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Abstract. This paper reviews the authors’ recent work on water waves in het-
erogeneous media, namely nonlinear reduced models for water waves propagating
over a region of highly variable depth. Both surface and internal waves are con-
sidered. Through different strategies for the mathematical modeling, at the level
of equations, we show how diferent types of water wave models (namely systems
of partial differential equations) can arise: weakly or fully dispersive, weakly or
strongly nonlinear. The applications for these types of long waves are usually from
Geophysics: in particular oceanography and meteorology. Here the emphasis is on
coastal waves related to Physical Oceanography. An overview of the mathematical
formulation is presented together with different asymptotic simplifications at the
level of the partial differential equations (PDEs). References for recent work on
the asymptotic analysis of solutions is also provided. These describe the regime
where long pulse shaped waves propagate over rapidly varying topographic het-
erogeneities, which are modeled through rapidly varying coefficients in the PDEs.

1 Introduction

This article reviews the authors’ recent work on deducing reduced models for water waves in
a highly complex geometry. Both surface and internal waves are considered. These reduced
models are then used for analyzing nonlinear waves in complex systems, where the complicated
geometry of the two-dimensional problem is converted into one-dimensional systems of partial
differential equations (PDEs) with highly variable coefficients.
Waves in heterogeneous media is a field of great mathematical interest and, not surpris-

ingly, applicable to many technological and environmental problems. If we keep our attention
to Geophysics we have applications in the atmosphere, hydroshpere and lithosphere. In the
lithosphere one may think of acoustic waves, regarding the seismic probing of the Earth’s sub-
surface [1]. This is of interest to the oil industry. In the atmosphere and hydrosphere we may
take the heterogeneous medium as being the topography. These physical applications, for long
wave interactions with topography, range from coastal surface waves [2] to atmospheric flows
over mountain ranges [3,4].
In this work we will focus on surface and internal coastal waves. Waves on/in an ideal fluid

body, under the force of gravity, are governed by the Euler equations. Nevertheless in both
engineering applications as well as laboratory scales, the full Euler equations appears more
complex than necessary. Very often this system, for the entire fluid body, can be simplified
to more tractable reduced surface/internal wave models, when restricted to specific physical
regimes. Under this modeling strategy Boussinesq-type equations, which include leading order
terms regarding nonlinearity and dispersive effects, have been shown to provide an accurate
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description for wave evolution in coastal regions. The first set of equations valid for variable
depth was derived by Peregrine [5] in 1967. The model is valid under the mild slope hypothesis.
Very recently there has been a great amount of research regarding additional modeling

issues, namely in improving Boussinesq-type models as for example in [6–11]. But all of these
consider flat or slowly varying topographies. For very general topographies a terrain-following
Boussinesq model was developed by Nachbin [12] in 2003. The model allows for multiply-valued
topography profiles, as will be shown here. Solutions to this model were analyzed in [13–16].
Existence and uniqueness for a variable coefficient Boussinesq system of equations was first
given by Quintero and Muñoz in 2004 [17].
Then ideas from Nwogu [9] were used to generalize the reduced model given in [12]. We

showed how small (higher order) changes in the linear dispersion relation (over a flat bottom)
become dramatically important in the presence of a highly-fluctuating topography [18]. We
presented a linear dispersion analysis and validated the corresponding results both for a flat
bottom and also in the presence of a variable propagation medium. In order to fully validate
dispersive properties of several possible truncations, that can be made for these Boussinesq-type
models, we compared them with the corresponding complete (non-truncated) model, namely
linear potential theory. For the numerical validation in [18] we used a new, highly efficient
numerical scheme developed by Artiles and Nachbin [19,20]. Discrepancies observed become
even more important in the waveform inversion problem [21], an application for determining
(for example) a tsunami’s initial profile [18].
For internal gravity waves at the interface between two layers of different densities, var-

ious asymptotic models including the Boussinesq-type equations have been proposed and
studied mainly under the traditional weakly nonlinear assumption. An increasing number of
recent field observations of large amplitude long internal waves, however, indicate that the
previously known weakly nonlinear models are no longer applicable to the strongly nonlin-
ear regimes and it is crucial to develop new dynamical models whose range of validity is
large enough to describe realistic observations. It has been shown in Choi and Camassa [52,
53] that, using a systematic asymptotic expansion, such models can be derived in a two-
layer system and their solitary wave solutions agree well with both numerical solutions of the
Euler equations and laboratory experiments [55]. In their derivation, the thickness of one of
the two layers is assumed to be small compared with the characteristic wavelength, but no
assumption on the wave amplitude has been made. In this review, we focus on the strongly
nonlinear models for flat bottom and discuss possible extensions to variable bottom.

2 Reduced surface wave models: Weak dispersion

2.1 Formulation and background of the problem

In this section we start with the more standard (reduced model) derivation procedure in order
to obtain a family of reduced governing equations as studied in many papers indicated later in
this work.
When the fluid, where surface waves are propagating, can be considered as being inviscid

the Navier-Stokes equations reduce to the Euler equations [2,22]. When the free surface flow
can be taken as being incompressible and irrotational it is interesting to recast the Euler
equations into a potential theory framework [22]. For example in a two-dimensional flow, we can
study the evolution of the velocity potential (one object) as opposed to the evolution of two
objects, the horizontal e vertical velocities. As will be seen below, we can also take advantage
of many theoretical aspects of harmonic functions as well as the associated complex analysis.
Let variables with physical dimensions be denoted with a tilde. Then the formulation

through the velocity potential φ̃, where (u, v) ≡ ∇φ̃ is the velocity vector, is given as

φ̃x̃x̃ + φ̃ỹỹ = 0 for − H̃(x̃) < ỹ < η̃(x̃, t̃), −∞ < x̃ <∞,

subject to

η̃t̃ + φ̃x̃η̃x̃ − φ̃ỹ = 0, φ̃t̃ +
1

2

(
φ̃2x̃ + φ̃

2
ỹ

)
+ gη̃ = 0,
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at the free surface ỹ = η̃(x̃, t̃). At the impermeable bottom topography we have a Neumann
condition.
We introduce the length scales �p (a typical pulse width or wavelength), h0 (a typical depth),

ao (a typical wave amplitude), � (the horizontal length scale for bottom irregularities) and L
(the total length of the rough region or the total propagation distance). The acceleration due
to gravity is denoted by g and the reference shallow water speed is c0 =

√
gh0. Dimensionless

variables are then defined in a standard fashion [22,23] by having

x̃ = �p x ỹ = h0 y t̃ =

(
�p

c0

)
t

η̃ = a η φ̃ =

(
g�p a

c0

)
φ h̃ = h0 H

(
x̃

lb

)
.

