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HIGH-ORDER DAVIES’ APPROXIMATION FOR A SOLITARY
WAVE SOLUTION IN PACKHAM’S COMPLEX PLANE∗

SUNAO MURASHIGE† AND WOOYOUNG CHOI‡

Abstract. This paper considers a progressive solitary wave of permanent form in an ideal fluid
of constant depth and explores Davies’ approximation [Proc. R. Soc. Lond. A, 208 (1951), pp. 475–
486] with high-order corrections to Levi-Civita’s surface condition for the logarithmic hodograph
variable. Using a complex plane that was originally introduced by Packham [Proc. R. Soc. Lond.
A, 213 (1952), pp. 234–249], it is shown that a singularity at infinity can be regularized. Therefore,
the solutions in Packham’s complex plane under high-order Davies’ approximation maintain two
critical properties of a solitary wave, the correct exponential decay in the outskirt of wave and the
harmonic property of a solution, that are often violated in classical long wave approximations. After
introducing an accurate numerical method to compute solitary wave solutions in Packham’s complex
plane, we compare high-order Davies’ approximate solutions with fully nonlinear solutions as well as
long wave approximate solutions. The results demonstrate that high-order Davies’ approximation
produces rapidly converging series solutions even for relatively large amplitude waves and that Davies’
approximate solutions compare much better with the fully nonlinear solutions than the long wave
approximate solutions.
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1. Introduction. In this work, we study two-dimensional irrotational motion of
a solitary wave progressing in permanent form on a layer of water of constant depth
h with constant wave speed c, assuming that the fluid is incompressible and inviscid.
In the frame of reference moving with wave speed c, the wave becomes steady and the
free surface is represented by the streamline of ψ = 0. This problem can be formulated
in the complex velocity potential f (= φ+ iψ)-plane using the logarithmic hodograph
variable ω = τ + iθ = log(c/w) as a flow variable, where w = df/dz = u− iv = qe−iθ

is the complex velocity, q =
√
u2 + v2, and z = x+ iy is the complex coordinate. The

free surface condition for the logarithmic hodograph variable ω can be written in the
form of Levi-Civita’s surface condition [16, section 14.65]:

(1.1)
∂τ

∂φ
− 1

F 2
e3τ sin θ = 0 on ψ = 0,

where F = c/
√
gh is the Froude number and g denotes the gravitational acceleration.

Notice that the form of (1.1) is slightly different from that in [16, section 14.65]
because the definition of the logarithmic hodograph variable ω = τ + iθ follows that
of [26].

Due to the highly nonlinear nature of the free surface boundary condition (1.1),
a long wave approximation is often adopted to obtain analytically solitary wave so-
lutions, for which the variation of a flow is assumed slow in the horizontal direction.
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Then, dependent variables are expanded around the bottom in Taylor series, and
high-order derivative terms in the horizontal direction are neglected. The leading-
order truncation of the series yields a classical long wave approximate equation, often
in the form of an ordinary differential equation, for a dependent variable evaluated
at the bottom. Friedrichs and Hyers [8] applied this approximation for ω to Levi-
Civita’s surface condition to prove the existence of a solitary wave solution. The
weakly nonlinear assumption is often combined with the long wave approximation
[7, 8, 11, 14, 20] but can be avoided, as shown by Lord Rayleigh [12, section 252], [23].
In his seminar work, Lord Rayleigh [23] first derived an approximate equation for soli-
tary waves without the small amplitude assumption and found a better relationship
between wave speed and wave amplitude than the weakly nonlinear result from the
KdV equation [11]. The order of approximation can be increased with the order of
truncation of the series, and high-order long wave approximate solutions have been
studied by various authors [7, 14, 15, 20, 21, 27]. Unfortunately, since a corner devel-
ops at the crest as the wave amplitude approaches its maximum value, convergence
of the series becomes slower with the increase of wave amplitude. Therefore, some
acceleration techniques such as the Padé approximants or the Shanks transformation
are required for steep solitary waves.

In addition to its slow convergence, another difficulty in using the long wave
approximation to compute a steady solitary wave solution lies in the exponential
decay in the outskirt of solitary wave. Friedrichs and Hyers [8, p. 518] pointed out
that this decay property causes the nonuniform convergence of the wave elevation
to a flat water surface with the decrease of wave amplitude and prevents one from
approximating solitary waves from periodic waves. Stokes [12, section 252], [22] found
the exponential decay of a solution using the linearized free surface condition that is
valid in the outskirt. He showed that solitary wave solutions exponentially decay with
the factor e−μπ|x|/h as the horizontal coordinate x tends to ±∞, and the decay rate
μ is related to the Froude number F by

(1.2) 1/F 2 = μπ cotμπ,

which is called Stokes’ relation in this paper. Byatt-Smith proved using an exact
integral equation in the appendix of his paper [1] that all solitary wave solutions
satisfy this decay condition and the decay rate μ is the smallest positive root of (1.2).
Although it has been directly incorporated in the fully nonlinear computations of
steady solitary waves [6, 10, 13, 15, 26, 28], [25, section 6], this exponential decay
condition (1.2) is violated in long wave approximate solutions. Furthermore, the
truncation of the long wave expansion destroys the harmonic property of a solution.
Here the harmonic property means that the dependent complex variable is regular,
and its real and imaginary parts satisfy Laplace’s equations. Therefore, the long wave
approximation becomes inaccurate with the increase of wave amplitude and it would
be useful to adopt a new approximate method to obtain more reliable solutions for
relatively large amplitude solitary waves.

An alternative approximation to Levi-Civita’s surface condition (1.1) was made
by Davies [3, 4], who approximated sin θ by (1/3) sin 3θ, where θ = arctan(v/u) on the
free surface. We call this Davies’ approximation. It was then shown that closed-form
solutions for the approximate condition can be found for periodic waves in water of
infinite and finite depth. For shallow water, under Davies’ approximation, Packham
[19] obtained analytically a steady solitary wave solution in a complex plane. In this
Packham’s complex plane, the flow domain is conformally mapped and a singularity at
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infinity connected with the exponential decay of a steady solitary wave [28] is removed.
Therefore, a solitary wave solution is analytic in the domain and on its boundary (as
also shown in section 3). Davies’ approximation can be further improved with high-
order corrections to the approximation of sin θ in Levi-Civita’s surface condition (1.1),
but no attempts have been made yet to obtain high-order solitary wave solutions or
examine their convergence to the fully nonlinear solutions.

