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We study the linear stability of the exact deep-water capillary wave solution of
Crapper (J. Fluid Mech., vol. 2, 1957, pp. 532–540) subject to two-dimensional
perturbations (both subharmonic and superharmonic). By linearizing a set of exact
one-dimensional non-local evolution equations, a stability analysis is performed with
the aid of Floquet theory. To validate our results, the exact evolution equations are
integrated numerically in time and the numerical solutions are compared with the time
evolution of linear normal modes. For superharmonic perturbations, contrary to Hogan
(J. Fluid Mech., vol. 190, 1988, pp. 165–177), who detected two bubbles of instability
for intermediate amplitudes, our results indicate that Crapper’s capillary waves are
linearly stable to superharmonic disturbances for all wave amplitudes. For subharmonic
perturbations, it is found that Crapper’s capillary waves are unstable, and our results
generalize to the highly nonlinear regime the analysis for small amplitudes presented
by Chen & Saffman (Stud. Appl. Maths, vol. 72, 1985, pp. 125–147).
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1. Introduction
The stability of periodic gravity and gravity–capillary waves has been the subject

of extensive research. For comprehensive reviews, see, for instance, Hammack &
Henderson (1993) and Dias & Kharif (1999).

Under the weakly nonlinear assumption, Benjamin & Feir (1967) were the first
to present conclusive analytical and experimental evidence that nonlinear wave trains
of gravity waves on deep water are unstable to long-wavelength perturbations. Soon
thereafter, Zakharov (1968) derived the cubic nonlinear Schrödinger equation and
retrieved the same instability result. Benney & Roskes (1969) extended Zakharov’s
result to water of finite depth, while the extension to gravity–capillary waves is due to
Djordjevic & Redekopp (1977) and Hogan (1985) for water of finite and infinite depth,
respectively.

At the same time, numerical studies of linear stability of periodic gravity waves
of finite amplitude have been carried out to compute the full spectrum and the
corresponding normal modes. Using a hodograph transformation, where the dependent
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and independent variables are interchanged so that the spatial coordinates are functions
of the stream function and the velocity potential in the frame travelling with the
wave, Longuet-Higgins (1978a,b) studied the stability of finite-amplitude gravity waves
on deep water to both subharmonic and superharmonic perturbations. However, he
considered only two-dimensional perturbations. The spectrum calculations for three-
dimensional perturbations were performed by McLean et al. (1981) and McLean
(1982a) for gravity waves and by Zhang & Melville (1987) for gravity–capillary
waves. These results were further extended to finite-depth water by McLean (1982b),
Nicholls (2009) and Deconinck & Oliveras (2011).

While one is required to compute numerically periodic progressive wave solutions
to study stability of finite-amplitude gravity or gravity–capillary waves, exact analytic
solutions of the Euler equations have been known for pure capillary waves. The
closed-form solutions obtained ingeniously by Crapper (1957) are of particular interest
owing to their highly nonlinear features. The maximum wave steepness measured as
the ratio of the wave height to the wavelength (H/λ) is approximately 0.73, which
is much greater than that for gravity waves (approximately 0.14). Furthermore, for
sufficiently large amplitudes, the wave profile becomes multivalued and a trapped
bubble is formed at the trough of the wave. We remark that Vanden-Broeck & Keller
(1980) have found numerically a new class of periodic solutions that can attain greater
steepness than Crapper’s solution.

Chen & Saffman (1985) were the first to study the stability of Crapper’s capillary
wave solution subject to subharmonic perturbations. Since they were interested
in stability characteristics under three-dimensional perturbations, the hodograph
transformation based on conformal mapping is no longer applicable. Therefore, rather
than using Crapper’s solution written parametrically in terms of the stream function
and the velocity potential, the analysis was performed by expanding Crapper’s solution
in Fourier series in physical space. Unfortunately, owing to the highly nonlinear nature
of pure capillary waves mentioned previously, Chen & Saffman (1985) found that
the convergence of the Fourier series becomes very slow even for wave amplitudes
considerably smaller than the maximum value. Therefore, Chen & Saffman (1985)
have shown that capillary waves are unstable to subharmonic perturbations, but
obtained reliable results only for wave steepness up to, roughly, H/λ= 0.12.

Hogan (1988) noticed this amplitude limitation and, using a similar method to
Longuet-Higgins (1978a,b), performed a two-dimensional stability analysis, covering
the entire range of amplitudes from zero to the maximum value. He considered
only the case of superharmonic perturbations and detected two bubbles of instability
for intermediate wave amplitudes. Hogan (1988) further remarked that his result is
consistent with a necessary condition for instability that MacKay & Saffman (1986)
found in terms of eigenvalue signature representing physically the energy in a frame
of reference moving with the wave (see (3.5) for the mathematical definition of
eigenvalue signature). In relatively simple terms, the condition states that instability
could occur only when two eigenvalues of opposite signature collide as the wave
amplitude increases from zero. (A more accurate statement is given in § 3.) After
re-examining the signatures of the two pairs of eigenvalues that were found to collide
by Hogan (1988), it is noticed that they have the same signature and, therefore,
the conclusion of Hogan (1988) on the emergence of unstable modes is apparently
inaccurate.