The dimensionless form of the potential theory formulation for Euler’s equations with a free
surface and an impermeable bottom topography [22] is

β φxx + φyy = 0 for −H(x/γ) < y < αη(x, t), −∞ < x <∞, (1)

subject to

ηt + αφxηx −
1

β
φy = 0, (2)

η + φt +
α

2

(
φ2x +

1

β
φ2y

)
= 0, (3)

at the free surface y = αη(x, t). The function φ(x, y, t) denotes the dimensionless velocity
potential, η(x, t) the dimensionless wave elevation measured with respect to the undisturbed
free surface y = 0. The dimensionless parameters α = ao/ho and β = h

2
o/�
2
p measure the

strength of nonlinear and dispersive effects, respectively, and the parameter γ = �/�p measures
the ratio inhomogeneities/wavelength. We recall that in the potential theory model the fluid is
assumed to be inviscid, incompressible and irrotational.
At the impermeable bottom the Neumann condition

φy +
β

γ
H ′(x/γ)φx = 0, (4)

is satisfied. We assume that the boundary at the bottom is described by the function
y = −H(x/γ) where

H(x/γ) =

{
1 + n(x/γ) when 0 < x < L,

1 when x ≤ 0 or x ≥ L. (5)

The bottom profile is described by the (possibly rapidly varying) function n(x/γ). We point
out that the topography is rapidly varying when γ � 1. The undisturbed depth is given by
y = −1 and the topography can be of large amplitude provided that |n| < 1. The fluctuations
n are not assumed to be small, nor continuous, nor slowly varying.
Our main interest is to order the parameters α, β and γ as powers of ε and analyse the

solution in the limit ε ↓ 0. For example for α = β = O(ε) � 1 we may consider solitary
waves. Moreover when also γ = O(ε) we have long waves interacting with rapidly varying
heterogeneities, in this case the topography. The problem in its present form is extremely
complicated. Hence simplifying the mathematical model (namely the PDE) is of interest in
order to perform an asymptotic (ε→ 0) analysis. A key issue is not to oversimplify the model
and eliminate phenomena of physical and mathematical interest.
Thus in order to simplify the geometry of the problem and enable the asymptotic analysis

of equations (1)–(5), we define a symmetric flow domain by reflecting the original one about the
undisturbed free surface. In this symmetric domain (figure 1) we use curvilinear coordinates
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Fig. 1. The symmetric domain in the complex z-plane, where z = x(ξ, ζ̃) + iỹ(ξ, ζ̃). The lower half
(x ∈ [−5, 5], y ∈ [−3, 0]) is the physical channel with y = ζ̃ = 0 indicating the undisturbed free surface.
Superimposed in this complex z-plane domain are the (curvilinear) coordinate level curves from the
w-plane system ξζ̃. The polygonal line at the bottom of the figure is a schematic representation of the
topography (where ζ̃ = ± √β). This figure was generated using SC-Toolbox [24,25].

defined through the conformal mapping of this region. This strategy was already employed in
[35] and [12]. For completeness we summarize the main ingredients of the asymptotic analysis
in curvilinear coordinates. The symmetric domain is denoted by Ωz where z = x+ i

√
βy and it

can be considered as the conformal image of the strip Ωw where w = ξ+ iζ̃ with |ζ̃| ≤
√
β. Note

that the topography is defined along the curve ζ̃ ≡ −
√
β. Then z = x(ξ, ζ̃) + i

√
βy(ξ, ζ̃) =

x(ξ, ζ̃)+ i ỹ(ξ, ζ̃) where x and ỹ are a pair of harmonic functions on Ωw. In figure 2, we present
a scheme which explains the changes of variables to be introduced in the sequel.
The scaled water wave equations in the fixed orthogonal curvilinear coordinates (ξ, ζ̃) are:

φξξ + φζ̃ζ̃ = 0, −
√
β < ζ̃ < α

√
βN(ξ, t), (6)

with free surface conditions

|J |Nt + αφξNξ −
1√
β
φζ̃ = 0 (7)

and

φt + η +
α

2|J |
(
φ2ξ + φ

2
ζ̃

)
= 0 (8)

at ζ̃ = α
√
βN(ξ, t). The bottom boundary condition (4) transforms into the trivial condition

φζ̃ = 0 at ζ̃ = −
√
β. (9)

The function N(ξ, t) denotes the position of the free surface in the new coordinate system and
|J | denotes the Jacobian of the change of coordinates:

|J | = xξỹζ̃ − ỹξxζ̃ = ỹ2ζ̃ + ỹ
2
ξ .

At this point, it is convenient to let the origin of the curvilinear coordinate system be at the
bottom and define ζ̃ =

√
β(ζ − 1). See the last picture in the scaling sequence given in figure 2.

