudo-spectral model and therefore the two formulations are equivalent.

In general, when it is combined with fast Fourier transform, the pseudo-spectral model is useful for

numerical computations, while the spectral model is advantageous for theoretical analysis.
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3 AMPLITUDE EQUATIONS FOR RESONANT TRIADS

Although the complex amplitude equations for a single resonant triad have been previously obtained

by McGoldrick9 and Simmons,10 we present, from a Hamiltonian system (11) of Krasitskii,24 a rela-

tively simple derivation of the complex amplitude equations for resonant triads of continuous spectrum

without introducing Krasitskii's canonical transformation. Some differences of the resulting amplitude

equations from the previous models are briefly discussed.

3.1 Reduced Hamiltonian for resonant three-wave interactions
As shown by Zakharov,6 when introducing 𝑧(𝒌, 𝑡) defined by

𝑎 =
(
𝜔𝑘

2𝑔𝑘

)1∕2
[𝑧(𝒌, 𝑡) + 𝑧∗(−𝒌, 𝑡)], 𝑏 = i

(
𝑔𝑘

2𝜔𝑘

)1∕2
[𝑧(𝒌, 𝑡) + 𝑧∗(−𝒌, 𝑡)], (15)

with 𝑔𝑘 = 𝑔 + 𝜎𝑘2 and 𝜔2
𝑘
= 𝑔𝑘𝑘𝑇 , Hamilton's equations (11) can be reduced to a single equation for

𝑧(𝒌, 𝑡):

𝜕𝑧

𝜕𝑡
= i 𝛿𝐻

𝛿𝑧∗
. (16)

When (15) is substituted into (12), the Hamiltonian 𝐻 can be expressed, in terms of 𝑧(𝒌, 𝑡), as24

𝐻 = ∫ 𝜔𝑘 𝑧𝑧
∗ d𝒌 + ∫∫∫ 𝑈

(1)
1,2,3

(
𝑧∗1 𝑧2 𝑧3 + 𝑧1 𝑧

∗
2 𝑧

∗
3
)
𝛿1−2−3 d𝒌1,2,3

+ 1
3∫∫∫ 𝑈

(2)
1,2,3

(
𝑧∗1 𝑧

∗
2 𝑧

∗
3 + 𝑧1 𝑧2 𝑧3

)
𝛿1+2+3 d𝒌1,2,3, (17)

where 𝑧𝑗 = 𝑧(𝒌𝑗 , 𝑡) and 𝑈
(1)
1,2,3 and 𝑈

(2)
1,2,3 are given by

𝑈
(1)
1,2,3 = 𝑈2,3,−1 − 𝑈−1,2,3 − 𝑈3,−1,2, 𝑈

(2)
1,2,3 = 𝑈1,2,3 + 𝑈2,3,1 + 𝑈3,1,2, (18)

with

𝑈1,2,3 = −
(

𝑔1𝑔2 𝜔3
32𝜔1𝜔2 𝑔3

)1∕2
ℎ1,2,3 =

(
𝑔1𝑔2 𝜔3

32𝜔1𝜔2 𝑔3

)1∕2
(
𝒌1 ⋅ 𝒌2 +

𝜔2
1𝜔

2
2

𝑔1𝑔2

)
. (19)

In (18), 𝑈
(𝑗)
1,2,3 (𝑗 = 1, 2) are symmetric24 in the sense that

𝑈
(1)
1,2,3 = 𝑈

(1)
1,3,2, 𝑈

(2)
1,2,3 = 𝑈

(2)
2,1,3 = 𝑈

(2)
3,1,2. (20)

When 𝑧(𝒌, 𝑡) is introduced in (15), only a single amplitude equation given by (16) needs to be solved

and, therefore, is more convenient for further analysis than the original system (8) for two variables 𝑎

and 𝑏. Meanwhile, when solved numerically, both (8) and (16) require the same computational efforts

because 𝑧(𝒌, 𝑡) has no relationship with its complex conjugate, while 𝑎(−𝒌, 𝑡) = 𝑎∗(𝒌, 𝑡) and 𝑏(−𝒌, 𝑡) =
𝑏∗(𝒌, 𝑡).

When 𝑧(𝒌, 𝑡) is written as

𝑧(𝒌, 𝑡) = (𝒌, 𝑡) ei𝜔𝑡, (21)



CHABANE AND CHOI 533

the Hamiltonian 𝐻 can be expressed, from (17), in terms of , as

𝐻 = ∫ 𝜔𝑘∗d𝒌 + ∫∫∫ 𝑈
(1)
1,2,3

(∗
1 23 e−i(𝜔1−𝜔2−𝜔3)𝑡 +1∗

2 ∗
3 e

i(𝜔1−𝜔2−𝜔3)𝑡
)
𝛿1−2−3 d𝒌1,2,3

+ 1
3∫∫∫ 𝑈

(2)
1,2,3

(∗
1 ∗

2 ∗
3 e

−i(𝜔1+𝜔2+𝜔3)𝑡 +123 ei(𝜔1+𝜔2+𝜔3)𝑡
)
𝛿1+2+3 d𝒌1,2,3, (22)

where 𝑗 = (𝒌𝑗 , 𝑡). Following Zakharov,6 under the resonant conditions (1), the exponential term

(oscillating in fast time) disappears. Therefore, the second integral denoted by :

 = ∫∫∫ 𝑈
(1)
1,2,3

(∗
1 23 +1∗

2 ∗
3
)
𝛿1−2−3 d𝒌1,2,3, (23)

can be considered the Hamiltonian responsible for the slowly varying time evolution of resonant tri-

ads. On the other hand, the last integral in (22) represents nonresonant wave interactions that vary in

fast time. Notice that  denotes the reduced Hamiltonian given by (23), while 𝐻 represents the orig-

inal Hamiltonian given by (17). Then, from (16) and (21), the evolution equation for resonant triad

interactions can be obtained as

𝜕
𝜕𝑡

= i 𝛿
𝛿∗ , (24)

which yields

𝜕
𝜕𝑡

= i∫∫ 𝑈
(1)
0,1,212 𝛿0−1−2 d𝒌1,2 + 2 i∫∫ 𝑈

(1)
2,1,0∗

1 2 𝛿0+1−2 d𝒌1,2, (25)

where 𝑈
(1)
2,0,1 = 𝑈

(1)
2,1,0 has been used for the last integral and (𝒌, 𝑡) is assumed to vary slowly in time.

This is the Zakharov equation for resonant gravity-capillary waves, which describes the time evolution

of all possible resonant triads in spectral space. In addition to conservation of the reduced Hamiltonian

:

d
d𝑡

= 𝛿
𝛿

𝜕
𝜕𝑡

+ 𝛿
𝛿∗

𝜕∗

𝜕𝑡
= 0, (26)

it can be shown that (25) conserves energy and momentum:

d
d𝑡 ∫ 𝜔 ||2 d𝒌 = 0, d

d𝑡 ∫ 𝒌 ||2 d𝒌 = 0, (27)

where the resonance conditions (1) along with the symmetry condition for 𝑈
(1)
0,1,2 in (20) have been

used.