With these observations in mind, in this paper, we aim to verify the result
for superharmonic perturbations reported by Hogan (1988) and extend the weakly
nonlinear result of Chen & Saffman (1985) for subharmonic disturbances to the highly
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nonlinear regime. To achieve this, we use a system of exact one-dimensional, non-
local evolution equations derived by Ovsjannikov (1974) and Dyachenko, Zakharov
& Kuznetsov (1996), which is an alternative and markedly more concise approach to
that used by Longuet-Higgins (1978a,b) and Hogan (1988). The system of integro-
differential equations obtained using a time-dependent conformal mapping technique
to map the free surface onto a flat surface satisfies Crapper’s solution in the steady
limit and, therefore, the stability analysis can be carried out by linearizing the system
about Crapper’s solution in a straightforward manner. In addition, the system can
be integrated in time using, for example, an accurate pseudospectral method (Choi
& Camassa 1999; Li, Hyman & Choi 2004), and thus the exact time evolution
of perturbed capillary waves of finite amplitude can be studied numerically without
adopting an alternative formulation such as a boundary integral formulation.

The paper is structured as follows. In § 2, we introduce the exact evolution equations
and formulate the eigenvalue problem by linearizing the equations around the exact
solution of Crapper (1957). In § 3, we look at the spectrum in the limit of zero
amplitude and discuss eigenvalue signature. In particular, we focus on the necessary
condition for loss of spectral stability that MacKay & Saffman (1986) found. With
the numerical implementation of the eigenvalue problem described in § 4, we present
our findings for both superharmonic and subharmonic perturbations in §§ 5.1 and
5.2, respectively. To validate our results, we present comparisons between the time
evolution of the normal modes predicted by the linear stability theory and numerical
solutions of the exact evolution equations. We summarize our conclusions in § 6.

2. Perturbation analysis
2.1. Exact evolution equations and periodic wave solution

By using a conformal mapping technique, it has been shown (Ovsjannikov 1974;
Dyachenko et al. 1996; Choi & Camassa 1999) that the kinematic and dynamic
free-surface boundary conditions can be reduced to a closed system of exact evolution
equations for the surface elevation y(ξ, t) and the velocity potential at the free surface
φ(ξ, t) parametrized by a real parameter ξ :

yt = yξH

[
ψξ

J

]
− xξ

ψξ

J
, (2.1)

φt =− 1
2J
(φ2

ξ − ψ2
ξ )+ φξH

[
ψξ

J

]
+ T

ρ

xξyξξ − yξxξξ
J3/2

, (2.2)

where the subscript denotes differentiation, T is the surface tension, and H is the
Hilbert transform given by

H [y]= 1
π
−
∫ ∞
−∞

y(ξ ′, t)

ξ ′ − ξ dξ ′. (2.3)

In (2.1) and (2.2), the Jacobian J is defined as

J= x2
ξ + y2

ξ , (2.4)

and x(ξ, t) and ψ(ξ, t) (the horizontal coordinate and the stream function on the
surface) are related to y and φ by

xξ = 1−H [yξ ], (2.5)
φξ =−U −H [ψξ ], (2.6)

where U is the velocity of a constant background current.
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For a periodic wave solution (x, y, φ, ψ) = (X,Y, Φ,Ψ ) in a frame of reference
moving with the wave speed c, the problem becomes steady (Xt = Yt = 0), so that,
from (2.1) and (2.6) with U = c, we have

Ψξ = 0, Φξ =−c. (2.7)

Then, from Φt =−c2/2 to fix the Bernoulli constant, (2.2) can be reduced to

1
2

c2

X2
ξ + Y2

ξ

=
(

T

ρ

)
XξYξξ − YξXξξ(

X2
ξ + Y2

ξ

)3/2 +
c2

2
. (2.8)

Then it can be shown that the exact solution of Crapper (1957), given by

X = ξ − 2λ
π

A sin(2πξ/λ)
1+ A2 + 2A cos(2πξ/λ)

, Y =−2λ
π

[
1− 1+ A cos(2πξ/λ)

1+ A2 + 2A cos(2πξ/λ)

]
,

(2.9)

satisfies (2.5) and (2.8). In (2.9), the parameter A can be written in terms of the
dimensionless wave height h = H/λ, where H is the wave height and λ is the
wavelength,

A= 2
πh

[√
1+ π

2h2

4
− 1

]
, (2.10)

whereas the phase speed c is given by

c=
√

2π
λ

T

ρ

(
1+ π

2

4
h2

)−1/4

. (2.11)

As shown by Crapper (1957), the maximum amplitude occurs for h = 0.73, for which
a trapped bubble can be observed. Without loss of generality, we assume T = ρ = 1
and λ = 2π, using the same conventions as in Chen & Saffman (1985), and study the
stability of the one-parameter family solution (2.9) with h in the range of [0, 0.73].
This is equivalent to non-dimensionalizing the spatial and temporal variable t with

λ0 = λ

2π
, t0 =

√(
λ

2π

)3
ρ

T
, (2.12)

respectively.

2.2. Linearization around the periodic wave solution
We linearize equations (2.1), (2.2), (2.5) and (2.6) around the periodic wave solution in
a frame of reference moving with the wave. Thus, let

x= X + x̃, y= Y + ỹ, ψ = Ψ + ψ̃, φ =Φ + φ̃, (2.13)

where the quantities denoted by capital letters correspond to the periodic wave solution
and the quantities with a tilde denote small perturbations.