In the system of coordinates (ξ, ζ), equations (6)–(9) transform into

βφξξ + φζζ = 0, at 0 < ζ < 1 + αN(ξ, t), (10)



Nonlinear Waves in Complex Systems: Energy Flow and Geometry 117

y 

x 

1 

αη(x,t)  
 

x 

y 

 

α√βη(x,t)

√β 

1+αN(ξ,t)

ξ 

ζ 
1 √β 

ξ 

ζ
α√βN(ξ,t)

Conformal Map 

Fig. 2. Schematic plot which explains the changes of variables introduced in the derivation of the
extended Boussinesq equations. The conformal map transforming the rectangular coordinates (x, ỹ)
onto the curvilinear coordinates (ξ, ζ̃) is indicated in this plot.

with free surface conditions

|J |Nt + αφξNξ −
1

β
φζ = 0, (11)

η + φt +
α

2|J |

(
φ2ξ +

1

β
φ2ζ

)
= 0, (12)

at ζ = 1 + αN(ξ, t) and
φζ = 0 at ζ = 0. (13)

As in Whitham [22], consider a power series expansion near the bottom of the channel in the
form

φ(ξ, ζ, t) =

∞∑
n=0

ζn fn(ξ, t). (14)

Asymptotic analysis will be performed at the level of the equations in terms of the small
parameters α and β.
By substituting this expression in the scaled Laplace equation (10) and using the Neumann

condition (13) at the bottom we can express the potential as a power expansion in β

φ(ξ, ζ, t) =
∞∑
n=0

(−β)n
(2n)!

ζ2n
∂2nf(ξ, t)

∂ξ2n
(15)

where, for simplicity, f(ξ, t) = f0(ξ, t).

Now using that at the smooth free surface ζ̃FS = α
√
βN(ξ, t) the Jacobian is

|J |(ξ, t) = ỹ2ξ (ξ, ζ̃FS) + ỹ2ζ̃ (ξ, ζ̃FS),

and the Taylor polynomial formula leads to

|J |(ξ, t) = ỹ2
ζ̃
(ξ, 0) + α2RJ(ξ, ζ̃M ) =M(ξ)

2 +O(α2), 0 < |ζ̃M | < |ζ̃FS |. (16)
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The metric term M(ξ) is defined below. Thus, the Jacobian can be well approximated by an

O(1) time independent coefficient. For the same reason, approximating ζ̃(x, ỹFS) in ỹ leads to

N(ξ, t) =
1

M(ξ)
η(x(ξ), t) + α2βRN (ξ, ỹM ), 0 < |ỹM | < |ỹFS |, (17)

and we establish a relation between the free surface representation in curvilinear coordinates
(N(ξ, t)) and in cartesian coordinates (η(x, t)).
At the undisturbed level we define the variable free surface coefficient [12]

M(ξ) ≡ ỹζ̃(ξ, 0) = 1 +m(ξ)

where

m(ξ;
√
β, γ) ≡ π

4
√
β

∫ ∞
−∞

n(x(ξ0,−
√
β)/γ)

cosh2 π

2
√
β
(ξ0 − ξ)

dξ0 = (K ∗ (n ◦ x)) (ξ). (18)

The metric term M(ξ) is the leading order term of the Jacobian and is smooth even when
the function describing the bottom is discontinuous or non differentiable. Moreover it is time
independent and becomes identically one in the case of a constant depth. These features are
important when implementing a numerical solver for the Boussinesq formulation.
Introducing the approximations (16), (17) in the equations (10)–(13), it gives

βφξξ + φζζ = 0, at 0 < ζ < 1 + α
η(ξ, t)

M
, (19)

with free surface conditions

Mηt + αφξ

( η
M

)
ξ
− 1
β
φζ = 0, (20)

η + φt +
α

2M2

(
φ2ξ +

1

β
φ2ζ

)
= 0 (21)

at ζ = 1 + α(η(ξ, t)/M(ξ) and
φζ = 0 at ζ = 0. (22)

Using the power series expansion for the potential the free surface conditions (20)–(21) can be
further approximated as

η + ft −
β

2
fξξt +

α

2M2(ξ)
f2ξ = O(αβ, β

2), (23)

M(ξ) ηt +

[(
1 +

α

M(ξ)
η

)
fξ

]
ξ

− β
6
fξξξξ = O(α

2, αβ, β2). (24)

The variable coefficients in the system above are time independent and depend only on ỹζ̃(ξ, 0).

In [12] it is shown that equations (23)–(24) lead to the terrain-following system

M(ξ)ηt +

[(
1 +

α η

M(ξ)

)
Uo

]
ξ

= 0, (25)

Uo, t + ηξ + α

(
U2o

2M2(ξ)

)
ξ

− β
3
Uo, ξξt = 0, (26)

where Uo is the depth averaged velocity

Uo(ξ, t) =
1

ζFS

∫ ζFS
0

φξ(ξ, ζ, t) dζ. (27)
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Fig. 3. Multiscale topography with the ξ − ζ curvilinear coordinate system.

As pointed out in Nachbin [12] these are weighted averages along (ξ ≡ constant)-curves con-
necting the undisturbed free surface to the topography (c.f. figure 3). It turns out that the
conformal mapping gives more weight near the free surface, than to the regions in the deep
valleys, where the topography is rapidly varying. The fact that the (ζ = constant) level curves
accumulate more near the free surface has a very positive impact. As mentioned above, physi-
cally this means that more emphasis is given to the flow field near the free surface, exactly where
the physical model is more accurate. Another very interesting fact is that the curvilinear coor-
dinates preconditions the system of PDEs leading to an underlying eigenvalue representation
more amenable for computer simulations [14].

2.2 Asymptotics for pulse shaped solutions

The main objective of the present review is to describe asymptotic strategies in deriving reduced
models, namely in doing asymptotics with the partial differential operators. Nevertheless it is
important to point out that many papers followed from the new model generated. Namely
asymptotic analysis for pulse shaped solutions in the hyperbolic, weakly dispersive and weakly
nonlinear regime. In all cases two very interesting phenomena were investigated: the apparent
diffusion due to the interaction of the surface wave with the topography’s disordered microscale
as well as the time reversal refocusing for waveform inversion of pulse shaped waves. Both
deterministic and probabilistic analysis were considered. A comprehensive set of references on
this theme can be found in [26–33] and the references within.