In this paper, we consider a high-order Davies’ approximation of Levi-Civita’s
surface condition (1.1) to find a steady solitary wave solution in Packham’s complex
plane. It is shown that the solution expanded in the form of power series is regular and
satisfies the exponential decay property with Stokes’ relation (1.2) exactly. By using
a numerical method, where convergence of the series is optimized using an orthog-
onalized polynomial system, high-order Davies’ approximation is found to produce
rapidly converging series solutions even for relatively large amplitude waves.

The paper is organized as follows. The problem is formulated using the loga-
rithmic hodograph variable ω, and high-order Davies’ approximation of Levi-Civita’s
surface condition is presented in section 2. After it is shown that the exponential de-
cay of a solution in the outskirt of wave is related to a singularity of a solution for ω,
Packham’s complex plane is introduced in section 3 to regularize the problem. Using
the method described in section 4, solitary wave solutions under high-order Davies’
approximation are computed and are then compared with fully nonlinear solutions as
well as solutions of the weakly and strongly nonlinear long wave equations.

2. Formulation of the problem.

2.1. Formulation using the logarithmic hodograph variable in the com-
plex velocity potential plane. Consider a left-going solitary wave in the frame of
reference moving with wave speed c, as shown in Figure 1(a), in which the wave is
steady and bounded above by its free surface and below by the horizontal bottom
in the (x,y)-plane. Assume that the flow is irrotational and that the fluid is incom-
pressible and inviscid. Then we can represent this irrotational plane flow using the
logarithmic hodograph variable ω defined by

(2.1) ω = τ + iθ = log(c/w) with τ = log(c/q) and θ = arctan(v/u),

where w = df/dz = u− iv is the complex velocity, f = φ+ iψ is the complex velocity
potential, z = x+ iy, and q =

√
u2 + v2. With the length scaled by the depth h and

the velocity by the wave speed c, we have the following dimensionless variables:

(2.2) α = a/h , z∗ = z/h , f∗ = f/(ch) , w∗ = w/c, and q∗ = q/c,

where a denotes the wave amplitude. Hereafter the asterisks in (2.2) are omitted for
brevity.

It is convenient to formulate this two-dimensional steady problem in the complex
velocity potential f -plane, where the flow domain is mapped onto the infinite strip
−1 ≤ ψ ≤ 0 and −∞ < φ < ∞, as shown in Figure 1(b), because the free surface is
on the streamline ψ = 0 in the f -plane. The free surface condition in the f -plane is
given by Bernoulli’s equation:

(2.3)
1

2
q2 +

1

F 2
y = constant on ψ = 0.

Taking differentiation of this with respect to φ, we can obtain Levi-Civita’s surface
condition [16, section 14.65] given by (1.1). The bottom boundary condition v = 0
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(a) The z-plane (z = x+ iy) (b) The f -plane (f = φ+ iψ)

(c) The ζ-plane (ζ = ζr + iζi) (d) The ζ̂-plane (ζ̂ = ζ̂r + iζ̂i)

Fig. 1. Conformal mapping of the flow domain of a solitary wave. The length and the velocity
are scaled by the water depth h and the wave speed c, respectively. Γ: the free surface given by
ζ̂ = ρ̂(σ̂)eiσ̂ in the ζ̂-plane.

at y = −1 or ψ = −1 and the infinity condition w → 1 as x → ±∞ or φ → ±∞ are
given by

(2.4) θ = 0 on ψ = −1 and −∞ < φ <∞

and

(2.5) ω = τ + iθ → 0 as φ→ ±∞,

respectively. In addition, assuming that the wave profile is symmetric with respect to
the vertical line x = 0 or φ = 0 at the crest, we have another condition given by

(2.6) θ = 0 on φ = 0 and − 1 ≤ ψ ≤ 0.

From these, the problem in the f -plane is to find an analytic function ω = ω(f)
satisfying the conditions (1.1), (2.4), (2.5), and (2.6).

2.2. Davies’ approximate surface condition. When the wave slope is small,
namely, for small values of |θ|, the term sin θ in Levi-Civita’s surface condition (1.1)
can be approximated as

(2.7) sin θ ∼ 1

3
sin 3θ.
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Then the approximate surface condition can be expressed as

(2.8)
∂τ

∂φ
− 1

3F 2
e3τ sin 3θ = 0 or Re

{
dω

df
+ i

1

3F 2
e3ω

}
= 0 on ψ = 0.

Davies applied this approximation to periodic waves on water of infinite depth [3]
[16, section 15.59] and finite depth [4], while Packham [19] obtained a solitary wave
solution in a complex plane described in the subsequent section.

Davies’ approximation (2.8) to Levi-Civita’s surface condition (1.1) can be im-
proved. From sin θ = 1

3 sin 3θ+
4
3 sin

3 θ, a higher-order approximation of sin θ can be
found as [3, 18]

(2.9) sin θ ∼
M∑
m=1

Am(sin 3θ)2m−1

with

(2.10) A1 = 1/3 and Am =
4

3

m−1∑
i=1

⎧⎨
⎩Am−i

⎛
⎝ i∑
j=1

AjAi+1−j

⎞
⎠
⎫⎬
⎭ (m = 2, . . . ,M),

where A2 = 4/81, A3 = 16/729, . . . . This approximation is in principle valid for rela-
tively small wave slope, i.e., |θ| less than about π/6, but its applicability to relatively
large amplitude waves will be examined later in comparison with fully nonlinear so-
lutions.

Davies [3] obtained high-order approximate solutions for periodic waves on water
of infinite depth using (2.9) withM = 2 and 3, but no high-order approximate solitary
wave solutions using (2.9) for M ≥ 2 have been obtained yet.

3. Packham’s complex plane.

3.1. A singularity of a solitary wave solution at infinity. Conformal map-
ping of the flow domain onto the unit disk |ζ| < 1 in the ζ-plane shown in Figure 1(c)
helps us examine the decay property of a solitary wave solution in its outskirt and de-
rive Packham’s complex plane in section 3.2. The f -plane is mapped onto the ζ-plane
by

(3.1) ζ = tanh2
{π
4
(f + i)

}
or f + i =

2

π
log

(
1 +

√
ζ

1−√
ζ

)
,

where the log function and
√
ζ are uniquely defined with the branch cut along the

positive ζ-axis (0 ≤ ζ ≤ 1). In the ζ-plane, the free surface is mapped onto ζ = eiσ

(0 < σ < 2π), and the points at infinity, namely, A, A′, B, and B′ in Figure 1, are
mapped onto ζ = 1. Since (3.1) gives ∂φ/∂σ = −1/{π sin(σ/2)} on the free surface
ζ = eiσ, Levi-Civita’s surface condition (1.1) is expressed in the ζ-plane as

(3.2) π sin
σ

2

∂τ

∂σ
+

1

F 2
e3τ sin θ = 0 on ζ = eiσ (0 < σ < 2π).