By substituting (2.13) into (2.1), (2.2), (2.5) and (2.6) and retaining only linear
terms, we obtain the linearized equations for the evolution of the perturbations:

ỹt = YξH

[
ψ̃ξ

J0

]
− Xξ

ψ̃ξ

J0
, (2.14)
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406 R. Tiron and W. Choi

φ̃t = F x̃ξ + G ỹξ + c

J0
φ̃ξ − QYξ x̃ξξ + QXξ ỹξξ − cH

[
ψ̃ξ

J0

]
, (2.15)

x̃ξ =−H [ ỹξ ], (2.16)

φ̃ξ =−H [ ψ̃ξ ], (2.17)

where J0 = X2
ξ + Y2

ξ denotes the Jacobian corresponding to the periodic solution and

P(ξ)= c2

2J2
0

(3J0 − 1) , Q(ξ)= T

ρ
J−3/2

0 ,

F(ξ)= PXξ + QYξξ , G(ξ)= PYξ − QXξξ .

 (2.18)

2.3. Normal mode decomposition
Floquet theory ensures that the general solution of the system of linear integro-
differential equations with periodic coefficients given by (2.14)–(2.17) can be
represented as a linear combination of normal modes of the form

x̃(ξ, t)= eσ teipξ
∞∑

j=−∞
ajeijξ , ỹ(ξ, t)= eσ teipξ

∞∑
j=−∞

bjeijξ , (2.19a)

φ̃(ξ, t)= eσ teipξ
∞∑

j=−∞
cjeijξ , ψ̃(ξ, t)= eσ teipξ

∞∑
j=−∞

djeijξ , (2.19b)

where p is real so that the possibility of exponential growth at ξ →±∞ is excluded
and 0 6 p < 1 is assumed. When p = 0, the perturbation has a wavelength of 2π or
less and is called superharmonic. On the other hand, when 0< p< 1, the normal mode
represents a subharmonic perturbation whose wavelength is greater than 2π. In (2.19b),
σ = σR+ iσI denotes the complex eigenvalue. If σR > 0, σR denotes the growth rate and
the corresponding normal mode is unstable.

Using a normal mode of the form (2.19b) and taking into account that

H [eiαξ ] = i sgn(α)eiαξ , (2.20)

equations (2.16) and (2.17) lead to the following relations between the sets of
coefficients aj, bj and cj, dj, respectively:

aj =−i sgn( j+ p)bj, dj = i sgn( j+ p)cj. (2.21)

Note that, when j= 0 and p= 0, a0 and d0 cannot be derived from the above relations.
This apparent arbitrariness is a consequence of the freedom to choose the origin of
the reference system in the horizontal direction. Moreover, these two constants do not
enter in (2.14) and (2.15) since these equations contain only derivatives with respect to
ξ of x and ψ .

By substituting expansion (2.19b) together with (2.21) in (2.14) and (2.15), we
obtain an eigenvalue problem for the complex eigenvalue σ and the coefficients bj

and cj:

σ

∞∑
j=−∞

ei( j+p)ξbj =
∞∑

j=−∞
αj,p(ξ)cj, (2.22)

σ

∞∑
j=−∞

ei( j+p)ξcj =
∞∑

j=−∞
βj,p(ξ)bj +

∞∑
j=−∞

γj,p(ξ)cj, (2.23)
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where

αj,p(ξ)= | j+ p|
{

Xξ
J0

ei( j+p)ξ − Yξµj,p(ξ)

}
, (2.24)

µj,p(ξ)=H

[
ei( j+p)ξ

J0

]
, (2.25)

βj,p(ξ)= | j+ p|ei( j+p)ξ
{

F + i sgn( j+ p)G− ( j+ p)[iYξ + sgn( j+ p)Xξ ]Q
}
, (2.26)

γj,p(ξ)= c( j+ p)

{
iei( j+p)ξ

J0
+ sgn( j+ p)µj,p(ξ)

}
. (2.27)

2.4. Properties of the spectrum
As remarked in Chen & Saffman (1985), the wavenumber p can be changed
by an integer without changing the eigenmode. Furthermore, if {σ, p, bj, cj} is
an eigenset of the system given by (2.22) and (2.23), then (i) {σ ∗,−p, b∗−j, c∗−j},
(ii) {−σ,−p, b−j,−c−j} and (iii) {−σ ∗, p, b∗−j,−c∗−j} are also eigensets.

To show that (i) is an eigenset, note that

α∗j,p = α−j,−p, β∗j,p = β−j,−p, γ ∗j,p = γ−j,−p. (2.28)

Then, by taking the complex conjugate of (2.22) and (2.23), we obtain

σ ∗
∞∑

j=−∞
e−i( j+p)ξb∗j =

∞∑
j=−∞

α−j,−p(ξ)c
∗
j , (2.29)

σ ∗
∞∑

j=−∞
e−i( j+p)ξc∗j =

∞∑
j=−∞

β−j,−p(ξ)b
∗
j +

∞∑
j=−∞

γ−j,−p(ξ)c
∗
j . (2.30)

The fact that (i) is an eigenset follows after replacing j→−j in these equations.
For eigenset (ii), note that Xξ and J0 are even functions in ξ whereas Yξ is odd, and

also that P, Q and F are even whereas G is odd, as can be seen from (2.18). These
properties, together with the relation