With a canonical transformation to eliminate the last integral of (17) at the second order, Krasitskii24

obtained the same Hamiltonian as (23) in terms of a new canonical variable, but his evolution equation

for the new variable describes both resonant and nonresonant wave interactions (or both fast and slow

time evolutions) when the original variable 𝑧(𝒌, 𝑡) is recovered. As we are interested in the evolution

of the slowly varying complex amplitudes of resonant waves, Equation (25) is written for 𝑍(𝒌, 𝑡), not

the canonical variable of Krasitskii.24
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Previously, in their amplitude equations for a single resonant triad, McGoldrick9 and Simmons10

used a different slowly varying complex amplitude (𝒌, 𝑡), but it can be shown that  and  are

related as

(𝒌, 𝑡) =
(2𝑔𝑘
𝜔

)1∕2
(𝒌, 𝑡). (28)

In Appendix A, the amplitude equation of (𝒌, 𝑡) is discussed in comparison with that of (𝒌, 𝑡).
To derive (25),(𝒌, 𝑡) is assumed to vary slowly in time, but no assumption on its bandwidth in spec-

tral space (or, equivalently, its spatial variation in physical space) has been imposed. Further reductions

can be made when the bandwidths around discrete resonant wavenumbers are non-zero (although they

are assumed small), or in particular when the amplitudes of resonant waves vary slowly in space. For

example, Simmons10 obtained a system of three partial differential equations for the amplitudes of a

single resonant triad that vary slowly in both time and space. Another interesting resonant triad inter-

action can occur between long gravity waves and short gravity-capillary waves in water of finite depth.

A system of partial differential equations describing a long wave and the slowly varying envelope of

short waves was proposed by Benney25,26 and Djordjevic and Redekopp.27 It is worthwhile to remark

that these reduced models can be readily obtained from the slowly varying amplitude equation (25) by

assuming that the wave spectrum is narrow-banded.

In the following discussions, focusing on discrete wave modes, (25) will be reduced to a system of

ordinary differential equations using discrete approximations to .

3.2 Discrete spectrum
When we assume that a nonlinear wave field can be represented by a superposition of𝑁 discrete modes

so that (𝒌, 𝑡) can be written as

(𝒌, 𝑡) =
𝑁∑

𝑗=−𝑁
𝑗(𝑡) 𝛿(𝒌 − 𝒌𝑗), (29)

with 𝒌−𝑗 = −𝒌𝑗 , the reduced Hamiltonian is given by

 =
∑

𝑙,𝑚,𝑛>0
𝑈

(1)
𝑙,𝑚,𝑛

(∗
𝑙
𝑚𝑛 +𝑙 ∗

𝑚
∗
𝑛

)
𝛿𝑙−𝑚−𝑛

= 2
∑

𝑙,𝑚,𝑛>0
𝑈

(1)
𝑙,𝑚,𝑛

|𝑙||𝑚||𝑛| cosΔ𝑙,𝑚,𝑛 𝛿𝑙−𝑚−𝑛, (30)

where 𝑗 is expressed as

𝑗 = |𝑗| ei𝜑𝑗 , (31)

and Δ𝑙,𝑚,𝑛 is defined by Δ𝑙,𝑚,𝑛 = 𝜑𝑙 − 𝜑𝑚 − 𝜑𝑛. Then, from

d𝑗∕d𝑡 = i (𝛿∕𝛿∗
𝑗
), (32)

the amplitude equations can be obtained as

d𝑗
d𝑡

= i
∑
𝑚,𝑛>0

(
𝑈

(1)
𝑗,𝑚,𝑛

𝑚𝑛 𝛿𝑗−𝑚−𝑛 + 2𝑈 (1)
𝑛,𝑚,𝑗

∗
𝑚
𝑛 𝛿𝑗+𝑚−𝑛

)
, (33)
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where 𝑈
(1)
𝑛,𝑗,𝑚

= 𝑈 (1)
𝑛,𝑚,𝑗

has been used. From (33), the amplitude equations for any number of resonant

triads can be obtained.

For a single resonant triad (𝑁 = 3), the reduced Hamiltonian  is given, from (30), by

 = 2𝑈 (1)
1,2,3

(∗
123 +1∗

2∗
3
)
= 4𝑈 (1)

1,2,3 |1||2||3| cosΔ, (34)

where Δ is defined as

Δ = 𝜑1 − 𝜑2 − 𝜑3. (35)

From this Hamiltonian, the three amplitude equations can be obtained, from (33), as

d1
d𝑡

= i 𝛾023,
d2
d𝑡

= i 𝛾01∗
3,

d3
d𝑡

= i 𝛾01∗
2, (36)

where 𝛾0 = 2𝑈 (1)
1,2,3 is given by

𝛾0 =
(
𝑔1𝑔2𝜔3
8𝜔1𝜔2𝑔3

)1∕2
ℎ−1,2,3 +

(
𝑔3𝑔1𝜔2
8𝜔3𝜔1𝑔2

)1∕2
ℎ3,−1,2 −

(
𝑔2𝑔3𝜔1
8𝜔2𝜔3𝑔1

)1∕2
ℎ2,3,−1, (37)

with ℎ1,2,3 given by (13). From (1) with 𝜔𝑗 > 0, it should be noticed that 1 is the amplitude of the

highest frequency mode in the triad. As the coefficients of the three amplitude equations (36) are the

same, they can be made one by rescaling 𝑡 if convenient. As shown in Appendix A, the coefficients are

all different if 𝑗 are used for the amplitudes.

As discussed previously for continuous spectrum, in addition to conservation of the reduced Hamil-

tonian  for a resonant triad, the amplitude equations given by (36) have two additional conservation

laws, which can be written, from (27), as

d
d𝑡

[ 3∑
𝑗=1

𝜔𝑗
|||𝑗|||2

]
= 0, d

d𝑡

[ 3∑
𝑗=1

𝒌𝑗
|||𝑗|||2

]
= 0. (38)

It can be shown that these conservation laws along with the resonance conditions (1) are equivalent to

the Manley-Rowe relations,28 which can be written as

d
d𝑡

(|1|2 + |2|2) = 0, d
d𝑡

(|1|2 + |3|2) = 0. (39)

Hereafter, with focusing on gravity-capillary waves whose wavelengths are generally small com-

pared with water depth, we assume 𝑘𝑗𝑑 ≫ 1, or, equivalently, 𝑑 → ∞, for which 𝛾0 is given by

𝛾0 =
(
𝜔1𝜔2𝜔3
8𝑘1𝑘2𝑘3

)1∕2 [
𝑘3
𝜔3

(𝒌1 ⋅ 𝒌2) +
𝑘2
𝜔2

(𝒌3 ⋅ 𝒌1) +
𝑘1
𝜔1

(𝒌2 ⋅ 𝒌3) + 𝑘1𝑘2𝑘3
(

1
𝜔1

− 1
𝜔2

− 1
𝜔3

)]
, (40)

where we have used the linear dispersion relation in deep water, 𝜔2
𝑗
= 𝑔𝑗𝑘𝑗 .
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4 RESONANCE CONDITIONS IN DEEP WATER

Simmons10 discussed graphically how to find a resonant triad, but explicit expressions of 𝒌𝑗 satisfying

the resonance conditions are often convenient. When 𝒌𝑗 are written as

𝒌𝑗 = 𝑘𝑗 (cos 𝜃𝑗, sin 𝜃𝑗), (41)

there are six unknowns (𝑘𝑗 and 𝜃𝑗 for 𝑗 = 1, 2, 3) among which three parameters can be chosen arbi-

trarily after the three scalar conditions of resonance given by (1) are applied. After assuming 𝜃1 = 0 (for

the highest frequency mode) without loss of generality, one should be able to express 𝑘𝑗 (𝑗 = 1, 2, 3) in

terms of 𝜃2 and 𝜃3. Previously, McGoldrick9 described the resonance conditions in terms of, for exam-

ple, 𝑘2 and 𝑘3. As can be seen in the followings, the description in terms of 𝜃2 and 𝜃3 is convenient to

identify a region of resonance, where all resonant triads reside, and to obtain explicit expressions of

𝒌𝑗 from a bi-quadratic equation.