For convenience, we write a solution ω in the ζ-plane as ω = ω(ζ), instead of ω =
ω(f(ζ)). From the infinity condition ω(ζ) → 0 as ζ → 1 and the bottom condition
θ = 0 on 0 ≤ ζ ≤ 1, we can assume ω(ζ) ∼ d0(1 − ζ)p as ζ → 1, where d0 and p are
real constants and p > 0. Then, on the free surface ζ = eiσ, τ(σ) ∼ d0 cos(pπ/2) · σp,
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Fig. 2. The free surface Γ for different values of the Froude number F in the ζ̂-plane (ζ̂ =

ζ̂r + iζ̂i). Broken line: a unit circle.

and θ(σ) ∼ −d0 sin(pπ/2) · σp as σ → 0, where σ = 0 corresponds to the physical
infinity ζ = 1. Substituting these into the free surface condition (3.2) and equating
the coefficients of σp for small σ, we get p = 2μ, namely,

(3.3) ω(ζ) ∼ d0 (1− ζ)2μ as ζ → 1,

where μ satisfies Stokes’ relation (1.2) [1], [12, section 252], [22]. Thus ω = ω(ζ) has a
branch point type singularity at ζ = 1 which is connected with the exponential decay
of a solitary wave solution in the outskirt.

3.2. Regularization of the singularity at infinity using conformal map-
ping. It is not straightforward to represent a solitary wave solution in the form of
convergent series in the ζ-plane due to the singularity at infinity or at ζ = 1 in (3.3).

In order to regularize this singularity, Packham [19] introduced a complex variable ζ̂
defined by

(3.4) ζ̂ = tanh2
{μπ

2
(f + i)

}
or f + i =

1

μπ
log

⎛
⎝1 +

√
ζ̂

1−
√
ζ̂

⎞
⎠ ,

where μ is the smallest positive root of Stokes’ relation (1.2), as described in section 1.
This transformation conformally maps the flow domain onto the inside of the closed
curve Γ in the ζ̂-plane, as shown in Figure 1(d). The closed curve Γ corresponds to

the free surface and can be written in the polar coordinate form ζ̂ = ρ̂(σ̂)eiσ̂ with

(3.5) ρ̂(σ̂) =

(
− sin

σ̂

2
+

√
sin2

σ̂

2
+ tan2 μπ

)2 /
tan2 μπ.

Thus the crest C is mapped onto ζ̂ = −ρ̂(π) = − tan2(μπ/2), and the shape of the

closed curve Γ in the ζ̂-plane depends on μ or the Froude number F , as shown in
Figure 2. Similarly to the ζ-plane, we write a solution ω in the ζ̂-plane as ω = ω(ζ̂),

instead of ω = ω(f(ζ̂)), and ω on the free surface Γ as ω(ζ̂ = ρ̂(σ̂)eiσ̂) = τ(σ̂) + iθ(σ̂).
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From (3.4) and (3.5), ∂φ/∂σ̂ on the free surface ζ̂ = ρ̂(σ̂)eiσ̂ can be written as

(3.6)
∂φ

∂σ̂
= − (tanμπ/μπ)

2 sin
σ̂

2

√
sin2

σ̂

2
+ tan2 μπ

= − F 2

2 sin
σ̂

2

√
sin2

σ̂

2
+ tan2 μπ

,

where Stokes’ relation (1.2) is used. Then the free surface condition for τ = τ(σ̂) and

θ = θ(σ̂) in the ζ̂-plane can be expressed as
(3.7)

G(σ̂) := 2 sin
σ̂

2

√
sin2

σ̂

2
+ tan2 μπ

∂τ

∂σ̂
+ e3τ sin θ = 0

on ζ̂ = ρ̂(σ̂)eiσ̂ (0 < σ̂ < 2π).

This is Levi-Civita’s surface condition in the ζ̂-plane. The points at infinity A, A′, B,
and B′ are mapped onto ζ̂ = 1. From (3.1), (3.3), and (3.4), we can find

(3.8) ω(ζ̂) ∼ d̂0 (1 − ζ̂) as ζ̂ → 1,

where d̂0 is a real constant. Thus the solitary wave solution ω = ω(ζ̂) is regular at

ζ̂ = 1. In this paper, this ζ̂-plane is called Packham’s complex plane.

3.3. Packham’s solitary wave solution with Davies’ approximation. By
applying the leading-order approximation of Davies (2.7) to the free surface boundary

condition (3.7), Packham [19] obtained a solitary wave solution in the ζ̂-plane:

(3.9) ω(ζ̂) = −1

3
log

{
1− sin2 μπ · (1− ζ̂)

}
.

This is called Packham’s approximate solitary wave solution. Note that this solution
has a logarithmic singularity at ζ̂ = − cot2 μπ exterior to the flow domain, and this
singular point approaches the crest C on the negative real axis in the ζ̂-plane with
the increase of wave amplitude. When this logarithmic singularity reaches the crest
C, namely, at μ = 1/3 and the corresponding Froude number F = (3

√
3/π)1/2 �

1.286074, Packham’s approximate solution (3.9) attains the highest wave which has
a corner flow with the inner angle of 120 degrees at crest. This behavior of the
exterior singularity qualitatively agrees with that of the leading-order singularity of
the fully nonlinear solution although the location and the coefficient of the logarithmic
singularity are not correct [17, 18].

4. Computation of solitary wave solutions in Packham’s complex plane.
In this section, we introduce a numerical method to obtain solitary wave solutions sat-
isfying the high-order approximation of Davies (2.9), with which Levi-Civita’s surface

condition (1.1) in the ζ̂-plane can be approximated, from (3.7), by
(4.1)

G
(D)
M (σ̂) := 2 sin

σ̂

2

√
sin2

σ̂

2
+ tan2 μπ

∂τ

∂σ̂
+ e3τ

M∑
m=1

Am(sin 3θ)2m−1 = 0

on ζ̂ = ρ̂(σ̂)eiσ̂ (0 < σ̂ < 2π).

The algorithm proposed here is similar to that developed for periodic waves on water
of finite depth in [17] but is modified for solitary waves, as follows.
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4.1. Polynomial approximation. Since a solitary wave solution ω is analytic
in the flow domain and on its boundary Γ in the ζ̂-plane, ω = ω(ζ̂) can be expanded
in the form of power series. In addition, from the bottom condition and the symmetry
condition,

(4.2) θ = 0 (−1 < ζ̂ < 1),

and the infinity condition,

(4.3) ω(ζ̂) → 0 (ζ̂ → 1),

we can write ω = ω(ζ̂) as

(4.4) ω(ζ̂) =

∞∑
k=1

b̂k(1− ζ̂k) (b̂k ∈ R).