H [ f (ξ)]|−ξ =−H [ f (−ξ)]|ξ , (2.31)

which follows directly from definition (2.3), imply that

αj,p(−ξ)= α−j,−p(ξ), βj,p(−ξ)= β−j,−p(ξ), γj,p(−ξ)=−γ−j,−p(ξ). (2.32)

Then, by replacing ξ by −ξ in (2.22) and (2.23), we obtain

σ

∞∑
j=−∞

e−i( j+p)ξbj =
∞∑

j=−∞
α−j,−p(ξ)cj, (2.33)

σ

∞∑
j=−∞

e−i( j+p)ξcj =
∞∑

j=−∞
β−j,−p(ξ)bj −

∞∑
j=−∞

γ−j,−p(ξ)cj. (2.34)

By substituting j→−j in the above equations, it follows that (ii) is also an eigenset.
Then, (iii) follows from (i) and (ii).

Finally, the invariance of the spectrum to the change of p by an integer and the
symmetry properties mentioned above imply that the spectrum is antisymmetric with
respect to p = 1/2. In other words, if σR + iσI and −σR + iσI are eigenvalues for
p ∈ [0, 1/2], then σR − iσI and −σR − iσI are eigenvalues for 1 − p. Thus it suffices to
solve the eigenvalue problem for p ∈ [0, 1/2].
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3. Spectrum in the limit of zero amplitude and Krein signatures
In the limit of h= H/λ→ 0 (equivalently, in the absence of steady periodic waves),

the eigenvalue problem given by (2.22) and (2.23) can be reduced to

σbj − | j+ p|cj = 0, [σ − 2i( j+ p)]cj − | j+ p|(1− | j+ p|)bj = 0, (3.1)

since P = c2, Q = 1, F = c2, G = 0, c = 1, αj,p = | j + p| exp[i( j + p)ξ ], βj,p =
| j + p|(1 − | j + p|) exp[i( j + p)ξ ] and γj,p = 2i( j + p) exp[i( j + p)ξ ], and its solutions
are given by

σ s
m =−i[s|p′ |3/2−p′], (3.2)

where p′ = p + m, m is an integer, and s = ±1. Equation (3.2) is nothing but the
dispersion relation for capillary waves in a frame travelling with speed 1 (the speed
of the periodic solution in the limit h→ 0) since the frequency and phase speed of a
normal mode with wavenumber p′ = p+ m in the fixed frame are

ω = s|p′ |3/2 and c′ = ω/p′ = s sgn(p′) |p′|1/2, (3.3)

respectively.
MacKay & Saffman (1986) have shown that one could use the Hamiltonian structure

of the water wave equations, which was first pointed out by Zakharov (1968), to
infer the behaviour of the spectrum for finite-amplitude periodic waves from that for
zero-amplitude periodic waves.

Indeed, there is a well-developed theory that describes how the eigenvalues of
an equilibrium of a Hamiltonian system can move as parameters change (MacKay
1986). In particular, the second variation of the Hamiltonian associated with a given
eigenvalue is a quadratic form, which can be either positive or negative definite, and
its sign is called the signature of the eigenvalue, or Krein signature. The signature is
preserved as parameters vary as long as eigenvalues do not collide.

Another important result of the theory is the following. If all the eigenvalues of
an equilibrium of a Hamiltonian system are purely imaginary and non-zero, then
the equilibrium can lose spectral stability as parameters vary only by collision of
eigenvalues of opposite signature or by collision of eigenvalues at zero.

The Krein signature of the spectrum at zero wave amplitude has been calculated
for the general case of capillary–gravity waves by MacKay & Saffman (1986). They
showed that the energy of an infinitesimal disturbance with wavenumber p′ = p + m is
given, up to second order, by

E = 2ρω(ω − p′)|ζ0 |2 = 2ρ

p′2
c′(c′ − 1)|ζ0 |2, (3.4)

where ζ0 denotes the perturbation amplitude and ω is, as before, the frequency in
the fixed frame given by (3.3). We note that E < 0 (and thus the Krein signature
is sK = −1) for 0 < c′ < 1, which corresponds to a perturbation travelling in the
same direction as the wave but slower. On the other hand, E > 0 (and thus sK = 1)
for c′ < 0 or c′ > 1, which correspond to the perturbation travelling either in the
opposite direction, or in the same direction as the wave but faster. Alternatively, from
(3.2)–(3.4), the signature can be expressed, in terms of σ s

m, as

sK = sgn[−s Im(σ s
m)] = sgn[−sp′ + |p′ |3/2]. (3.5)
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This implies that the signature is negative for 0< sp′ < 1, zero for sp′ = 0 or sp′ = 1,
and positive otherwise.

For superharmonic perturbations (p = 0, p′ = m), the Krein signature of the
eigenvalues at h = 0 is zero for sm = 0 or sm = 1 and positive otherwise. Note that,
in this case, zero is an eigenvalue (with multiplicity four). This zero eigenvalue could,
in principle, give rise to unstable modes as the amplitude increases. Nonetheless,
collisions of non-zero eigenvalues cannot lead to the emergence of unstable modes
since they all have the same signature. As discussed in § 5.1, our findings are in
agreement with this particular observation and furthermore reveal stability for the
entire range of amplitudes from zero to the maximum amplitude.