2.3 Improved Boussinesq systems

Now instead of using the depth averaged velocity, we will express the evolution equations in
terms of the fluid velocity measured at an intermediate depth, say at ζ = Z0(ξ), with
u(ξ, t) = φξ(ξ, Z0(ξ), t), where 0 < Z0(ξ) < 1. This idea was already applied by Nwogu [9] to
obtain a formally equivalent Boussinesq approximation, in the case where the depth is slow-
varying. The purpose was to improve the dispersive characteristics of the resulting reduced
model.
Differentiating equation (15) with respect to ξ and evaluating at ζ = Z0(ξ), we find that to

leading order

u(ξ, t) = φξ(ξ, Z0, t) = fξ −
β

2
Z20fξξξ +O(β

2) = ũ− β
2
Z20 ũξξ +O(β

2), (28)

where for simplicity, we let ũ = ũ(ξ, t) = fξ(ξ, t) be the “slip velocity” along the bottom of the
channel. As a consequence,

ũ = u(ξ, t) +
β

2
Z20 ũξξ +O(β

2). (29)

Substituting the expression for ũ (given by the equation above) into equations (23)–(24) and
retaining only terms up to O(α), O(β), we arrive at the system

M(ξ)ηt +

[(
1 +

α η

M(ξ)

)
u

]
ξ

+
β

2

[(
Z20 −

1

3

)
uξξ

]
ξ

= 0, (30)

ut + ηξ + α

(
u2

2M2(ξ)

)
ξ

+
β

2
(Z20 − 1)uξξt = 0. (31)
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An interesting observation is that the system above reduces to the terrain-following system
(25)–(26) when we set Z0 =

√
1/3.

Of particular interest, by letting Z0 =
√
2/3, and by using uξ(ξ, t) = −M(ξ)ηt + O(α, β),

one obtains the model

(M(ξ)η)t +

[(
1 +

α η

M(ξ)

)
u

]
ξ

− β
6
(M(ξ)η)tξξ = 0, (32)

ut + ηξ + α

(
u2

2M2(ξ)

)
ξ

− β
6
uξξt = 0. (33)

System (32)–(33) was presented by Quintero and Muñoz in [17]. The main property of this par-
ticular Boussinesq formulation is the existence of a conserved energy-type functional which
enables the use of classical tools to demonstrate the global existence of its solutions [17].
We remark that the existence of this conserved quantity is unclear for the Boussinesq model
(25)–(26). Of equal importance is the presence of symmetric dispersive terms in both equa-
tions of the system (32)–(33), expressed through the operator ∂t − β/6∂ξξt. This operator can
be inverted [17] and the system cast into an integro-differential form, so that the fixed point
principle can be applied in order to establish local existence of solutions.
Note that the dispersive terms of the model above are modified when we change the level

at which the fluid velocity u is measured, i.e. the parameter Z0. We remark that this degree
of freedom (to select the parameter Z0) allows us to match the linear dispersion relation,
corresponding to the Boussinesq approximation (30)–(31), with that of the original potential
theory equations (19)–(22) up to a higher order. This will be explained in section 2.4.
Furthermore, recall that all variable coefficients in the model are smooth even when the

physical topography profile is described by a discontinuous or even a multi-valued function.
We point out that Nwogu [9] obtained a set of equations with dispersive terms similar to those
in system (30)–(31) However, the applicability of Nwogu’s formulation is restricted to slowly-
varying bottom profiles, which is a common feature of other Boussinesq-type formulations, as
for instance [5–8], [11,34]. The reason is that in cartesian coordinates the neglected terms of
order O(α2, αβ, β2) in the Boussinesq model turn out to be large when the detailed features of
the topography are small compared to the typical wavelength [35].
In contrast, in the present Boussinesq formulation (30)–(31), the neglected terms of order

O(α2, αβ, β2) remain small even when the topography is rapidly varying. This is due to
the use of terrain-following (curvilinear) coordinates [12]. Thus, we expect that the solutions
of equations (19)–(22) and system (30)–(31) coincide with good accuracy even when dispersion
is significant. When the bottom is described by a complicated function numerical experiments,
shown in [14], provide strong evidence on this regard within the range 0 < β < 0.05, α = 0.001.

2.4 Linear dispersive properties

To perform an analysis regarding the dispersive terms in equations (30)–(31) it is sufficient to
consider the intermediate depth Z0 to be a constant.
It is important to remark what is expected from the asymptotically simplified Boussinesq

model (30)–(31). It would be desirable that its solution approximates, in some sense, the solution
of the original potential theory equations (19)–(22), provided that 0 < α � 1, 0 < β � 1.
Within this regime the high-order terms O(α2, αβ, β2) are expected to be negligible with respect
to the first order terms retained in the Boussinesq model (30)–(31).
The analytical, dispersion relation, consistency between the Boussinesq system (30)–(31)

and the potential formulation of the Euler equations (19)–(22) is a necessary condition so that
the new model is able to capture the same (long wave) physical phenomena as the original fluid
equations.
To start, consider the linear dispersion relation which leads to the phase velocity

C2 =
ω2

k2
=
1− (β/2)(Z20 − 13 )k2
1− (β/2)(Z20 − 1)k2

(34)
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Fig. 4. Relative error of the phase velocity as a function of
√
βk for the Boussinesq-type system

(30)–(31) with Z0 =
√
1/3 (the terrain-following system), Z0 = 0.469 and Z0 =

√
1/5.

for model (30)–(31). Also we have the (full model’s) phase velocity for Airy waves given by

C2Airy =
ω2

k2
=
1√
βk
tanh (

√
βk)

≈ 1− 1
3
(
√
βk)2 +

2

15
(
√
βk)4 − 17

315
(
√
βk)6 +O((

√
βk)8), (35)

corresponding to equations (19)–(22). As mentioned above, the interesting point here is that
we can use this degree of freedom (by selecting the parameter Z0) in order to match the Taylor
series expansion of the dispersion relation (35) up to terms of O((

√
βk)4).