4.1 General case
After nondimensionalizing 𝑘𝑗 and 𝜔𝑗 as

𝐾𝑗 = (𝜎∕𝑔)1∕2 𝑘𝑗, Ω𝑗 =
(
𝜎∕𝑔3

)1∕4
𝜔𝑗, (42)

the linear dispersion relation is given by

Ω2
𝑗
= 𝐾𝑗

(
1 +𝐾2

𝑗

)
. (43)

Then, the resonance conditions (1) can be rewritten as

𝐾2 cos 𝜃2 +𝐾3 cos 𝜃3 = 𝐾1, 𝐾2 sin 𝜃2 +𝐾3 sin 𝜃3 = 0, (44)

𝐾
1∕2
1

(
1 +𝐾2

1
)1∕2 = 𝐾1∕2

2
(
1 +𝐾2

2
)1∕2 +𝐾1∕2

3
(
1 +𝐾2

3
)1∕2

, (45)

where Ω𝑗 > 0 have been assumed. Then, 𝐾2 and 𝐾3 can be found as

𝐾2 =
sin 𝜃3
sin 𝜃32

𝐾1, 𝐾3 = −
sin 𝜃2
sin 𝜃32

𝐾1, (46)

where 𝜃32 = 𝜃3 − 𝜃2 vanishes only for one-dimensional waves, which will be discussed separately.

When (46) is substituted into (45), an equation for 𝐾1 can be obtained, in terms of 𝜃2 and 𝜃3, as a

bi-quadratic equation given by

⎡⎢⎢⎣
(
1 +

sin3 𝜃2
sin3 𝜃32

−
sin3 𝜃3
sin3 𝜃32

)2

+ 4
sin3 𝜃2 sin3 𝜃3

sin6 𝜃32

⎤⎥⎥⎦ 𝐾4
1

+ 2

[(
1 +

sin 𝜃2
sin 𝜃32

−
sin 𝜃3
sin 𝜃32

)(
1 +

sin3 𝜃2
sin3 𝜃32

−
sin3 𝜃3
sin3 𝜃32

)
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+ 2

(
sin2 𝜃2
sin2 𝜃32

+
sin2 𝜃3
sin2 𝜃32

)
sin 𝜃2 sin 𝜃3
sin2 𝜃32

]
𝐾2

1

+

[(
1 +

sin 𝜃2
sin 𝜃32

−
sin 𝜃3
sin 𝜃32

)2
+ 4

sin 𝜃2 sin 𝜃3
sin2 𝜃32

]
= 0. (47)

Before finding a region in the (𝜃2, 𝜃3)-plane where Equation (47) has positive real roots for 𝐾2
1 , one

should notice that, because𝐾2 and𝐾3 in (46) must be positive, the resonance region must be contained

inside two triangular regions in the second and fourth quadrants of the (𝜃2, 𝜃3)-plane, bounded by

𝜃3 = 𝜃2 + 𝜋, −𝜋 ≤ 𝜃2 ≤ 0, 0 ≤ 𝜃3 ≤ 𝜋, (48)

and

𝜃3 = 𝜃2 − 𝜋, 0 ≤ 𝜃2 ≤ 𝜋, −𝜋 ≤ 𝜃3 ≤ 0. (49)

As it can be confirmed numerically that the second and third coefficients of the quadratic equation for

𝐾2
1 are negative inside these regions while the discriminant is always positive, (47) would have only

one positive root for 𝐾2
1 along with one negative (or nonphysical) root when the first coefficient is

positive:

𝑓 (𝜃2, 𝜃3) ≡ (
sin3 𝜃32 + sin3 𝜃2 − sin3 𝜃3

)2 + 4sin3 𝜃2 sin3 𝜃3 > 0. (50)

Otherwise, no positive real solutions for 𝐾2
1 can be found. One more care must be taken as (47) is

equivalent to (𝜔2
1 − 𝜔

2
2 − 𝜔

2
3)

2 = (±2𝜔2𝜔3)2. In other words, one should exclude a region, where Ω1 =
Ω2 − Ω3, instead of Ω1 = Ω2 + Ω3, as 𝑲1 = 𝑲2 +𝑲3 has been assumed.

Figure 1 shows the resonance region (shaded) in the (𝜃2, 𝜃3)-plane, in which a single positive solution

for𝐾1 always exists. Therefore, all resonant triads must lie in the shaded region. The boundaries of the

resonance region given by 𝑓 (𝜃2, 𝜃3) = 0 are tangent to the 𝜃2 and 𝜃3-axes at 𝜃2 = ±𝜋∕2 and 𝜃3 = ±𝜋∕2,

respectively. Notice that the 𝜃2 and 𝜃3-axes should be excluded except for the origin (which corresponds

to one-dimensional waves) because the resonance conditions given by (44) cannot be fulfilled if two

waves are propagating in the 𝑥-direction, while the third wave is propagating obliquely from the 𝑥-axis.

Figures 2 and 3 show the variations of 𝐾𝑗 and Ω𝑗 inside the resonance region located in the fourth

quadrant of the (𝜃2, 𝜃3)-plane. The similar behaviors can be found in the second quadrant. In particular,

Figure 3 showing contour lines of Ω𝑗 are useful for experimental studies, where wave frequencies are

controlled. To better understand Figure 3, we consider an experiment, where the frequency Ω1 is fixed

to be Ωexp
1 . Then, in Figure 3(A), along a contour line corresponding to the value of Ωexp

1 (chosen to

be 3 and denoted by a dashed line), one can see the variation of 𝜃2 and 𝜃3 along the contour line, or

the functional relationship between 𝜃2 and 𝜃3, for possible resonant triads. For a given value of Ω1,

notice that only a certain range of 𝜃2 (or 𝜃3) is allowed. By drawing the same contour line (dashed)

for Ω1 = Ωexp
1 in Figure 3(B), the variation of Ω2 can be observed from the intersections between the

contour curve for Ω1 = Ωexp
1 and contour lines for Ω2. Similarly, the variation of Ω3 can be seen from

Figure 3(C).
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F I G U R E 1 Region for resonant three-wave interactions (shaded area) in the (𝜃2, 𝜃3)-plane defined by (48), (49),

and 𝑓 (𝜃1, 𝜃2) > 0, where 𝑓 is defined by (50). The dashed line represents the symmetric case of 𝜃3 = −𝜃2
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F I G U R E 2 Contour plots of (dimensionless) resonant wavenumbers (𝐾𝑗 ) in the fourth quadrant of the