For subharmonic perturbations (p 6= 0), the signature of the eigenvalues in the limit
h = 0 is positive except for the pairs (m, s) = (−1,−1) and (0, 1) for which the
normal modes move to the right in the fixed frame but slower than the carrier
wave and hence have negative signature – see figure 1, where we depict the phase
speed (in the fixed frame) dependence on the wavenumber p for several eigenmodes
corresponding to h= 0. This case meets all the requirements of the theory in MacKay
(1986) and hence instability can occur only by collisions between branches of opposite
signature. As mentioned before, it suffices to look at the range p ∈ (0, 1/2]. By
examining figure 2, one could expect two such collisions to occur: one between
the branches (m, s) = (−1,−1) and (1, 1), and the other between (m, s) = (0, 1) and
(0,−1) for p ∈ (0, p0) or (m, s) = (−2,−1) for p ∈ (p0, 1/2) where p0 = 0.318 75 at
which the intersection between the branches (0,−1) and (−2,−1) occurs. As can be
seen in § 5.2, our findings confirm this expectation and moreover reveal that each of
these collisions results in the emergence of an unstable branch. However, we note
that, as the amplitude increases from h = 0, two branches of the same signature could
cross, but no unstable modes are expected to emerge. Finally we remark that, as
noted already by MacKay & Saffman (1986), collision between branches of opposite
signature is only a necessary but not a sufficient condition for loss of spectral stability;
in fact, the recent work by Nicholls (2009) offers a more restrictive criterion for
instability.

4. Numerical implementation
To solve the eigenvalue problem given by (2.22) and (2.23), we recast it as a

generalized linear eigenvalue problem as follows. After truncating the infinite series
for j = −n, . . . , n, the unknowns become the eigenvalue σ and two sets of 2n + 1
coefficients bj, cj. Next, by denoting

ζ = {b−n, . . . , bn, c−n . . . , cn}T, (4.1)

and choosing 2n+ 1 discretization points within the period of 2π,

ξk = 2π(k − 1)
2n+ 1

with k = 1, . . . , 2n+ 1, (4.2)

equations (2.22) and (2.23) can be put in matrix form as

σLζ = Rζ , (4.3)

with L and R being the (4n+ 2)× (4n+ 2) matrices

L=
[

E O2n+1

O2n+1 E

]
, R =

[
O2n+1 A

B G

]
, (4.4)
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p
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(–2, 1)

(1, 1)
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0
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1.0

1.5

–1.0

–0.5

–1.5

FIGURE 1. Phase speed (in the fixed frame) of the normal modes corresponding to amplitude
h = 0, as a function of the wavenumber p. The shaded region corresponds to phase speeds
between 0 and 1 (the speed of the carrier wave). Normal modes with phase speeds inside
this area have negative Krein signatures whereas branches with phase speeds outside it have
positive Krein signature.

where O2n+1 is the 2n + 1 square zero matrix, and matrices E , A, B and G are all
square matrices of dimension 2n+ 1 with components

Ek,l = exp[i(l′ + p)ξk], Ak,l = αl′,p(ξk), Bk,l = βl′,p(ξk),

Gk,l = γl′,p(ξk), l′ = l− n− 1,

}
(4.5)

where the functions α, β, γ are given by (2.24)–(2.27). All the terms defining these
functions except the term µj,p are given explicitly in terms of ξ and, therefore, can be
easily evaluated at ξ = ξk. On the other hand, µj,p requires one to evaluate numerically
the Hilbert transform of exp[i( j+p)ξ ]/J0. This is done by first determining the discrete
Fourier transform of 1/J0 via a fast Fourier transform (FFT) and then summing up the
resulting linear combination of the Hilbert transforms of exponential functions that are
explicitly given by (2.20).

To solve the generalized eigenvalue problem (4.3), we use the QZ algorithm for
non-symmetric complex matrices (Garbow 1978) and, for the FFT transform, the
FFTPACK package (Swarztrauber 1982). The level of truncation for the Floquet series
used was n = 128 and the number of Fourier modes for the Fourier transform of the
term 1/J0 was 512.

As discussed in § 3, for superharmonic perturbations (p = 0), zero is an eigenvalue
with multiplicity 4 when the wave amplitude is zero (h = 0). For h 6= 0, two
eigenvalues are identically zero since the (n + 1)th and (3n + 2)th columns of matrix
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(0, –1) (0, 1)

(–1, –1)
(–1, 1)

(1, 1)

(2, 1)

(–3, –1)

p0

p
0 0.2 0.4 0.6 0.8 1.0

0

1

2

–1

–2

FIGURE 2. Imaginary part of eigenvalues at h = 0 as a function of the wavenumber p.
The continuous line marks the branches with negative Krein signatures whereas the dashed
line corresponds to positive Krein signature. The value p0 = 0.318 75 corresponds to the
intersection between the branches (m, s)= (0,−1) and (−2,−1).

R are identically zero. Apart from this eigenvalue pair, our computations (performed
in double precision) revealed a pair of complex eigenvalues with magnitude 10−8.
Since the condition numbers of the matrices L and R in (4.3) are large in this case
and furthermore loss of accuracy is expected for close or multiple eigenvalues, we
have also performed our computations in quadruple precision and further improved the
accuracy in estimating this eigenvalue pair whose magnitude further reduced to 10−16.