Over several possibilities, however, we can obtain an optimal value of the depth parameter
Z0, by minimizing the relative error of the phase velocity for instance, over the waveband interval
0 <
√
βk < 5. The result of this process is the value Z0 = 0.469 [9]. It gives a maximum error

of 6% for the entire range. In contrast, for the terrain-following system (25)–(26), we obtain a
maximum relative error in the same interval of 15%. This is shown in figure 4 where we compare
the dispersion relations for the terrain-following system (25)–(26), with the one for formulation

(30)–(31) having either Z0 =
√
1/5 or Z0 = 0.469. The relative error is computed with respect

to the linear potential equations (19)–(22). Several numerical experiments were performed in
[14] validating this dispersion analysis. It is worth noting that the simulations were done in the
presence of highly variable topographies.

3 Fully dispersive surface wave model

Now we will take a further step in our modeling, in such a way that we will not need to
truncate the dispersion relation. In a recent paper Matsuno [10] derived a Boussinesq-type model
that arises from an expansion in a steepness parameter and not in the dispersion parameter
corresponding to a long wave regime as done above. Matsuno develops a method based on the
theory of complex functions and a systematic perturbation theory with respect to the steepness
parameter ε ≡ ao/�p (ao is the amplitude scale and �p is a wavelength scale). We start by
using dimensionless parameters such as before. As pointed out in [10] the formulation naturally
suggests combining these parameters as α

√
β ≡ ε. Hence the characteristic depth ho cancels

out and the free surface perturbations are controlled through ε.
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Fig. 5. Setup for the Schwarz-Christoffel transformation where z = x + iy and w = ξ + iζ. The
mapping is defined for the undisturbed configuration (i.e. with η ≡ 0).

The novelty in the present formulation is that we can still accommodate the asymptotic
modeling to consider very general topographic profiles, including multiply valued profiles as
shown in [20]. As before we start from the nonlinear, dimensionless potential theory equations
but follow an analytical route that is somewhat different from Matsuno’s. Naturally some of
the transforms used are similar, but they are “brought into the picture” by different means. In
particular the Fourier analysis presented naturally suggests the use of FFT based methods to
generate efficient numerical schemes.
We again use an orthogonal curvilinear coordinate system for the potential theory equa-

tions. Within this frame we are able to write a Dirichlet-to-Neumann (DtN) operator which
automatically reduces the entire dynamics to the free surface. This formulation is possible in the
presence of complex multi-valued profiles, or even rapidly varying topographies. Our transforms
not only resemble, but are clearly related to, those in Matsuno [10] and in Byatt-Smith [36].
Some of the differences are that we work in Fourier space while Matsuno uses complex func-
tions. In our formulation we work in the physical domain, through the curvilinear coordinate
system and we arrive at Fourier-type transforms which are easily incorporated into a numerical
method. The final result is a, variable coefficient, weakly nonlinear evolution equation of the
Boussinesq-type. Our generalization of Matsuno’s Boussinesq-type system has, as its (weakly
dispersive) leading order approximation the terrain-following system presented in Nachbin [12].
This is a nice consistency check since here we do not use a power series expansion for the
potential, but rather we do asymptotics with the Fourier operators.
Other very recent work include that of Craig and Sulem [37] which formulated an efficient

spectral method based on the DtN operator. Their analysis differs from ours and Matsuno’s
but some resulting transforms are similar, in particular the Hilbert transform on a strip: namely
equation (61) in the present paper, which appears as (18) in Matsuno [10] and as (27) in Craig
and Sulem [37]). We recall that Matsuno’s [10] as well as Craig and Sulem’s analysis [37] are
restricted to flat bottoms. In [38] Matsuno extended his analysis to mild slope bottom topogra-
phies, also using the conformal mapping strategy. Along these lines Zakharov et al. [39] using
a Hamiltonian structure deduced exact (nonlinear) free surface equations in a fluid of infinite
depth. The free surface is conformally mapped and Hilbert-differential equations are obtained
along the free surface. The presence of Hilbert transforms has a clear connection with the
three strategies mentioned above (including the present one). This is explicitly mentioned by
Zakharov et al. [39] in a reference to the work of Craig and Sulem [37]. In the presence of
highly variable topographies we point out the very recent work by Keller [40]. A shallow water
(hyperbolic) model is derived from the Euler equations by using curvilinear coordinates. This
curvilinear coordinate system is based on smooth topographies or a smooth curve near the
topography. We recall that in the present work our curvilinear coordinate system arises from a
conformal transformation and therefore is valid for polygonal bottom profiles which need not
be single-valued.

3.1 The inviscid and incompressible free boundary problem

As before, using the Schwarz–Christoffel transformation [24,25] we define a mapping from a
uniform strip in the ξζ-plane onto the undisturbed (η ≡ 0) corrugated strip in the physical
xy-plane (c.f. figure 5). In the mapped domain we have ζ ≡ S(ξ, t) = εN(ξ, t), while in the
physical domain it is defined by y(ξ, S(ξ, t)) = αη(x(ξ, S(ξ, t)), t), with η denoting the surface
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gravity wave. When the free surface (FS) has a small steepness (as indicated by εN above) the
Jacobian can be approximated as |J | ≈ y2ζ (ξ, 0) +O(ε2) [12].
As presented earlier the nonlinear potential theory equations in curvilinear ξζ coordinates,

as presented in Nachbin [12] are

φξξ + φζζ = 0, −
√
β < ζ < S(ξ, t), (36)

where at the FS the free boundary conditions are

Nt +
α

|J |φξNξ −
1

|J |
√
β
φζ = 0 (37)

φt +
α

2|J | (φ
2
ξ + φ

2
ζ) + η = 0. (38)

We have a trivial Neumann condition along the impermeable topography ζ ≡ −
√
β: φζ = 0.