(𝜃2, 𝜃3)-plane: (A) 3 ≤ 𝐾1 ≤ 5; (B) 0.5 ≤ 𝐾2 ≤ 5; (C) 0.5 ≤ 𝐾3 ≤ 5. The increment between the two neighboring

contour levels is 0.5 and the arrows indicate the direction of increasing contour levels. Notice that the plot in (C) can be

obtained from the plot in (B) by replacing 𝜃2 and 𝜃3 by −𝜃3 and −𝜃2, respectively, as there is no real distinction

between 𝜃2 and 𝜃3

4.2 One-dimensional waves
For one-dimensional waves, it is more convenient to find the relationship between 𝐾2 and 𝐾3 directly

from the resonance condition (45):

9𝐾2𝐾3(𝐾2 +𝐾3)2 − 4
(
1 +𝐾2

2
) (

1 +𝐾2
3
)
= 0, (51)
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F I G U R E 3 Contour plots of (dimensionless) resonant wave frequencies (Ω𝑗 ) in the fourth quadrant of the

(𝜃2, 𝜃3)-plane: (A) 2.5 ≤ Ω1 ≤ 5; (B) 0.5 ≤ Ω2 ≤ 5; (C) 0.5 ≤ Ω3 ≤ 5. The increment between two neighboring

contour levels is 0.5 and the arrows indicate the direction of increasing contour levels. To illustrate how to use these

plots, as an example, the contour line of Ω1 = 3 is represented by a dashed curve in (A), which shows the relationship

between 𝜃2 and 𝜃3 of all possible resonant triads with Ω1 = 3. Then, the values of Ω2 and Ω3 of the resonant triads with

Ω1 = 3 can be determined by the levels of contour lines of Ω2 and Ω3 intersecting with the (dashed) contour line of

Ω1 = 3, as shown in (B) and (C), respectively
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F I G U R E 4 (A) Wavenumbers (𝐾𝑗 ) and (B) linear wave speeds (𝐶𝑗 = Ω𝑗∕𝐾𝑗 ) of one-dimensional resonant triads

for varying 𝜉 for 𝑗 = 1 (solid), 2 (dashed), and 3 (dotted). Notice that the case of 𝜉 = 1 corresponds to Wilton ripples

and the variations of Ω𝑗 are similar to those of 𝐾𝑗 shown in (A)

with 𝐾1 = 𝐾2 +𝐾3 from (44). Notice that the real solution of (51) can be found only when 𝐾𝑗 (𝑗 =
1, 2, 3) have the same sign, or the three waves are propagating in the same direction. More specifically,

the solution of (51) can be parameterized in terms of 𝜉 as

𝐾2
2 =

2
[
(𝜉2 + 1) + (𝜉4 + 9𝜉3 + 16𝜉2 + 9𝜉 + 1)1∕2

]
𝜉 (9𝜉2 + 14𝜉 + 9)

, 𝐾3 = 𝜉𝐾2, 𝐾1 = (1 + 𝜉)𝐾2, (52)

where 𝜉 is any positive real constant in 0 < 𝜉 < ∞. This expression of 𝐾2 can be found in Craik,29

who suggested to write (52) as an algebraic equation for 𝜉 whose coefficients depending on 𝐾2. Alter-

natively, as (52) determines 𝐾2 for any positive real value of 𝜉, the variations of 𝐾𝑗 and 𝐶𝑗 can be

presented parametrically in terms of 𝜉, as shown in Figure 4. The variations of Ω𝑗 for varying 𝜉 are

similar to those of 𝐾𝑗 .

Of special interest is the case of 𝜉 = 1, or, equivalently, 𝐾1 = 2𝐾2 = 2𝐾3 = 21∕2, for which the

first (𝐾2) and second (𝐾1 = 2𝐾2) harmonics satisfy Ω1 = 2Ω2 from the resonance condition (1). This

implies that the first and second harmonics for 𝜉 = 1 have the same linear wave speed, or Ω1∕𝐾1 =
Ω2∕𝐾2, The nonlinear behavior of this particular triad of 𝜉 = 1 was studied by Wilton,18 who showed
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that the Stokes expansion for 𝐾2 = 2−1∕2 becomes singular at the second order of nonlinearity. To

avoid the singularity, Wilton18 showed that the Stokes expansion needs to be modified to include the

first (𝐾2) and second (𝐾1 = 2𝐾2) harmonics at the leading order, and found a traveling wave solution

when the amplitude ratio of the second harmonic to the first is a half. These so-called Wilton ripples

were described, in terms of resonant interaction of three copropagating waves, first by McGoldrick.19

Finite amplitude solutions have been also obtained numerically in Schwartz and Vanden-Broeck.30

More recent references can be found in Vanden-Broeck.31

4.3 Symmetric two-dimensional waves
When the wavenumber vectors of two propagating waves (𝒌2 and 𝒌3) are aligned symmetrically about

𝒌1, in other words, 𝜃2 = −𝜃3, Equation (47) can be simplified to

(
𝐾2

1 + 1
) [(

cos3 𝜃3 −
1
2

)
𝐾2

1 − (2 − cos 𝜃3) cos2 𝜃3
]
= 0, (53)

so that 𝐾1 can be found as

𝐾2
1 =

2(2 − cos 𝜃3) cos2 𝜃3
2 cos3 𝜃3 − 1

for − 𝜃max < 𝜃3 < 𝜃max, (54)

where the denominator must be positive so that the symmetric waves exist only when |𝜃3| < 𝜃max with

cos 𝜃max = 2−1∕3, or 𝜃max ≃ 37.467𝑜. (55)

The same expression of the maximum angle was found by McGoldrick9 from the resonance conditions

for pure capillary waves. Because 𝐾1 → ∞ as 𝜃 → 𝜃max, the dispersion relation for gravity-capillary

waves can be approximated by that for capillary waves as 𝜃 → 𝜃max. Therefore, the two expressions

for 𝜃max from the two dispersion relations coincide. Notice that the straight line in Figure 1 represents

symmetric triads, and its intersection with the curve of 𝑓 (𝜃1, 𝜃2) = 0 defined by (50) represents the

maximum angle 𝜃max.

For symmetric triads, from (43) and (46), the relationships between Ω𝑗 's and 𝐾𝑗 's are given by

Ω1 = 2Ω2 = 2Ω3, 𝐾1 = 2 cos 𝜃3𝐾2, 𝐾2 = 𝐾3. (56)

Figure 5 shows the variations of 𝐾𝑗 and Ω𝑗 with the angle of symmetric waves, or 𝜃3, along with the

linear wave speeds in the 𝑥-direction defined by 𝐶𝑗𝑥 = Ω𝑗∕𝐾𝑗𝑥 with𝐾𝑗𝑥 = 𝐾𝑗 cos 𝜃𝑗 . Both𝐾𝑗 and Ω𝑗
increase with 𝜃3 to become infinity at 𝜃3 = 𝜃max. For one-dimensional waves (𝜃3 = 0), the expression

for 𝐾1 given by (54) is equivalent to (52) with 𝜉 = 1, for which the linear speeds of the three modes

in the resonant triad coincide. For 𝜃3 ≠ 0, one can see, from (56), that the linear wave speeds in the