Here it should be noted that the Kth partial sum of the infinite series in (4.4) exactly
satisfies the boundary conditions (4.2) and (4.3), and the exponential decay condition
with Stokes’ relation (1.2) in the outskirt, for any K = 1, 2, . . . . Also any partial sum
is regular, and its real part τ and imaginary part θ are both harmonic. Thus we may
obtain an approximate solution using a partial sum of (4.4) such that the free surface
condition (3.7) or (4.1) is satisfied with sufficient accuracy for relatively small wave
amplitudes. Unfortunately, to compute solitary wave solutions of large amplitudes,
we have to take another singular point into consideration, which approaches the flow
domain with the increase of wave amplitude along the negative axis in the ζ̂-plane,
as indicated in section 3.3. This singularity close to the flow domain deteriorates
convergence of series for ω(ζ̂). In order to enlarge the circle of convergence of the
power series (4.4), we move the center of expansion from the origin to the midpoint

ζ̂ = ξ̂1 between the crest C (ζ̂ = −ρ̂(σ̂ = π)) and the physical infinity ζ̂ = 1 in the

ζ̂-plane and represent ω(ζ̂) as

(4.5) ω(ζ̂) =

∞∑
k=1

ãk

[
1− {(ζ̂ − ξ̂1)/γ̂1}k

]
(ãk ∈ R),

where ξ̂1 = {1− ρ̂(π)}/2 and γ̂1 = {1 + ρ̂(π)}/2 with ρ̂(π) = tan2(μπ/2).
Convergence of this infinite series can be further improved using the idea of or-

thogonalization of basis functions, as discussed in Appendix A. In this work, we
transform the basis functions of the infinite series in (4.5) to orthogonal polynomials
p̂k’s using the numerical orthogonalization method described in [17], and we write the
transformed Kth partial sum in the form of

(4.6) ωK(ζ̂) =

K∑
k=1

âk p̂k(ζ̂) (âk ∈ R).

We may then determine the unknown coefficients â = {â1, â2, . . . , âK} using

numerical minimization of the mean-square error E(â) =
∫ π
0
{G(D)

M (σ̂; â)}2dσ̂, where
G

(D)
M (σ̂; â) is the left-hand side of the approximate free surface condition (4.1) with

ωK(ζ̂ = ρ̂eiσ̂) = τK(σ̂) + iθK(σ̂). For this minimization, we numerically solve the
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(a) F = 1.2 (b) F = 1.25

Fig. 3. Comparison of the absolute values |âk |, |ãk|, and |ak| of coefficients in series expansions

of ω. White circle ◦: the coefficient âk of the orthogonalized polynomial expansion (4.6) in the ζ̂-

plane; black circle •: the coefficient ãk of the power series (4.5) in the ζ̂-plane; cross ×: the
coefficient ak of the power series (4.8) in the ζ-plane.

simultaneous nonlinear equations Hk(â) = ∂E/∂âk =
∫ π
0 2G

(D)
M (∂G

(D)
M /∂âk)dσ̂ = 0

(k = 1, 2, . . . ,K) for the K unknowns âk’s using Newton’s method

(4.7) â(ν+1) = â(ν) −
(
∂H

∂â

∣∣∣∣
â=â(ν)

)−1

H(â(ν)) (ν = 0, 1, . . .),

with a convergence condition of ‖G(D)
M ‖max = max0≤σ̂≤π |G(D)

M (σ̂; â)| < 10−9, where
H(â) = (H1(â), H2(â), . . . , HK(â)). For that, for small amplitude waves with F ≤
1.1, we expanded Packham’s approximate solution (3.9) in the form of (4.6) and

adopted its coefficients as the initial values â(0) in (4.7). For large amplitude waves,

the initial values â(0) are continuously changed with increase of wave amplitude.
Then, for sufficiently large number K, the sequence {â(ν)} in (4.7) converged fast
with ν.

4.2. Fully nonlinear solutions. While there are a number of previous compu-
tations of fully nonlinear solitary wave solutions using conformal mapping [2, 5, 10,
13, 24, 25, 26, 29], the numerical method described for high-order Davies’ approximate
surface condition has been used here for convenience since the method can be equally

applied to fully nonlinear surface condition by simply replacing G
(D)
M (σ̂) by G(σ̂).

In order to demonstrate the effectiveness of the orthogonalization of basis func-
tions, we consider the fully nonlinear case and compare convergence of the unknown
coefficients âk’s in (4.6) with that of ãk’s in (4.5), as shown in Figure 3. This fig-
ure also includes the Fourier coefficients ak’s of θ = θ(σ) in the ζ-plane, where
θ(σ) = −∑∞

k=1 ak sin kσ. Here ak’s can be considered as the coefficients of power
series expansion of ω in the ζ-plane, which is given by

(4.8) ω(ζ) =
∞∑
n=1

ak(1 − ζk) (ak ∈ R).

Comparison of convergence of these coefficients in Figure 3 shows that the orthogo-
nalization of basis functions indeed improves convergence and helps us stably catch
the high-order terms even for large values of the Froude number F or large wave
amplitudes.
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Table 1

The number K of terms of the partial sums for computation with the convergence condition
‖G∗‖max < 10−9. Fully nonlinear computation: G∗ = G in (3.7); high-order Davies’ approximation

of order M : G∗ = G
(D)
M in (4.1) for 2 ≤ M ≤ 5.

Fully nonlinear computation High-order Davies’ approximation
F ≤ 1.15 25 20

1.15 < F ≤ 1.20 50 50
1.20 < F ≤ 1.25 65 70
1.25 < F ≤ 1.27 100 110
1.27 < F ≤ 1.28 140 160

Table 1 shows the number K of terms of the partial sum ωK in (4.6) used for
computations for both high-order Davies’ approximate and fully nonlinear surface

conditions with convergence conditions of ‖G(D)
M ‖max < 10−9 and ‖G‖max < 10−9,

respectively.

5. Numerical examples and discussions. In this section, we compare some
computed results of the wave profile and the kinetic energy Ek of high-order Davies’
approximate solutions with those of fully nonlinear solutions for 1 < F ≤ 1.28, for
which F monotonically changes with wave amplitude. We also apply the weakly and
strongly nonlinear long wave approximations to Levi-Civita’s surface condition (1.1)
in the complex velocity potential f -plane as shown in Appendix B. We should remark
that the long wave approximations have previously been applied to the free surface
boundary conditions in the physical domain. Then we compute the high-order long
wave approximate solutions and compare them with high-order Davies’ approximate
solutions. Note that τ at the bottom is assumed to be small in the weakly nonlinear
long wave approximation but not in the strongly nonlinear one. These computed
results are obtained using the method of computation described in section 4 and
Appendix B.3.