The scaling here corresponds to the third stage in the scaling sequence presented in figure 2.
No approximation has been made up to this point.

3.2 The Dirichlet-to-Neumann (DtN) operator

In this subsection we briefly review Guidotti’s time independent strategy [41] to formulate a
DtN operator for a halfplane configuration as in figure 6. Then we will adapt this strategy to a
time independent problem for a corrugated strip. Once this has been achieved we migrate this
formulism to the nonlinear wave evolution problem and reduce the entire dynamics to the free
surface.

3.2.1 The Dirichlet problem on a halfplane

Following [41], attention is given to periodic problems (say of period one) such that ϕ(ξ), S(ξ) ∈
Cper([0, 1]). We have Laplace’s equation in the domain Ω, above the curve Γ ≡ (ξ, S(ξ)), with
Dirichlet data ϕ(ξ) imposed along Γ . Let (ξ, S(ξ)) be a parametrization of the halfplane’s
(lower) boundary curve Γ . The mapping that takes the Dirichlet data onto its corresponding
Neumann data we denote as

DtN [ϕ](ξ) = ∂nφ(ξ, S(ξ)), (39)

where ∂n := n · (∂ξ, ∂ζ), n = |Γξ|−1(−Sξ(ξ), 1) and |Γξ| =
√
1 + S2ξ (ξ).

As in classical potential theory, Guidotti suggests an integral representation for the potential

φ(w) =

∫
Γ

G(w − w̃) f(w̃)dΓ, w̃ ∈ Γ. (40)

The unknown function f will be determined by the potential’s Dirichlet data along Γ. By dΓ we
represent an infinitesimal boundary element and by w = (ξ, ζ) an interior point of our domain
Ω. The 1-periodic version of the integral representation (40) is

φ(ξ, ζ) =

∫ 1
0

G(ξ − ξ̃, ζ − S(ξ̃)) f(ξ̃)|Γξ̃|dξ̃. (41)

The periodic kernel proposed by Guidotti [41] has logarithmic singularities, in the form

G(ξ, ζ) =
1

2π
ln(1 + e−4πζ − 2e−2πζ cos(2πξ)), (42)
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Ω 

S(ξ)
Fig. 6. Upper halfplane bounded by a corrugated curve
S(ξ).

and can also be represented by the Fourier series

G(ξ, ζ) = −
∑
κ�=0

1

2π|κ|e
−2π|κ|ζe2πiκξ if ζ ≥ 0. (43)

Hence the kernel is a harmonic function in the halfplane ξ, ζ > 0, and 1-periodic in its first
variable with the property that [41]

lim
ζ→0+

∂ζG(ξ, ζ) = lim
ζ→0+

−2e−4πζ + 2e−2πζ cos(2πξ)
1 + e−4πζ − 2e−2πζ cos(2πξ) = δ(ξ)− 1.

The Dirac delta is denoted by δ(ξ). Therefore one needs to be careful when deducing the DtN
operator since an interior point will approach a boundary curve. This result is summarized in
the following lemma proved in [41]:
Lemma: Let G be the Green’s functions given above. Suppose that S(ξ) ∈ C1per([0, 1]) represents
a corrugated curve along the boundary of Ω. Then the following limit holds as an interior point
approaches this boundary:

lim
w→wo

∫
Γ

∂n(w)G(w − w̃)f(w̃) dΓw̃ = −f(wo) +
∫
Γ

− ∂n(wo)G(wo − w̃)f(w̃) dΓw̃

when w → wo = (ξo, S(ξo)) ∈ Γ.
The limiting integral is given as a Cauchy Principal Value (indicated by a dash).
Clearly from the potential’s integral representation (40) along the boundary we obtain

ϕ(wo) =

∫
Γ

G(wo − w̃) f(w̃) dΓw̃, (44)

where wo is also along the boundary. Its periodic counterpart leads to the following Fredholm
equation of the first kind in the source density f :

ϕ(ξ) =

∫ 1
0

G(ξ − ξ̃, ζ − S(ξ̃)) f(ξ̃)|Γξ̃|dξ̃. (45)

Technical details on integral equations can be found in Taylor [42].
Once we find the singularity density f(ξ) we use (40) (or its periodic counterpart (41)) and

the lemma above to deduce an integral representation for the Dirichlet-to-Neumann operator

DtN(ϕ)(wo) = lim
w→wo

∫
Γ

∂n(w)G(w − w̃)f(w̃) dΓw̃,

where wo ∈ Γ . In the periodic regime we have

DtN(ϕ)(ξo) = −f(ξo) +
∫ 1
0

− ∂n(ξo)G(ξo − ξ̃, S(ξo)− S(ξ̃))f(ξ̃)|Γξ̃|dξ̃. (46)

Formally this completes the calculation of the DtN operator, assuming that at this stage the
density f is known.
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3.2.2 The Dirichlet problem on a corrugated strip

To simplify the presentation we first analyze the harmonic problem at a frozen instant of time:

φξξ + φζζ = 0 in −
√
β < ζ < S(ξ) (47)

φ(ξ, S(ξ)) = ϕ(ξ) at the FS ζ = S(ξ) (48)

φζ(ξ,−
√
β) = 0 at the topography ζ = −

√
β. (49)

By reflecting our domain about the topographic level curve ζ ≡ −
√
β we convert the mixed

Dirichlet–Neumann problem above into a (pure) Dirichlet problem in the form

φξξ + φζζ = 0 in − 2
√
β − S(ξ) < ζ < S(ξ) (50)

φ = ϕ(ξ) at ζ = S(ξ) (51)

φ = ϕ(ξ) at ζ = −S(ξ)− 2
√
β. (52)