𝑥-direction defined by 𝐶𝑗𝑥 = Ω𝑗∕(𝐾𝑗 cos 𝜃𝑗) become identical, as shown in Figure 5(C). As seen for

one-dimensional Wilton ripples, if the nonlinear wave speeds match, the symmetric resonant triad

could form a wave field that travels in the 𝑥-direction with a constant speed although the wave field is

transversely modulated. This will be discussed in detail in Section 5.2.
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F I G U R E 5 (A) Wavenumbers 𝐾1 (solid line) and 𝐾2 = 𝐾3 (dashed) of symmetric resonant triads versus the

angle of wave propagation (𝜃3∕𝜃max) with 𝜃max defined by (55). (B) Wave frequencies Ω1 (solid) and Ω2 = Ω3 (dashed)

of symmetric resonant triads versus 𝜃3∕𝜃max. (C) Linear wave speed 𝐶1 versus 𝜃3∕𝜃max. Notice that the wave speed of

the 𝐾1-mode given by 𝐶1 = Ω1∕𝐾1 (solid line) matches the 𝑥-components of 𝐶2 and 𝐶3, given by

𝐶2𝑥 = 𝐶3𝑥 = Ω3∕(𝐾3 cos 𝜃3) (symbols)

5 RESONANT INTERACTIONS WITHOUT ENERGY
EXCHANGE

Once the resonance conditions between three waves are satisfied, the amplitude equations are given,

after nondimensionalizing (36), by

d𝑍1
d𝑇

= i Γ0𝑍2𝑍3,
d𝑍2
d𝑇

= i Γ0𝑍∗
3𝑍1,

d𝑍3
d𝑇

= i Γ0𝑍1𝑍
∗
2 , (57)

where 𝑗 , 𝑡, and 𝛾0 are nondimensionalized as

𝑍𝑗 = 𝑗∕(𝜎5∕𝑔3)1∕8, 𝑇 = 𝑡∕(𝜎∕𝑔3)1∕4, Γ0 = 𝛾0∕(𝑔9∕𝜎7)1∕8, (58)

with Γ0 given by (40) with replacing 𝜔𝑗 and 𝑘𝑗 by Ω𝑗 and 𝐾𝑗 , respectively. If necessary, notice that

Γ0 can be scaled out from (57) by introducing a new dimensionless time, 𝑇0 = Γ0𝑡. It is well known

that the amplitude equations given by (57) can be solved analytically in terms of elliptic functions

(McGoldrick9) and, in general, the amplitudes oscillate periodically in time by exchanging energies

proportional to |𝑍𝑗|2.

An interesting question is if resonant interactions can occur without such energy exchange. If res-

onant interactions happen without energy exchange, |𝑍𝑗| should be independent of time although its

phase can vary in time so that d𝑍𝑗∕d𝑡 ≠ 0. Simmons10 first noticed that it is possible to find time-

independent solutions for |𝑍𝑗|, but provided little detailed description of resonant interactions with no
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energy exchange. Later McGoldrick19 described Wilton ripples as a special one-dimensional resonant

triad for which the amplitudes remain constant, but his description was limited to a one-dimensional

triad of 𝜉 = 1.

Trivial resonant triads without energy exchange exist when any two modes have zero initial ampli-

tudes, eg, |𝑍1| = |𝑍2| = 0, or |𝑍2| = |𝑍3| = 0. This implies that the third mode is a monochromatic

wave train and should remain unchanged. If only one mode (eg, 𝑍1) has initially zero amplitude, the

other two modes of nonzero wave amplitudes (𝑍2 and𝑍3) will interact resonantly and excite the mode

that is initially absent, or 𝑍1, as can be seen from (57).

When all three resonant waves initially have nonzero amplitudes (no matter how small they are),

the existence of resonant triad interactions without energy exchange would depend on their initial

amplitudes and phases, which will be explored next.

5.1 Fixed points
To find conditions under which no energy exchange occurs during resonant three wave interactions, it

is useful to write the evolution equations for |𝑍𝑗|. Following Simmons,10 the system for |𝑍𝑗| can be

written as

d|𝑍1|
d𝑇

= Γ0|𝑍2||𝑍3| sinΔ, d|𝑍2|
d𝑇

= −Γ0|𝑍1||𝑍3| sinΔ, d|𝑍3|
d𝑇

= −Γ0|𝑍1||𝑍2| sinΔ, (59)

dΔ
d𝑇

= Γ0|𝑍1||𝑍2||𝑍3| ( 1|𝑍1|2 − 1|𝑍2|2 − 1|𝑍3|2
)
cosΔ, (60)

where Δ = 𝜑1 − 𝜑2 − 𝜑3, as defined in (35). Then, the evolution of 𝜑𝑗 (𝑗 = 1, 2, 3) is governed by

d𝜑𝑗
d𝑇

= Γ0
|𝑍𝑝||𝑍𝑞||𝑍𝑗| cosΔ, (61)

with 𝑝 and 𝑞 being two remaining indices different from 𝑗.

Looking for resonant triads that interact without exchange of energy is equivalent to finding fixed

points of the coupled system given by (59) and (60). It can be easily seen that the fixed points exist, or

d|𝑍𝑗|∕d𝑡 = 0, when

Δ = 𝑚𝜋 for 𝑚 = 0, 1, (62)

1|𝑍1|2 − 1|𝑍2|2 − 1|𝑍3|2 = 0, (63)

where |𝑍𝑗| ≠ 0 have been assumed because the zero amplitude cases were previously discussed. When

the two conditions for fixed points given by (62) and (63) are met, the right-hand side of (61) becomes

time-independent and, then, 𝜑𝑗 can be obtained as

𝜑𝑗 = 𝜇𝑗 𝑇 + 𝜑𝑗,0, (64)
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F I G U R E 6 Surface of fixed points defined by (63). Any values of |𝑍𝑗 | on the surface are the fixed points of the

system given by (59) and (60) if Δ0 = 𝑚𝜋 (𝑚 = 0, 1)

where 𝜑𝑗,0 are initial conditions for 𝜑𝑗 and 𝜇𝑗 represent (constant) nonlinear frequency corrections

given by

𝜇𝑗 = (−1)𝑚 Γ0
|𝑍𝑝||𝑍𝑞||𝑍𝑗| . (65)

When it is multiplied by |𝑍1||𝑍2||𝑍3|, the condition (63) with (65) is equivalent to

𝜇1 − 𝜇2 − 𝜇3 = 0, (66)

with which the condition for Δ given by (62) can be replaced by the condition for the initial phase

difference Δ0 = 𝜑1,0 − 𝜑2,0 − 𝜑3,0:

Δ0 = 𝑚𝜋 for 𝑚 = 0, 1. (67)

As shown in Figure 6, Equation (63) defines a surface in the three-dimensional |𝑍𝑗|-space on which

fixed point solutions for |𝑍𝑗| reside. Therefore, it can be concluded that any resonant triad can interact

without exchange of energy if |𝑍𝑗| are located on the surface shown in Figure 6 and their initial phase

difference is 0 or 𝜋. Otherwise, the wave amplitudes will vary in time, or energy exchange occurs inside

a resonant triad. It should be emphasized that the two conditions given by (63) and (67) must be met

at the same time for no energy exchange.