5. Results
5.1. Superharmonic normal modes

In figure 3, we compare the imaginary part of eigenvalues for the superharmonic
normal modes (as a function of non-dimensional wave height h) with the results in
Hogan (1988, his figure 1). In contrast to Hogan (1988), who reported instability of
Crapper’s waves for some amplitude ranges, our calculations reveal spectral stability
to superharmonic disturbances for the entire range of amplitudes from zero to the
maximum amplitude. Our results agree fairly well with those in Hogan (1988) for
small amplitudes, including the collision between the two branches (m, s) = (−7,−1)
and (4,−1) at h ≈ 0.18. Note that the relationship between the wave steepness used
in Hogan (1988) and h is ak = πh. As stated by the necessary condition for instability
of MacKay & Saffman (1986), this collision does not result in loss of stability
since the eigenvalues have the same signature (positive). On the other hand, Hogan
(1988) suspected instability around this amplitude, since he thought mistakenly that the
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h
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(3, –1)

(–6, –1)

0.592 0.6680.18

(4, –1)
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1
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12

0.1 0.2 0.3 0.4 0.5 0.6 0.70

FIGURE 3. Imaginary part of the superharmonic normal modes as a function of non-
dimensional amplitude h = H/λ (H is the wave height and λ is the wavelength): grey dotted
lines, current results; black solid lines, results reported in Hogan (1988, his figure 1). On
each branch, we mark the pair (m, s) corresponding to the spectrum at zero amplitude (h= 0)
given by (3.2).

colliding branches have opposite signatures. Our results show that the two branches
in fact cross over each other following this collision without any sign of instability,
as can be inferred from figure 4. In this figure, we can observe clearly where these
branches reappear after the collision by examining eigenmodes for wave amplitudes
bracketing the collision amplitude.

Furthermore, Hogan (1988) detected two pockets of instability for larger amplitudes:
one centred around h= 0.592 (see his figure 4) and the other centred around h= 0.668
(see his figure 6). As shown in our figure 3, even though there are branches
that approach each other at these amplitudes, no collision is detected from our
computations using both double and quadruple precisions. Although it is not clear
yet, we suspect that a probable cause of this discrepancy is the fact that Hogan
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–0.5

0

0.5

–0.5

0
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0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 3 4 5 6 0 1 2 4 5 63

(a)

1.0(c)

1.0(b)

(d)

FIGURE 4. Four superharmonic normal modes corresponding to the two branches of
(m, s) = (−7,−1) and (m, s) = (4,−1) that cross over at h ≈ 0.18: (a,c) for h = 0.1; and
(b,d) for h = 0.2. We can infer that normal modes (a), with σ ≈ 11.475 i, and (b), with
σ ≈ 9.32 i, marked with circles in figure 3, pertain to the branch (m, s) = (4,−1); whereas
(c), with σ ≈ 11.165 i, and (d), with σ ≈ 9.6215 i, marked with crosses in figure 3, pertain to
the branch (m, s)= (−7,−1).

(1988) performed single-precision computations. As mentioned previously, Hogan
(1988) justified the appearance of instability from collision of eigenvalues of different
signature, but the signature of these eigenvalues is positive. Therefore, the necessary
condition of MacKay (1986) is not fulfilled.

To validate our results, we integrate the exact evolution equations with an initial
condition consisting of a superposition of the periodic wave solution and normal
modes. The numerical method adopted here is a pseudospectral method for spatial
discretization and a fourth-order Runge–Kutta scheme for time integration. We refer
the reader to Li et al. (2004) for a detailed description. For the current simulations,
we use 256 grid points (or, equivalently, 256 Fourier modes) within the 2π-periodic
domain and a time step of 10−3. We monitor conservation of mass, momentum and
energy, and the magnitude of the relative error is of order 10−14 within the time frame
of the simulations.

We focus on the two amplitudes, h = 0.592 and 0.668, around which the two
instability pockets were detected by Hogan (1988). For each of these amplitudes,
we examine the time evolution of the two normal modes corresponding to the two
branches that were predicted to collide by Hogan (1988). All these points are marked
by squares in figure 3.

In figures 5 and 6, we depict the time evolution of the normal modes of
(m, s)= (−5,−1) and (3,−1), respectively, for h= 0.592. Based on our computations,
they are neutrally stable with σ ≈ 2.983 01 i and σ ≈ 3.1524 i. Our numerical solutions
of the exact evolution equations show no sign of instability and compare well with
the results from our linear stability analysis. Therefore, it can be concluded that our
stability results for superharmonic perturbations are reliable. This conclusion is further
confirmed by the comparison between our numerical solutions and our linear stability
theory for h = 0.668, as shown in figures 7 and 8 corresponding to (m, s) = (−6,−1)
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t

0 1 2 4 5 63

0 1 2 4 5 63

–2

0

2

–2

0

2

1 2 4 5 630

5

10

15

20(a) (b)

(c)

(×
 1

0
–

4 )
(×

 1
0

–
4 )

FIGURE 5. Time evolution of a superharmonic normal mode for (m, s)= (−5,−1) with σ =
2.98301 i for a periodic wave with amplitude h = 0.592. We present here the perturbation in
y over one wavelength 2π. (a) Numerical solution using the evolution code. (b,c) Comparison
between the linear theory (dots) and the evolution code (solid lines) at t = 10 and t = 20,
respectively.
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FIGURE 6. Same as figure 5 for h= 0.592, a superharmonic normal mode for
(m, s)= (3,−1) with σ = 3.1524 i.

and (−7,−1), respectively. These normal modes have eigenvalues of σ ≈ 3.6974 i
and σ ≈ 3.9939 i, respectively, and are found to be neutrally stable, as our linear
theory predicts.