Using τ = τ(σ̂) and θ = θ(σ̂) on the free surface in the ζ̂-plane and e−ω = df/dz,
we can write the wave profile (x(σ̂), y(σ̂)) of a solitary wave as

(5.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(σ̂) = F 2

∫ π

σ̂

eτ cos θ

2 sin σ̂′
2

√
sin2 σ̂

′
2 + tan2 μπ

dσ̂′,

y(σ̂) = −F 2

∫ σ̂

0

eτ sin θ

2 sin σ̂′
2

√
sin2 σ̂

′
2 + tan2 μπ

dσ̂′,

and the wave amplitude-to-depth ratio α = a/h is given by α = y(σ̂ = π). The kinetic
energy normalized by ρgh3 is obtained by

(5.2) Ek =

∫ ∞

−∞

∫ η

−1

F 2

2
{(u− 1)2 + v2} dy dx =

∫ π

0

F 6

4

(eτ cos θ − 1)(1− e−2τ )

sin σ̂
2

√
sin2 σ̂2 + tan2 μπ

dσ̂,

where η = η(x) denotes the wave elevation. Also the kinetic energy density dÊk/dσ̂

along the free surface ζ̂ = ρ̂eiσ̂ in the ζ̂-plane is given by the integrand of the second
integral in (5.2), namely,

(5.3)
dÊk

dσ̂
=
F 6

4

(eτ cos θ − 1)(1− e−2τ )

sin σ̂
2

√
sin2 σ̂2 + tan2 μπ

.
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(a) Wave amplitude-to-depth ratio α (b) Kinetic energy Ek

Fig. 4. Variation of the wave amplitude-to-depth ratio α = a/h and the kinetic energy Ek

of the lowest-order approximate solutions with the Froude number F . Thick solid line (Packham):

Packham’s approximate solution (3.9) for G
(D)
M (σ̂) = 0 in (4.1) with M = 1; thin solid line (SNL):

the strongly nonlinear long wave approximate solution for G
(S)
N (φ) = 0 in (B.6) with N = 1; thin

dashed line (WNL): the weakly nonlinear long wave approximate solution (B.15) for G
(W)
N (φ) = 0

in (B.14) with N = 1; circle ◦ (FN): the fully nonlinear solution.

5.1. Comparison of the lowest-order approximate solutions. The lowest-

order solutions of Davies’ approximate equation G
(D)
M (σ̂) = 0 in (4.1) with M = 1

and the weakly nonlinear long wave approximate equation G
(W)
N (φ) = 0 in (B.14)

with N = 1 are given by (3.9) and (B.15), respectively. The lowest-order solution

of the strongly nonlinear long wave approximate equation G
(S)
N (φ) = 0 in (B.6) with

N = 1 can be numerically obtained using the computational method in section 4 and
Appendix B.3. Figures 4(a) and (b) compare variations of the wave amplitude-to-
depth ratio α = a/h and the kinetic energy Ek with the Froude number F of these
lowest-order approximate and fully nonlinear solutions, respectively. These figures
show that all three lowest-order approximate solutions are accurate for F ≤ 1.1. The
computed results of α of the lowest-order solution of Davies’ approximation (that was
also referred to as Packham’s approximate solitary wave solution) are close to those of
the fully nonlinear solutions for F ≤ 1.2 and slightly more accurate than the long wave
approximate solutions. The kinetic energy Ek is computed with comparable accuracy
by all three approximations for F ≤ 1.2. However, we should examine these computed
results of the integrated values carefully, because the corresponding integrands may
be incorrect even if the integrated values are accurate, as shown in Figure 5.

Figure 5 compares the wave profile given by (5.1) and the kinetic energy density
dÊk/dσ̂ given by (5.3) of the lowest-order approximate solutions for F = 1.1, 1.2,

and 1.28. Note that σ̂ represents the location on the free surface ζ̂ = ρ̂eiσ̂ in the
ζ̂-plane, as shown in Figure 1(d), and that σ̂ = 0 and σ̂ = π correspond to the
physical infinity and the crest, respectively. We can find that the lowest-order solution
of Davies’ approximation is much more accurate than the long wave approximate
solutions except near the crest. In the outskirt of wave, the strongly nonlinear long
wave approximate solution is also accurate even for large amplitude waves. Note that
the crest of the lowest-order solution of Davies’ approximation becomes sharper due
to the logarithmic singularity exterior to the flow domain, as described in section 3.3.
Also the results of the kinetic energy density dÊk/dσ̂ in Figures 4 and 5 indicate that
the integrated quantities of approximate solutions can be coincidentally close to the
fully nonlinear solutions even if the corresponding integrands are erroneous.
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(a.1) Wave profile (a.2) Kinetic energy density
(a) F = 1.1

(b.1) Wave profile (b.2) Kinetic energy density
(b) F = 1.2

(c.1) Wave profile (c.2) Kinetic energy density
(c) F = 1.28

Fig. 5. Comparison of the wave profile and the kinetic energy density dÊk/dσ̂ of lowest-order

solutions. The free surface Γ in the ζ̂-plane is represented by ζ̂ = ρ̂eiσ̂, as shown in Figure 1(d),
where σ̂ = 0 is the physical infinity and σ̂ = π is the crest. See caption in Figure 4.

5.2. Comparison of convergence of the high-order approximate solu-
tions. Figures 6(a) and (b) compare convergence of the wave profile and the kinetic

energy density dÊk/dσ̂ of the three high-order approximate solutions to those of fully
nonlinear solutions for F = 1.2 and 1.28, respectively. It is found that high-order
Davies’ approximate solutions converge quickly to the fully nonlinear solutions with
the order M = 2 or 3 even for large amplitude waves, and their convergence rates
are much faster than those of the other two long wave approximate solutions. These
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(a.1.1) Wave profile (a.1.2) Kinetic energy density

(a.1) Davies’ approximate solutions of order M for G
(D)
M (σ̂) = 0 in (4.1)

(a.2.1) Wave profile (a.2.2) Kinetic energy density

(a.2) Weakly nonlinear long wave approximate solutions of order N for G
(W)
N (φ) = 0 in (B.14)

(a.3.1) Wave profile (a.3.2) Kinetic energy density

(a.3) Strongly nonlinear long wave approximate solutions of order N for G
(S)
N (φ) = 0 in (B.6)