Under the conditions for fixed points given by (63) and (67), each mode of constant amplitude has

the wave speed given by (Ω𝑗 + 𝜇𝑗)∕𝐾𝑗 . Therefore, the nonlinear correction (𝜇𝑗∕𝐾𝑗) resulting from the

resonant interaction is 𝑂(𝜖) and is more significant than the Stokes correction that would appear at

𝑂(𝜖2).
In general, even when |𝑍𝑗| are independent of time, each mode in a resonant triad propagates with its

own wave speed in its own direction. Therefore, the resulting wave field is not stationary in any moving

reference frame. For one-dimensional waves, Wilton ripples, or a fixed point solution for 𝜉 = 1 is the

only resonant triad that propagates with a constant speed. All other one-dimensional resonant triads

(𝜉 ≠ 1) produce unsteady wave fields even though their initial wave amplitudes satisfy the conditions
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for fixed points. Then, it is natural to ask if any two-dimensional resonant triad exchanging no energy

can form a traveling wave field, which will be addressed in the next section.

5.2 Traveling waves: symmetric Wilton ripples
As discussed in Section 4.3, the three modes of a symmetric resonant triad (𝜃2 = −𝜃3) have the same

linear wave speed in the 𝑥-direction, necessary for a nonlinear traveling wave solution to exist. In

addition, if the amplitudes of the three modes are independent of time and their nonlinear corrections

to the linear wave speed match, the resonant triad becomes a traveling wave.

Surprisingly, when all symmetric resonant triads satisfy the conditions for fixed points given by

(63) and (67), the 𝑥-components of the nonlinear wave speed corrections become identical as 𝐾1 =
2𝐾2 cos 𝜃2 = 2𝐾3 cos 𝜃3 and 𝜇1 = 2𝜇2 = 2𝜇3. This implies that any resonant symmetric triad without

energy exchange is indeed a traveling wave and can be considered a two-dimensional generalization

of Wilton ripples. These special symmetric waves will be referred to as symmetric Wilton ripples and

exist for |𝜃3| ≤ 𝜃max.

From (63) and (65), the amplitudes of the symmetric Wilton ripples satisfy

21∕2|𝑍1| = |𝑍2| = |𝑍3|, (68)

while the nonlinear frequency corrections 𝜇𝑗 can be expressed as

𝜇1 = 2𝜇2 = 2𝜇3, 𝜇3 = (−1)𝑚 Γ0 |𝑍1| (𝑚 = 0, 1). (69)

Linear stability of these fixed points is examined in Appendix B and the fixed point solutions are found

neutrally stable when only a single triad is considered.

To represent symmetric Wilton ripples in physical space, the surface displacement 𝜁 nondimension-

alized by (𝜎∕𝑔)1∕2 can be obtained from

𝜁 =
3∑
𝑗=1

[
𝐴𝑗(𝑡) e−i

(
𝑲𝑗 ⋅𝑿−Ω𝑗𝑇

)
+ 𝐶.𝐶

]
, (70)

where 𝐴𝑗 are the dimensionless amplitudes given by 𝐴𝑗 = 𝑗∕(𝜎∕𝑔)1∕2 and 𝑿 = 𝒙∕(𝜎∕𝑔)1∕2. Using

the following relationship between 𝑍𝑗 and 𝐴𝑗 given by (28)

𝑍𝑗 =
(
2Ω𝑗∕𝐾𝑗

)1∕2
𝐴𝑗, (71)

the fixed point solutions given by (68) and (69) can be written, in terms of |𝐴𝑗|, as

2|𝐴1|2 = cos 𝜃 |𝐴3|2 = cos 𝜃 |𝐴2|2, 𝜇1 = 2𝜇2 = 2𝜇3 = 2(−1)𝑚 𝑞(𝜃)Ω𝐾 |𝐴1|, (72)

where 𝜃 = 𝜃3, 𝐾 = 𝐾3, Ω = Ω3, and 𝑞(𝜃) = cos2 𝜃 + 2 cos 𝜃 − 2 > 0. Then, by substituting 𝐴𝑗 =|𝐴𝑗| ei(𝜇𝑗𝑇+𝛿𝑗,0) with (67) into (70), the surface elevation 𝜁 of symmetric Wilton ripples can be written,

in physical space, as

𝜁 (𝑋, 𝑌 , 𝑇 ) = 𝑎0 cos(𝐾𝑦𝑌 ) cos𝜓 ± (cos 𝜃∕8)1∕2 𝑎0 cos 2𝜓 + 𝑂(𝜖2), (73)

where

𝜓 = 𝐾𝑥𝑋 − Ω
[
1 ± (cos 𝜃∕32)1∕2𝑞(𝜃)𝐾𝑎0

]
𝑇 , (74)
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F I G U R E 7 Symmetric Wilton ripples given by (73) with 𝐾 = 0.771, 𝑎0 = 0.0154, and 𝜃 = 𝜃max∕3=12.489𝑜:

(A) 𝑚 = 0; (B) 𝑚 = 1. In each plot, the surface wave field over two wave wave periods is shown

with 𝐾𝑥 = 𝐾 cos 𝜃, 𝐾𝑦 = 𝐾 sin 𝜃, and 𝑎0 = 4|𝐴3|. Here, 𝛿2,0 = 𝛿3,0 = 0 have been chosen and the

plus and minus signs correspond to 𝑚=0 and 1, respectively. Figure 7 shows the surface profiles of

symmetric Wilton ripples. When 𝜃 = 0, the one-dimensional Wilton ripple solution is recovered from

(73) and (74).

Using the classical Stokes expansion, it is confirmed in Appendix C that this traveling wave solution

is indeed a solution of the original second-order model given by (3).

6 CONCLUSION

We have re-examined three-wave resonant interactions of gravity-capillary waves using the Zakharov

equation and its discrete approximation. After having identified the region of resonance, an alternative

to the previous representations of resonant wavenumbers and wave frequencies of McGoldrick9 and

Simmons10 has been proposed in terms of two propagation angles. This could provide a convenient

way to understand possible resonant triads.

A special attention has been paid to resonant triad interactions, in which no energy exchange occurs

so that the amplitudes of the triad remain constant during the interactions. The explicit conditions under

which such interactions exist have been found in terms of initial wave amplitudes and phases. Any triad

that violates the conditions must exchange energy and the amplitudes vary periodically in time. Among

constant-amplitude resonant triads, it is shown that all symmetric triads (with one wavenumber vector

bisecting the angle between the other two wavenumber vectors) can propagate with a constant wave

speed to form a transversely modulated traveling wave when the angle is smaller than the maximum

value given by Equation (55).

Previously, laboratory experiments of gravity-capillary waves have been performed to demonstrate

resonant triads with periodic exchanges of energy. It would be interesting to test if the solutions of con-

stant amplitudes, including symmetric Wilton ripples, described here can be observed. This question

is related to stability of the symmetric Wilton ripples. The linear stability analysis of fixed points of a

resonant triad presented in Appendix B is limited and more general perturbations beyond the resonant

triad have to be considered. Recently, Trichtchenko et al.32 investigated the stability of one-dimensional

Wilton ripples and found extremely small growth rates when they are unstable. Then, such instability

might be suppressed by viscosity.