5.2. Subharmonic instabilities
Our results indicate that Crapper’s waves are unstable to subharmonic perturbations
through collisions of eigenvalues of opposite signature, as evidenced in figure 9, where
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FIGURE 7. Same as figure 5 for h= 0.668, a superharmonic normal mode for
(m, s)= (−6,−1) with σ = 3.6974 i.
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FIGURE 8. Same as figure 5 for h= 0.668, a superharmonic normal mode for
(m, s)= (4,−1) with σ = 3.9939 i.

the bifurcation diagrams for four different values of p are shown. This is consistent
with the theory in MacKay & Saffman (1986). Note that, for each p, there are two
pairs of eigenvalues of opposite signature at h = 0 that collide eventually as the
amplitude h becomes greater than certain critical values. Then two unstable modes,
say, σ1 and σ2, sprout. When p = 1/2, the two unstable modes become complex
conjugate σ1 = σ ∗2 and thus satisfy the symmetry properties of the spectrum specified
in § 2.4. As already conjectured in § 3 (see, in particular, figure 2), one collision occurs
between the two branches of (m, s)= (1, 1) and (−1,−1). The second collision occurs
between (m, s) = (0, 1) and (0,−1) for p ∈ (0, 0.318 75) while for p ∈ (0.318 75, 0.5)
between (m, s)= (0, 1) and (−2,−1) .
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FIGURE 9. Bifurcation diagrams for subharmonic normal modes for (a,e) p = 0.2, (b,f ) p =
0.318 75, (c,g) p = 0.4 and (d,h) p = 0.5. (a,b,c,d) Imaginary part of the normal modes
as a function of non-dimensional amplitude h = H/λ (H is the wave height and λ is the
wavelength). (e,f,g,h) Real part (growth rate). On each branch we mark the pair (m, s)
corresponding to h= 0 – see (3.2).
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FIGURE 10. Subharmonic unstable modes. (a) The dependence of the growth rate (of the
more unstable mode among the two shown in figure 9) on the perturbation wavenumber p for
a series of equally spaced amplitudes in the range 0< h< 0.73. (b) Comparison to the weakly
nonlinear theory (depicted here with dashed lines): σR = (p/8)

√
3π2h2 − 9p2.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

56
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 N
ew

 Je
rs

ey
 In

st
itu

te
 o

f T
ec

hn
ol

og
y,

 o
n 

18
 M

ar
 2

02
0 

at
 2

2:
12

:2
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.



Linear stability of finite-amplitude deep-water capillary waves 417

0 0.2 0.4 0.6

h

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6

h

0.02

0.04

0.06

0.08

0.10

0

(a) (b)

FIGURE 11. Subharmonic instability. (a) Wavenumber corresponding to the fastest-growing
mode and (b) the corresponding growth rate. Continuous line, current theory; dashed line,
weakly nonlinear theory (pmax = πh/

√
6, σmax= π2h2/16); circles, results in Chen & Saffman

(1985).

Figure 10(a) shows the growth rate of the faster-growing mode (among the two
depicted in figure 9) for a series of equally spaced amplitudes in the range of
0 < h < 0.73. As shown in figure 10(b), our results for the growth rate compare
well with the predictions of the weakly nonlinear theory based on the cubic nonlinear
Schrödinger equation formulation (Chen & Saffman 1985) given by

σR = 1
8 (3π

2h2p2 − 9p4)
1/2
. (5.1)

In figure 11, we show our results for the wavenumber of the most unstable mode and
the corresponding growth rate. Note that both compare well with the numerical results
of Chen & Saffman (1985) for 0< h< 0.12. In addition, in figure 11, the comparison
with the weakly nonlinear theory given, from (5.1), by

pmax = πh/
√

6 and σmax= π2h2/16 (5.2)

is made and an excellent agreement is found even for wave amplitudes that we think
are too large for the weakly nonlinear theory to be valid. Similar comparisons are
made in figure 12 for the domain of instability in the (h, p) plane.

To conclude this section, we show a few comparisons between the numerical
simulations of the exact evolution equations and the predictions of the linear theory.
In the following, we consider a wave with amplitude close to the maximal (h = 0.7)
and subharmonic normal modes with p = 1/2 (hence the spatial domain for the time
evolution code contains two periods, 4π). The number of discretization points used
is 512 while the time step is 10−3. In figure 13, we depict one of the two unstable
normal modes for p= 1/2, whose eigenvalue is given by σ = 0.092−0.086 i, while the
other unstable eigenvalue is its complex conjugate, as a consequence of the symmetry
properties of the spectrum discussed in § 2.4. The growth rate 0.092 is close to the
maximal growth rate of, approximately, 0.1, which corresponds to a perturbation with
wavenumber p ≈ 0.36, as can be seen from figure 11(a). In figure 14, we show a
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FIGURE 12. Domain of subharmonic instability in the (h, p) plane. Continuous line, current
theory; dashed line, weakly nonlinear theory (p = πh/3); circles, results in Chen & Saffman
(1985).