(a) F = 1.2

Fig. 6. Comparison of the wave profile and the kinetic energy density dÊk/dσ̂ of high-order

approximate solutions. The free surface Γ in the ζ̂-plane is represented by ζ̂ = ρ̂eiσ̂, as shown in
Figure 1(d), where σ̂ = 0 is the physical infinity and σ̂ = π is the crest. Circle ◦ (FN): the fully
nonlinear solution.

results imply the importance of the evaluation of the dominant singularities described
in sections 3.1 and 3.3 in the approximation of solitary wave solutions, because this
evaluation is less accurate in the long wave approximations. Note that the strongly
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(b.1.1) Wave profile (b.1.2) Kinetic energy density

(b.1) Davies’ approximate solutions of order M for G
(D)
M (σ̂) = 0 in (4.1)

(b.2.1) Wave profile (b.2.2) Kinetic energy density

(b.2) Weakly nonlinear long wave approximate solutions of order N for G
(W)
N (φ) = 0 in (B.14)

(b.3.1) Wave profile (b.3.2) Kinetic energy density

(b.3) Strongly nonlinear long wave approximate solutions of order N for G
(S)
N (φ) = 0 in (B.6)

(b) F = 1.28

Fig. 6. (cont.)

nonlinear long wave approximate solutions converge faster than the weakly nonlinear
ones but slower than high-order Davies’ approximate solutions due to poor accuracy
of approximation of the singularities for large amplitude waves.

6. Conclusions. We have considered a new type of approximation, high-order
Davies’ approximation (4.1), to Levi-Civita’s free surface condition (1.1) for two-
dimensional irrotational motion of a solitary wave progressing in permanent form in



APPROXIMATION OF A SOLITARY WAVE SOLUTION 203

an ideal fluid of constant depth. In comparison with fully nonlinear solitary wave
solutions, it is shown that this approximation in Packham’s complex plane defined
by (3.4) yields rapidly converging series solutions even for relatively large amplitude
waves, for which classical long wave approximations fail.

Despite its long history, the solitary wave problem is still challenging to solve
due to not only the nonlinearity of the free surface condition but also the exponential
decay of the outskirt of a solitary wave solution with Stokes’ relation (1.2). Through
conformal mapping originally introduced by Packham [19], a singularity of the solution
at infinity is regularized so that the solitary wave solution written in the form of power
series exactly satisfies the exponential decay condition and the harmonic property.

We have developed an efficient and accurate polynomial approximation with a
suitably defined norm using a polynomial system orthogonalized on the free surface.
It should be emphasized that the formulation in the conformally mapped plane enables
us to examine singularities exterior to the flow domain and obtain rapid convergence
of series expansion of a solution.

The numerical method developed here has been used to obtain in Packham’s com-
plex plane both high-order Davies’ approximate solutions and fully nonlinear solutions
for the range of 1 < F ≤ 1.28, where the wave amplitude changes monotonically with
the Froude number F . In addition, the high-order weakly and strongly nonlinear
long wave approximations to Levi-Civita’s surface condition have been presented in
Appendix B. Then, we have compared these four solutions, focusing on the wave
amplitude-to-depth ratio α = a/h, the wave profile, the kinetic energy Ek, and the
kinetic energy density dÊk/dσ̂.

For values of F ≤ 1.1, Davies’ approximate solutions (even with the leading-
order approximation or M = 1) compare reasonably well with the fully nonlinear and
strongly nonlinear long wave solutions while the weakly nonlinear long wave solutions
deviate from others even for small values of F − 1. As F increases to 1.2, Davies’ ap-
proximate solutions with M = 1 or 2 show better comparison with the fully nonlinear
solutions than the strongly nonlinear long wave solutions. In particular, the integrated
quantities (such as the kinetic energy and the kinetic energy density) from Davies’
approximate solutions show excellent agreement with the fully nonlinear solutions.
As F increases further (F ≥ 1.2), high-order Davies’ approximations (M > 1) are
required, but it is demonstrated that Davies’ approximate solutions even with M = 2
or 3 converge to fully nonlinear solutions much faster than high-order strongly long
wave approximate solutions. From this study, it can be concluded that Davies’ ap-
proximation is superior to the classical long wave approximations in obtaining steady
solitary wave solutions.

Appendix A. Improvement of polynomial approximation in Packham’s
complex plane. The Kth partial sum of the infinite series in (4.4) is a polynomial

of degree K in the ζ̂-plane. The accuracy of polynomial approximation in the ζ̂-plane
can be improved as follows. First, in order to examine the accuracy of approximate so-
lutions in the ζ̂-plane, we define the inner product (ϕ1, ϕ2)Γ of two complex functions

ϕ1(ζ̂) and ϕ2(ζ̂) and the norm ‖ϕ1‖Γ by [9, section 18.4]

(A.1) (ϕ1, ϕ2)Γ =

∫ 2π

0

ϕ1(ζ̂ = ρ̂eiσ̂) ϕ2(ζ̂ = ρ̂eiσ̂) dσ̂ and ‖ϕ1‖Γ =
√
(ϕ1, ϕ1)Γ,

respectively, where ϕ2(ζ̂) denotes the conjugate of ϕ2(ζ̂). Then, the following theorem
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guarantees that the error of polynomial approximation can be minimized using a
polynomial system orthogonalized on the free surface Γ in the ζ̂-plane.

Theorem A.1 (Henrici [9, Theorem 18.4d, p. 557]). Let ω(ζ̂) be analytic in the

flow domain and continuous on its boundary Γ in the ζ̂-plane. Then the best ap-
proximation of ω(ζ̂) in the norm ‖ ‖Γ by a polynomial of degree ≤ K is given by

(A.2) ωK(ζ̂) =

K∑
k=1

ckpk(ζ̂) with ck = (ω, pk)Γ,

where pk’s are the orthonormal polynomials satisfying

(A.3) (pk, p	)Γ = δk	 =

{
1 (k = �),
0 (k �= �).

We can numerically determine the orthonormal polynomials pk(ζ̂) in (A.2) using

the Gram–Schmidt transformation for linearly independent polynomials in the ζ̂-plane
such as {1− ζ̂, 1− ζ̂2, 1− ζ̂3, . . . , 1− ζ̂N}, which are the basis functions of (4.4).

Appendix B. Long wave approximation in the complex velocity poten-
tial plane. We can apply a long wave approximation to the flow in the f -plane shown
in Figure 1(b) by assuming that high-order derivative terms with respect to φ are neg-
ligible. Friedrichs and Hyers [8, pp. 521–522] obtained an approximate solution for
ω = ω(f) by applying the long wave approximation to Levi-Civita’s surface condition
(1.1) on the weakly nonlinear or small amplitude assumption that τ is small. This
assumption for τ is required for approximation of the exponential term e3τ in (1.1)
using the Taylor expansion. Here, without any assumption on the wave amplitude,
we derive a strongly nonlinear long wave approximation by transforming Levi-Civita’s
surface condition (1.1) for ω(f) to the condition for Ω(f) = e−ω(f).