Resonant triad interactions can also occur in density-stratified fluids33–35 and the constant amplitude

solutions could provide steady states or traveling wave solutions through resonant interactions between

surface and internal wave modes or different internal wave modes.
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APPENDIX A: AMPLITUDE EQUATIONS FOR 

Instead (15), one can introduce a slowly varying wave amplitude  as

𝑎(𝒌, 𝑡) = (𝒌, 𝑡) ei𝜔𝑡 +∗(−𝒌, 𝑡) e−i𝜔𝑡, 𝑏(𝒌, 𝑡) = i
(𝑔𝑘
𝜔

) [(𝒌, 𝑡) ei𝜔𝑡 −∗(−𝒌, 𝑡) e−i𝜔𝑡
]
. (A.1)

Previously, McGoldrick9 and Simmons10 introduced this complex amplitude  to obtain their ampli-

tude equations for a single resonant triad. By substituting into (23) the relationship between  and 
given by (28), the reduced Hamiltonian 𝐴 in terms of  can be written as

 = ∫∫∫ 𝑉
(1)
1,2,3

(∗
1 23 +1∗

2 ∗
3
)
𝛿1−2−3 d𝒌1,2,3, (A.2)

where 𝑉
(1)
1,2,3 is given by

𝑉
(1)
1,2,3 = 𝑉2,3,−1 − 𝑉−1,2,3 − 𝑉3,−1,2, 𝑉1,2,3 =

(8 𝑔1𝑔2𝑔3
𝜔1𝜔2𝜔3

)1∕2
𝑈1,2,3. (A.3)

Then, the amplitude equation for  can be obtained as

𝜕
𝜕𝑡

= i
(
𝜔

2𝑔𝑘

)
𝛿
𝛿∗ = i

(
𝜔

2𝑔𝑘

)(
∫∫ 𝑉

(1)
0,1,212𝛿0−1−2d𝒌1,2 + 2∫∫ 𝑉

(1)
2,1,0∗

12𝛿0+1−2d𝒌1,2
)
,

(A.4)

where the symmetry condition of 𝑉
(1)
2,1,0 = 𝑉

(1)
2,0,1 has been used. As shown previously for , the evo-

lution equation for  also conserves the reduced Hamiltonian  along with the energy and linear

https://doi.org/10.1111/sapm.12249
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momenta given by

d
d𝑡 ∫ 𝑔𝑘 ||2 d𝒌 = 0, d

d𝑡 ∫
𝑔𝑘𝒌

𝜔
||2 d𝒌 = 0, (A.5)

respectively.

For a resonant triad, the amplitude equations for 𝑗 can be found, from (A.4), as

d1
d𝑡

= i 𝛾123,
d2
d𝑡

= i 𝛾2∗
31,

d3
d𝑡

= i 𝛾31∗
2, (A.6)

where 𝛾𝑗 (𝑗 = 1, 2, 3) are related to 𝛾0 as

𝛾𝑗 =
(
𝜔𝑗

2𝑔𝑗

)(8 𝑔1𝑔2𝑔3
𝜔1𝜔2𝜔3

)1∕2
𝛾0. (A.7)

The explicit expressions of 𝛾𝑗 > 0 are given by

𝛾1 =
1
2

[(
𝜔2
𝑘2𝑇2

+
𝜔3
𝑘3𝑇3

+
𝜔2𝜔3 𝑘1𝑇1
𝜔1 𝑘2𝑘3𝑇2𝑇3

)
𝒌2 ⋅ 𝒌3 +

𝜔2𝑘2
𝑇2

+
𝜔3𝑘3
𝑇3

+
𝑘1𝑇1
𝜔1

(
𝜔2𝜔3 − 𝜔2

1
)]
, (A.8)

𝛾2 =
1
2

[(
𝜔3
𝑘3𝑇3

−
𝜔1
𝑘1𝑇1

+
𝜔1𝜔3 𝑘2𝑇2
𝜔2 𝑘1𝑘3𝑇1𝑇3

)
𝒌3 ⋅ 𝒌1 −

𝜔3𝑘3
𝑇3

+
𝜔1𝑘1
𝑇1

−
𝑘2𝑇2
𝜔2

(
𝜔3𝜔1 + 𝜔2

2
)]
, (A.9)

𝛾3 =
1
2

[(
−
𝜔1
𝑘1𝑇1

+
𝜔2
𝑘2𝑇2

+
𝜔1𝜔2 𝑘3𝑇3
𝜔3𝑘1𝑘2𝑇1𝑇2

)
𝒌1 ⋅ 𝒌2 +

𝜔1𝑘1
𝑇1

−
𝜔2𝑘2
𝑇2

−
𝑘3𝑇3
𝜔3

(
𝜔1𝜔2 + 𝜔2

3
)]
. (A.10)

In the limit of infinitely deep water (𝑑 → ∞ and 𝑇𝑗 → 1), (A.6) can be reduced to the system of

McGoldrick.9 After replacing 𝑔𝑗 by 𝜔2
𝑗
∕𝑘𝑗 , the coefficients 𝛾𝑗 can be reduced to those in Craik.29

From (A.5), one can see that the system given by (A.6) also has the following conservation laws

d
d𝑡

[ 3∑
𝑗=1

𝑔𝑗
|||𝑗

|||2
]
= 0, d

d𝑡

[ 3∑
𝑗=1

𝑔𝑗𝒌𝑗

𝜔𝑗

|||𝑗
|||2
]
= 0. (A.11)

When necessary, 𝑗 , 𝑡, and 𝛾𝑗 can be nondimensionalized as

𝐴𝑗 = 𝑗∕(𝜎∕𝑔)1∕2, 𝑇 = 𝑡∕
(
𝜎∕𝑔3

)1∕4
, Γ𝑗 =

(
𝜎3∕𝑔5

)1∕4
𝛾𝑗 , (A.12)

and, then, the expressions of Γ𝑗 can be obtained by replacing 𝜔𝑗 and 𝑘𝑗 by Ω𝑗 and 𝐾𝑗 . Figure 8 shows

the variations of Γ𝑗 over the resonance region in the fourth quadrant of the (𝜃2, 𝜃3)-plane.

APPENDIX B: LINEAR STABILITY OF FIXED POINTS
To study stability of fixed point solutions of the system given by (59) and (60), we assume that

|𝑍𝑗| = |𝑍𝑗,𝑓 | + |𝑍′
𝑗
|, Δ = Δ𝑓 + Δ′, (B.1)

where |𝑍𝑗,𝑓 | for 𝑗 = 1, 2, 3 and Δ𝑓 represent the fixed point solutions satisfying (62) and (63), and |𝑍′
𝑗
|

and Δ′ denote small perturbations such that |𝑍′
𝑗
|∕|𝑍𝑗,𝑓 |≪ 1 and Δ′∕Δ𝑓 ≪ 1. Then, by substituting
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θ3

−π/2

0.0

−π/4

θ2
0.0 π/2π/4

θ3

−π/2

0.0

−π/4

θ2
0.0 π/2π/4

θ3

−π/2

0.0

−π/4

θ2
0.0 π/2π/4

(A) (B) (C)

F I G U R E 8 Contour plots of (dimensionless) coefficients of the amplitude equations 1.5 ≤ Γ𝑗 ≤ 5 in the fourth

quadrant of the (𝜃2, 𝜃3)-plane, where Γ𝑗 = (𝜎3∕𝑔5)1∕4𝛾𝑗 with 𝛾𝑗 given by (A.8)–(A.10) for infinitely deep water