Therefore the Neumann condition φζ(ξ,−
√
β) = 0 is automatically satisfied. Again the time

independent potential is cast into the integral representation

φ(ξ, ζ) =

∫ 1
0

K(ξ, ξ̃, ζ, S(ξ̃)) f(ξ̃)|Γξ̃|dξ̃, (53)

where now the kernel has the form K(ξ, ξ̃, ζ, S(ξ̃)) = G(s,−ζ + S̃) + G(s, ζ + S̃ + 2
√
β). We

are basically using the Method of Images for the Green’s function’s logarithmic singularity.
Our notation is such that f(ξ̃) is the symmetric source distribution over the top and bottom

boundary curves, |Γξ|2 ≡ 1 + S2ξ (ξ), s = ξ − ξ̃ and S̃ = S(ξ̃). Thus we have formally solved the
potential problem (47)–(48) once we find the source distribution f(ξ).
The integral representation in (53) can be written as

φ(ξ, ζ) =

∫ 1
0

K(ξ, ξ̃, 0, 0) f(ξ̃)|Γξ̃|dξ̃ +
∫ 1
0

{K(ξ, ξ̃, ζ, S(ξ̃))−K(ξ, ξ̃, 0, 0)} f(ξ̃)|Γξ̃|dξ̃. (54)

The first term, containing K(ξ, ξ̃, 0, 0), is the linear (singular) term corresponding to infinites-
imal perturbations about the undisturbed water surface. In this way the nonlinear term arises
as a desingularized correction term. Taking the normal derivative of the potential in (54) and
letting the interior point approach the top boundary we obtain, in the limit, the Dirichlet-to-
Neumann operator DtN(ϕ)(ξ) ≡ ∂φ/∂n(ξ, S(ξ)), which gives the Neumann data along the FS.
Now we go back to calculating the source distribution f(ξ) along the FS. Motivated by (54) we
decompose the Dirichlet data into its linear and nonlinear parts: ϕ(ξ) ≡ ϕL(ξ) + ϕNL(ξ).

The linear contribution

Using the Fourier representation of the Green’s function G in the linear term of (54), and
carefully computing the limit as we approach the top boundary, we have that ϕL(ξ) = P[f |Γξ| ]
where

P[f |Γξ| ] ≡ −
∑
κ�=0

1 + e−2π|κ|2
√
β

2π|κ| Fκ[f |Γξ| ]e2πiκξ. (55)

By Fκ[g] we denote the k-th Fourier coefficient of the one-periodic function g(ξ). The contri-
bution from the linear part is easily computed through f |Γξ| = P−1[ϕL]. This is equivalent to
the (linear) flat FS case, but recall that for weakly nonlinear waves S(ξ) = O(ε). Hence we will
seek an O(ε) approximation of f(ξ) from the full representation (54).
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The nonlinear contribution

The integral equation (54), evaluated along the boundary curve ζ = S(ξ), can be written in a
more compact (operator) notation

ϕ(ξ) = P[f |Γξ| ] +QS [f |Γξ| ]. (56)

The nonlinear (S-dependent) contribution is identified by the operator QS [·]. The main diffi-
culty resides on inverting (54) and computing the source distribution f(ξ) along the nonlinear
FS, in the presence of a kernel depending on S. As presented in detail in [20], we can char-
acterize the leading order approximation RS to the fully nonlinear operator QS . Namely we
have that

RS [f |Γξ| ] = S
∑
κ�=0
{−1 + e−2π|κ|2

√
β}Fκ[f |Γξ| ]e2πiκξ +

∑
κ�=0
{1 + e−2π|κ|2

√
β}Fκ[Sf |Γξ| ]e2πiκξ.

After some algebra we obtain a weakly nonlinear approximation, for the inversion procedure,
leading to a source distribution

f(ξ)|Γξ| = P−1[ϕ]−P−1[S DtN0[ϕ] ] +
∑
κ�=0
2π|κ|Fκ[SP−1[ϕ] ]e2πiκξ +O(ε2). (57)

The nice thing about this approximation for source distribution f(ξ) is that it is expressed by a
linear contribution (inverting (55)) composed with (S(ξ)-dependent) iterates of linear objects:
namely the linear (S ≡ 0) Dirichlet-to-Neumann operator DtN0 and again P−1[ϕ]. In the
sequel we will confirm this interpretation for the DtN0 operator. Thus we have approximated
the calculation of the source distribution by straightforward Fourier transforms (namely FFTs)
of smooth functions. We will now show how the nonlinear DtN operator can be approximated
by straightforward compositions of the linear DtN0 operator. This is achieved by using the
approximation given in (57).

3.3 Evolution equations for weakly nonlinear surface gravity waves

In the context of nonlinear surface gravity waves, the Neumann data is needed at the second
FS condition. Writing the norm (squared) of the velocity in terms of its tangential and normal
components, implies that we need to find the ξ and ζ derivatives as in

DtN [ϕ](ξ) ≡ ∂nφ(ξ, S) =
[
− Sξ|Γξ|

φξ +
1

|Γξ|
φζ

]
(ξ,S)

. (58)

First we differentiate (54) with respect to ζ and use (57) having ζ = S. After a lengthy
calculation we obtain the compact expression

φζ = DtN0[ϕ− S DtN0[ϕ] ]− Sϕξξ +O(ε2). (59)

When S ≡ 0, ζ is the normal direction and (59) is exact, confirming the interpretation given to
DtN0. There are other useful ways of representing the DtN0[ϕ] ≡ T[ϕξ]:

T[ϕξ] = −i
∑
κ�=0
tanh[2πκ

√
β]Fκ[ϕξ]e

2πiκξ. (60)

Note that the dispersion relation appears as the symbol of the linear DtN0 operator. For
example in Berger and Milewski [43] a Fourier-type integral transform, also having the dis-
persion relation as its symbol, is used in studying surface gravity wave interaction and wave-
turbulence. This also appears in the work by Craig and Sulem [37]. As mentioned earlier, we
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Fig. 7. Internal wave in a two-layer system.