B.1. Strongly nonlinear long wave approximation. Introducing a new com-
plex variable Ω(f) = e−ω(f), we can rewrite Levi-Civita’s surface condition (1.1) as

(B.1)
∂

∂φ

{(
Ωr

2 +Ωi
2
)2}− 4

F 2
Ωi = 0 on ψ = 0,

where Ω(f) = Ωr(φ, ψ)+i Ωi(φ, ψ) with Ωr(φ, ψ) = e−τ cos θ and Ωi(φ, ψ) = −e−τ sin θ.
Equation (B.1) can be considered as the free surface condition for Ω(f) = e−ω(f) in the
f -plane. Since no exponential terms appear in (B.1), the weakly nonlinear assump-
tion is not necessary for the long wave approximation of (B.1). Under the bottom
condition Ωi = 0 at ψ = −1, Ω = Ω(f) can be expanded around the bottom in the
f -plane as

(B.2) Ω(f) =

∞∑
n=0

1

n!

[
{i(ψ + 1)}n dn

dφn

]
Ω̌r(φ) = ei(ψ+1) d

dφ Ω̌r(φ),

where Ω̌r(φ) is Ωr evaluated at the bottom, namely, Ω̌r(φ) = Ωr(φ, ψ = −1). Using
(B.2), we can write Ωr and Ωi at the surface ψ = 0 as

(B.3) Ωr(φ, ψ = 0) =

∞∑
n=0

(−1)n

(2n)!
D2nΩ̌r(φ) = cosD · Ω̌r
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and

(B.4) Ωi(φ, ψ = 0) =
∞∑
n=0

(−1)n

(2n+ 1)!
D2n+1Ω̌r(φ) = sinD · Ω̌r,

respectively, where D is the differential operator defined by D = d/dφ. In the long
wave approximation, we can assume

(B.5) DnΩ̌r = O(εn) (n = 1, 2, . . .),

where ε is a small parameter of order h/λ, and h and λ denote the water depth and the
horizontal scale of wave, respectively. In this approximation, substituting (B.3) and
(B.4) into (B.1) and collecting the terms up to the order of D2N+1Ω̌r (= O(ε2N+1))
produce

(B.6) G
(S)
N (φ) :=

[
D

{(
(cosD · Ω̌r)N

2
+ (sinD · Ω̌r)N

2
)2

}]
N

− 4

F 2
(sinD·Ω̌r)N = 0,

where [ · ]N denotes truncation of higher-order terms than D2N+1Ω̌r in the bracket.

We call G
(S)
N (φ) = 0 in (B.6) the strongly nonlinear long wave approximate equation.

This kind of strongly nonlinear approximation has been applied to solitary waves in
the physical plane as described in section 1, but not in the conformally mapped plane
such as the f -plane.

The asymptotic behavior of Ω̌r(φ) as φ → ±∞ can be assumed to exponentially
decay as

(B.7) Ω̌r(φ) ∼ 1 + d1 e
∓2βφ (φ→ ±∞),

where d1 is a real constant. Substituting this into (B.6) yields an equation for β as

(B.8) 2β(cos 2β)N = (sin 2β)N/F
2.

This approximates Stokes’ relation (1.2) and determines the exponential decay pa-
rameter β in (B.7) for given F and N . Note that if F is fixed, the exponential decay
rate 2β approaches μπ as N → ∞.

The idea of Packham’s complex plane in section 3 can be applied to expand Ω̌r

in a suitable form for numerical computations. First, for an analytic solution Ωβ
exponentially decaying with the rate 2β as in (B.7), we can introduce a new complex

plane, the ζ̂β -plane, defined by

(B.9) ζ̂β = tanh2 {β(f + i)} or f + i =
1

2β
log

⎛
⎝1 +

√
ζ̂β

1−
√
ζ̂β

⎞
⎠ .

In the ζ̂β-plane, the free surface is mapped onto Γβ : ζ̂β = ρ̂β(σ̂β)e
iσ̂β , where ρ̂β(σ̂β)

is given by (3.5) when μπ is replaced by 2β. For numerical calculation of the strongly

nonlinear long wave approximate equation (B.6), it is convenient to utilize the ζ̂β-
plane. Similarly to (4.4), Ωβ can be expanded in the form

(B.10) Ωβ(ζ̂β) = 1 +
∞∑
k=1

aβ, k(1 − ζ̂β)
k (aβ, k ∈ R).
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Since ψ = −1 or ζ̂β = tanh2(βφ) (0 ≤ ζ̂β < 1) on the bottom, it may be natural to
approximate Ω̌r(φ) by the Kth partial sum of (B.10) as

(B.11) Ω̌r(φ) ∼ 1 +

K∑
k=1

a(S)k sech2k(βφ) (a(S)k ∈ R).

B.2. Weakly nonlinear long wave approximation. The logarithmic hodo-
graph variable ω = ω(f) can be expanded around the bottom in the f -plane, similarly
to (B.2), and we can write τ and θ at the free surface ψ = 0 as

(B.12) τ(φ, ψ = 0) = cosD · τ̌ and θ(φ, ψ = 0) = sinD · τ̌ ,

where cosD and sinD are defined in (B.3) and (B.4), respectively, and τ̌ (φ) is τ
evaluated at the bottom, namely, τ̌(φ) = τ(φ, ψ = −1). The exponential term
e3τ = e3(cosD·τ̌) of Levi-Civita’s surface condition (1.1) can be approximated on the
assumption that τ̌ is small. For long wave approximation with this weakly nonlinear
assumption, we set the orders of τ̌ and Dnτ̌ as

(B.13) τ̌ = O(ε2) and Dnτ̌ = O(εn+2) (n = 1, 2, . . .),

where ε is the same small parameter as that in (B.5). Then we can get the following
approximate equation by substituting (B.12) into Levi-Civita’s surface condition (1.1)
and collecting the terms up to the order of D2N+1τ̌ (= O(ε2N+3)):
(B.14)

G
(W)
N (φ) :=

[( ∞∑
n=0

{−3(cosD · τ̌ )N}n
n!