neutral mode corresponding to the branch (m, s) = (−5,−1), while one of the two
decaying modes for p = 1/2 (with σ = −0.092 − 0.086 i) is shown in figure 15. Note
that the agreement between the fully nonlinear simulations and the linear theory is
good for all cases. It is interesting that the linear theory captures well the behaviour
of the unstable normal mode even when its magnitude becomes so large that the
linear theory is expected to break down, as evidenced by figure 13(c,d). We further
remark that in figure 13(d) we have selected the time at which the surface profile
touches itself. Beyond this particular time, the behaviour of the system can no longer
be described by the model equations (2.1)–(2.6) since the topology of the fluid domain
changes.

6. Concluding remarks
We have performed a linear stability analysis of Crapper’s exact capillary wave

solutions on deep water, investigating both superharmonic and subharmonic two-
dimensional disturbances, for the entire range of amplitudes from zero to the
maximum amplitude at which a trapped bubble is formed at the trough of the wave.
To this end, as an alternative approach to the classical method of Longuet-Higgins
(1978a,b), we have used a system of exact one-dimensional non-local evolution
equations (Ovsjannikov 1974; Dyachenko et al. 1996), which yields a more compact
formulation of the linear eigenvalue problem. In addition, we have solved the system
numerically and compared our numerical solutions with the results from the linear
stability analysis.

We have found that Crapper’s capillary waves are linearly stable to superharmonic
perturbations for the entire amplitude range. Our findings for superharmonic normal
modes agree with Hogan’s (1988) results for small amplitudes, but differ for larger
amplitudes. We demonstrate the reliability of our results in this regime by comparing
the time evolution of the normal modes with the direct numerical integration of the
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FIGURE 13. Time evolution of a subharmonic growing normal mode with p = 1/2 and
σ = 0.092 − 0.086 i for a periodic wave with amplitude h = 0.7. (We depict here the
perturbation in y over two wavelengths 4π.) (a) Numerical solution using the evolution code.
(b,c) Comparison between the linear theory (dotted line) and evolution code (continuous
line) at t = 20 and t = 45.3, respectively. (d) Wave profile in the physical space at time
t = 45.3 (continuous line), and initial condition for the evolution code consisting of a wave of
amplitude h= 0.7 perturbed with the corresponding normal mode (dashed line).

exact evolution equations (using as initial condition a superposition of the solution of
Crapper (1957) and the corresponding normal modes). The comparison between the
predictions of the current theory and numerical simulations is excellent for all cases
we have tested.

In the subharmonic regime, our work extends the previous study by Chen &
Saffman (1985), whose results are limited to relatively small amplitudes. We find that
Crapper’s solution is unstable to subharmonic perturbations for the entire amplitude
range. The wavenumber of the dominant instability increases almost linearly with the
amplitude to p = 1/2 in the range of 0 6 h . 0.4 and then decreases monotonically
to p ≈ 1/3 as h further increases. Our results for subharmonic perturbations agree for
small amplitudes with both the results of Chen & Saffman (1985) and the predictions
of the weakly nonlinear theory based on the cubic nonlinear Schrödinger equation.
Comparisons with the direct numerical integration of the exact evolution equations is
excellent, which demonstrates again the reliability of our analysis.

We remark, however, that viscous dissipation, which we have neglected, plays an
important role in the propagation of periodic capillary waves and might subsequently
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FIGURE 14. Time evolution of a subharmonic neutral normal mode with p = 1/2 and
σ = 2.001 i (corresponding to the branch (−5,−1)) for a periodic wave with amplitude
h = 0.7. (We depict here the perturbation in y over two wavelengths 4π.) (a) Numerical
solution using the evolution code. (b,c) Comparison between the linear theory (dotted line)
and evolution code (continuous line) at t = 10 and t = 20, respectively.
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FIGURE 15. Same as figure 14, for a decaying normal mode with σ =−0.092− 0.086 i.

affect their instabilities. Lamb (1932) estimated the rate of decay of linear waves due
to bulk viscosity as 8νπ2/λ2, where ν is the kinematic viscosity (≈0.017 cm2 s−1 for
water) and λ is the wavelength (see Lamb 1932, Art. 348). This estimate has been
confirmed experimentally by Davies & Vose (1965) for progressive wave trains of
capillary waves with frequencies between 50 and 920 Hz (thus wavelengths ranging
from approximatively 0.08 to 0.59 cm). Note that small-amplitude capillary waves of
these wavelengths are expected to be dissipated by viscosity over 8–22 wave periods,
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whereas the growth rate of dominant subharmonic instabilities predicted in this paper
is approximately 0.1/t0, which corresponds to a time scale of 10 wave periods. Since
the two time scales of growth and dissipation are comparable, it would be of interest
and a challenge to confirm experimentally the result for finite-amplitude capillary
waves presented in this paper.

We finally remark that it is straightforward to extend this work to capillary waves on
fluid sheets of finite thickness, for which the exact solutions of Kinnersley (1976) are
available. Thus, a two-dimensional analysis can be performed in a similar fashion by
linearizing the non-local evolution equations for finite depth.
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