(𝑇𝑗 → 1). (A) Γ1; (B) Γ2; (C) Γ3. The increment between the two neighboring contour levels is 0.5 and the arrows

indicate the direction of increasing contour levels

(B.1) into (59) and (60) and linearizing the system about the fixed points, we obtain

d|𝑍′
1|

d𝑡
= ± |𝑍2,𝑓 ||𝑍3,𝑓 |Δ′,

d|𝑍′
2|

d𝑡
= ∓ |𝑍1,𝑓 ||𝑍3,𝑓 |Δ′,

d|𝑍′
3|

d𝑡
= ∓ |𝑍1,𝑓 ||𝑍2,𝑓 |Δ′, (B.2)

dΔ′

d𝑡
= ∓2|𝑍1,𝑓 ||𝑍2,𝑓 ||𝑍3,𝑓 ||( |𝑍′

1||𝑍1,𝑓 |3 −
|𝑍′

2||𝑍2,𝑓 |3 −
|𝑍′

3||𝑍3,𝑓 |3
)
, (B.3)

where+ and− signs need to be chosen forΔ0 = 0 and 𝜋, respectively, and we have used sin(Δ0 + Δ′) =
± sinΔ′ ≃ ±Δ′ and cos(Δ0 + Δ′) = ± cosΔ′ ≃ ±1. Then, from (B.2) to (B.3), one can obtain a single

equation for Δ′ as

d2Δ′

d𝑡2
+ Ω′2Δ′ = 0, (B.4)

where Ω′ is given by

Ω′2 = 2

(|𝑍2,𝑓 |2|𝑍3,𝑓 |2|𝑍1,𝑓 |2 +
|𝑍2,𝑓 |2|𝑍3,𝑓 |2|𝑍2,𝑓 |2 +

|𝑍1,𝑓 |2|𝑍2,𝑓 |2|𝑍3,𝑓 |3
)
> 0. (B.5)

As Ω′2 is always positive, Δ′ is oscillatory in time and, therefore, the fixed points are neutrally stable.

APPENDIX C: STOKES EXPANSION FOR SYMMETRIC WILTON RIPPLES
Here, we assume that all physical variables are nondimensionalized with respect to 𝑔 and 𝜎 or,

equivalently, set 𝑔 = 𝜎 = 1. To find a traveling wave solution, we assume the problem can be made

steady in a reference frame moving in the 𝑋-direction with speed 𝑐. Then, the surface elevation 𝜁 and

the free surface velocity potential Φ can be written as

𝜁 = 𝜁 (𝜉, 𝑌 ), Φ = Φ(𝜉, 𝑌 ), 𝜉 = 𝑋 − 𝑐𝑇 . (C.1)

With (C.1), the equations for 𝜁 and Φ can be found, from (3), as

− 𝑐 𝜕𝜁
𝜕𝜉

+ [Φ] = −𝛁⋅(𝜁𝛁Φ) − [𝜁[Φ]], −𝑐 𝜕Φ
𝜕𝜉

+ 𝜁 + ∇2𝜁 = −1
2𝛁Φ⋅𝛁Φ + 1

2 ([Φ])2, (C.2)
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where 𝛁 = (𝜕∕𝜕𝜉, 𝜕∕𝜕𝑌 ). For weakly nonlinear waves, we further assume that 𝜁 , Φ, and 𝑐 can be

expanded in small wave steepness 𝜖 as

𝜁 = 𝜁1 + 𝜁2 + 𝑂(𝜖3), Φ = Φ1 + Φ2 + 𝑂(𝜖3), 𝑐 = 𝑐0 + 𝑐1 + 𝑂(𝜖2), (C.3)

with 𝜁𝑛 = 𝑂(Φ𝑛) = 𝑂(𝑐𝑛) = 𝑂(𝜖𝑛).
By substituting (C.3) into (C.2), the first-order equations for 𝜁1 and Φ1 can be found, at 𝑂(𝜖), as

−𝑐0
𝜕𝜁1
𝜕𝜉

+ [Φ1] = 0, −𝑐0
𝜕Φ1
𝜕𝜉

+ 𝜁1 + ∇2𝜁1 = 0. (C.4)

For symmetric Wilton ripples given by (73), the first-order solutions are assumed to have both the first

and second harmonics:

𝜁1 = 𝑎1 cos(𝐾𝑦𝑌 ) ei𝐾𝑥𝜉 + 𝑎2 e2i𝐾𝑥𝜉 + 𝐶.𝐶., Φ1 = 𝑏1 cos(𝐾𝑦𝑌 ) ei𝐾𝑥𝜉 + 𝑏2 e2i𝐾𝑥𝜉 + 𝐶.𝐶., (C.5)

where 𝐾𝑥 = 𝐾 cos 𝜃 and 𝐾𝑦 = 𝐾 sin 𝜃. By substituting (C.5) into (C.4), one can obtain, for the first

harmonics,

𝑏1 = −i𝑐0(𝐾𝑥∕𝐾) 𝑎1, 𝑐20 = (𝐾 +𝐾3)∕𝐾2
𝑥
, (C.6)

and, for the second harmonics,

𝑏2 = −i𝑐0 𝑎2, 𝑐20 = (𝐾𝑥∕2 + 2𝐾3
𝑥
)∕𝐾2

𝑥
. (C.7)

For the consistency between the two different expressions for 𝑐20 in (C.6)–(C.7), one can obtain a rela-

tionship between 𝐾 and 𝐾𝑥, which is nothing but the condition for symmetric waves given by (54)

with 𝐾1 = 2𝐾𝑥.

At the second order, 𝜁2 and Φ2 are governed by

−𝑐0
𝜕𝜁2
𝜕𝜉

+ [Φ2] = 𝑐1
𝜕𝜁1
𝜕𝜉

− 𝛁⋅(𝜁1𝛁Φ1) − [𝜁1[Φ1]], (C.8)

−𝑐0
𝜕Φ2
𝜕𝜉

+ 𝜁2 + ∇2𝜁2 = 𝑐1
𝜕Φ1
𝜕𝜉

− 1
2
𝛁Φ1⋅𝛁Φ1 +

1
2
([Φ1])2. (C.9)

After substituting (C.5) into the right-hand sides of (C.8) and (C.9) and imposing the solvability condi-

tions on the right-hand side terms proportional to the first-order (or homogeneous) solutions, one can

obtain the expressions of 𝑐1 and 𝑎2 as

𝑐1 = ±𝑐0 (cos 𝜃∕8)1∕2𝑞(𝜃)𝐾𝑎1, 𝑎2 = ±(cos 𝜃∕8)1∕2𝑎1. (C.10)

Then, the surface elevation 𝜁 = 𝜁1 + 𝜁2 + 𝑂(𝜖3) can be written as

𝜁 = 2𝑎1 cos(𝐾𝑦𝑌 ) cos𝜓 + 2𝑎2 cos(2𝜓) + 𝑂(𝜖3), (C.11)

from which (73) can be recovered with 𝑎0 = 2𝑎1 and 𝜓 = 𝐾𝑥𝜉 given by

𝜓 = 𝐾𝑥𝑋 − Ω
[
1 ± (cos 𝜃∕32)1∕2𝑞(𝜃)𝐾𝑎0

]
𝑇 . (C.12)