)
D(cosD · τ̌ )N − 1

F 2
sin(sinD · τ̌ )N

]
N

= 0,

where [ · ]N is defined in (B.6). We call G
(W)
N (φ) = 0 in (B.14) the weakly nonlin-

ear long wave approximate equation of order N . For the lowest-order with N = 1,
integrating twice (B.14) with respect to φ, we can obtain a solution as

(B.15) τ̌ (φ) =
F 2 − 1

F 2
sech2

(
1

2

√
3(F 2 − 1)

1 + 3
2 (F

2 − 1)
· φ

)
.

Note that, from this lowest-order approximate solution and e−ω = df/dz, we can
derive the approximate wave profile η = η(x) in the physical plane, which is equivalent
to the solitary wave solution of the KdV equation.

Similarly to (B.7), τ̌ (φ) decays exponentially as τ̌ (φ) ∼ d2 e
∓2βφ (φ → ±∞),

where d2 and β are both positive constants and β satisfies (B.8). Also, similarly to
(B.11), τ̌ (φ) can be approximated as

(B.16) τ̌ (φ) ∼
K∑
k=1

a(W)

k sech2k (βφ) (a(W)

k ∈ R),

and we can utilize the ζ̂β-plane defined by (B.9) for numerical calculation of the weakly
nonlinear long wave approximate equation (B.14).
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B.3. The method of computation. When the Froude number F and the

order N of long wave approximate equations G
(W)
N (φ) = 0 in (B.14) and G

(S)
N (φ) = 0

in (B.6) are given, we can numerically fix the value of β satisfying approximate Stokes’
relation (B.8). With this value of β, τ̌(φ) and Ω̌r(φ) are approximated by the Kth

partial sums in (B.16) and in (B.11), respectively. Then, in the ζ̂β-plane, we can
apply the algorithm in section 4.2 to these approximate equations by changing μπ to

2β and G to G
(W)
N or G

(S)
N . Note that the basis functions {sech2k(βφ)}Kk=1 in (B.16)

or (B.11) are numerically orthogonalized on the free surface Γβ in the ζ̂β-plane. We
can also obtain the wave profile, the kinetic energy, and its density by changing μπ
to 2β in (5.1), (5.2), and (5.3), respectively.

REFERENCES

[1] J. G. B. Byatt-Smith, An exact integral equation for steady surface waves, Proc. R. Soc.
Lond. A, 315 (1970), pp. 405–418.

[2] D. Clamond and D. Dutykh, Fast accurate computation of the fully nonlinear solitary surface
gravity waves, Comput. & Fluids, 84 (2013), pp. 35–38.

[3] T. V. Davies, The theory of symmetrical gravity waves of finite amplitude. I, Proc. R. Soc.
Lond. A, 208 (1951), pp. 475–486.

[4] T. V. Davies, Gravity waves of finite amplitude. III. Steady, symmetrical, periodic waves in a
channel of finite depth, Quart. Appl. Math., 10 (1952), pp. 57–67.

[5] D. Dutykh and D. Clamond, Efficient computation of steady solitary gravity waves, Wave
Motion, 51 (2014), pp. 86–99.

[6] W. A. B. Evans and M. J. Ford, An exact integral equation for solitary waves (with new
numerical results for some “internal” properties), Proc. R. Soc. Lond. A, 452 (1996),
pp. 373–390.

[7] J. Fenton, A ninth-order solution for the solitary wave, J. Fluid Mech., 53 (1972), pp. 257–271.
[8] K. O. Friedrichs and D. H. Hyers, The existence of solitary waves, Comm. Pure Appl.

Math., 7 (1954), pp. 517–550.
[9] P. Henrici, Applied Computational Complex Analysis, Vol. 3, John Wiley & Sons, New York,

1986.
[10] J. K. Hunter and J.-M. Vanden-Broeck, Accurate computations for steep solitary waves, J.

Fluid Mech., 136 (1983), pp. 63–71.
[11] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a

rectangular channel, and on a new type of long stationary waves, Phil. Mag., 39 (1895),
pp. 422–443.

[12] H. Lamb, Hydrodynamics, 6th ed., Dover, Mineola, NY, 1945.
[13] C. W. Lenau, The solitary wave of maximum amplitude, J. Fluid Mech., 26 (1966), pp. 309–

320.
[14] R. R. Long, Solitary waves in the one- and two-fluid systems, Tellus, 8 (1956), pp. 460–471.
[15] M. S. Longuet-Higgins and J. D. Fenton, On the mass, momentum, energy and circulation

of a solitary wave. II, Proc. R. Soc. Lond. A., 340 (1974), pp. 471–493.
[16] L. M. Milne-Thomson, Theoretical Hydrodynamics, 5th ed., Dover, Mineola, NY, 1968.
[17] S. Murashige, Numerical use of exterior singularities for computation of gravity waves in

shallow water, J. Engrg. Math., 77 (2012), pp. 1–18.
[18] S. Murashige, Davies’ surface condition and singularities of deep water waves, J. Engrg.

Math., 85 (2014), pp. 19–34.
[19] B. A. Packham, The theory of symmetrical gravity waves of finite amplitude. I. The solitary

wave, Proc. R. Soc. Lond. A, 213 (1952), pp. 234–249.
[20] S. A. Pennell and C. H. Su, A seventeenth-order series expansion for the solitary wave, J.

Fluid Mech., 149 (1984), pp. 431–443.
[21] S. A. Pennell, On a series expansion for the solitary wave, J. Fluid Mech., 179 (1987),

pp. 557–561.
[22] G. G. Stokes, The outskirts of the solitary wave, Math. and Phys. Papers, 5 (1905), p. 163.
[23] J, Strutt (Lord Rayleigh), On waves, Phil. Mag. 5th Ser., 1 (1876), pp. 257–279.
[24] M. Tanaka, The stability of solitary waves, Phys. Fluids, 29 (1986), pp. 650–655.
[25] J.-M. Vanden-Broeck, Gravity-Capillary Free-Surface Flows, Cambridge University Press,

Cambridge, UK, 2010.



208 SUNAO MURASHIGE AND WOOYOUNG CHOI

[26] T. Y. Wu, J. Kao, and J. E. Zhang, A unified intrinsic functional expansion theory for
solitary waves, Acta Mech Sin., 21 (2005), pp. 1–15.

[27] T. Y. Wu, X. Wang, and W. Qu, On solitary waves. Part 2: A unified perturbation theory
for higher order waves, Acta Mech Sin., 21 (2005), pp. 515–530.

[28] T. Y. Wu and S. Murashige, On tsunami and the regularized solitary wave theory, J. Engrg.
Math., 70 (2011), pp. 137–146.

[29] H. Yamada, On the highest solitary wave, Rep. Res. Inst. Appl. Mech. Kyushu Univ., 5 (1957),
pp. 53–67.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