point out that T is the periodic counterpart of the (singular) integral operator used by Matsuno
[10] and also referred to in Craig and Sulem [37] as the Hilbert transform on the strip:

T̃[ϕx] =
1

2
√
β

∫ ∞
−∞
− ϕx(x

′)

sinh

[
π

2
√
β
(x− x′)

]dx′. (61)

Recalling that the surface wave profile is denoted by S(ξ, t) ≡ εN(ξ, t) we put together equations
(58) and (59), and use the operator T, to write (omitting some steps; c.f. [20]) the set of reduced
equations

ηt −
1

M
√
β

{
T[U ] + ε

((
ηU

M

)
ξ

+T
[ η
M
T[U ]ξ

])}
= O(ε2), (62)

Ut + ηξ + ε

(
1

2
√
β

((
U2

M2

)
ξ

+

(
1

2M2

)
ξ

T[U ]2

)
−
( η
M

)
ξ
T[ηξ]

)
= O(ε2), (63)

where we have that φξ ≡ U . Dropping the O(ε2) terms in equations (62) and (63) we get
a fully dispersive terrain-following Boussinesq system. For a flat bottom (i.e. M(ξ) ≡ 1) this
system reduces to system (19)–(20) in Matsuno [10]. Also by expanding in β, for the weakly
dispersive regime, we can recover the terrain-following Boussinesq system as in [12], when using
the vertically averaged terrain-following velocity component (equation (5.12) in [12]).

4 Internal waves

For oceanic applications, we consider a two-layer system with a small density jump and assume
that the top free surface affects little on the motion of the interface between the two layers and
can be replaced by a rigid wall. Here, we therefore introduce mathematical models describing
the internal wave (baroclinic) mode only, but the extension to the case when the surface wave
(barotropic) mode is non-negligible is straight-forward [44].
In a two-layer system of two different densities of ρ1 and ρ2 (assuming ρ1 < ρ2 for a stable

stratification), the governing equation in each layer is the Laplace equation for the velocity

potential φ̃i (i = 1, 2):

φ̃1x̃x̃ + φ̃1ỹỹ = 0 for η̃(x̃, t̃) < ỹ < H̃1, −∞ < x̃ <∞, (64)

φ̃2x̃x̃ + φ̃2ỹỹ = 0 for − H̃2(x̃) < ỹ < η̃(x̃, t̃), −∞ < x̃ <∞, (65)

where i = 1 (i = 2) represents the upper (lower) layer, η̃ is the displacement of the interface

between the two layers, and H̃i is the layer thickness. The boundary conditions at the interface
are the continuity of normal velocity and pressure across the interface:

η̃t + φ̃ix̃η̃x̃ = φ̃iỹ, at ỹ = η̃(x̃, t), (66)

p̃1 = p̃2 at ỹ = η̃(x̃, t), (67)
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where the pressure p̃i can be found from the Bernoulli equation:

φ̃it̃ +
1

2

(
φ̃i
2

x̃ + φ̃i
2

ỹ

)
+ gη̃ +

p̃i

ρi
= 0. (68)

The boundary conditions at the flat top and at the variable bottom are given by

φ̃1ỹ = 0 at ỹ = H̃1, φ̃2ỹ + H̃2x̃φ̃2ỹ = 0 at ỹ = −H̃2(x̃). (69)

When these basic equations are non-dimensionalized in a similar way to surface wave
problems discussed in the preceding sections, in addition to the two dimensionless parame-
ters (α and β) introduced to measure nonlinear and dispersive effects, respectively, there is
another independent parameter: the depth ratio defined by H2/H1. The behaviors of the linear
dispersion relation for long waves vary depending on this depth ratio and, therefore, differ-
ent asymptotic regimes are possible. In the absence of bottom topography (H2=constant),
with linearizing the free surface boundary conditions given by (66)–(67), the dispersion relation
between wave speed C and wave number k [45] can be found as

C2 =
(g/k)(ρ2 − ρ1)

ρ1 coth kH1 + ρ2 coth kH2
. (70)

Under the long wave assumption (for definiteness, (kH1)
2 = O(β) → 0), depending on the

depth ratio or, equivalently, kH2, we have the following three regimes of interest:
(i) as kHi → 0 (shallow water),

C = C0

[
1− k

2

6

ρ1H1
2H2 + ρ2H1H2

2

ρ1H2 + ρ2H1
+O(k4H4i )

]
, C0

2 =
gH1H2(ρ2 − ρ1)
ρ1H2 + ρ2H1

, (71)

(ii) as kH1 → 0 and kH2 = O(1) (deep water),

C = C0

[
1− 1
2

(
ρ2

ρ1

)
kH1 coth kH2 +O(k

2H1
2)

]
, C0

2 = gH1

(
ρ2

ρ1
− 1
)
, (72)

(iii) as kH1 → 0 and kH2 →∞ (infinitely deep water),

C = C0

[
1− 1
2

(
ρ2

ρ1

)
|k|H1 +O(k2H12)

]
, C0

2 = gH1

(
ρ2

ρ1
− 1
)
. (73)

Since the leading-order dispersive effects appear at O(β) for shallow water and O(β1/2) for
deep or infinitely deep water, the balance between nonlinearity and dispersion can occur in
different orders of approximation. For shallow water, the appropriate scaling between α and β
is α = O(β), while α = O(β1/2) for deep or infinitely deep water. For weakly nonlinear uni-
directional waves, these different scalings lead to different mathematical models: the Korteweg-
deVries (KdV) equation [46], the Intermediate Long Wave (ILW) equation [47,48], and the
Benjamin–Ono (BO) equation [49,50] in the shallow, deep, and infinitely deep water regimes,
respectively. For arbitrary depth ratio, more general forms of weakly nonlinear model equations
have been derived by Matsuno [51] and Choi and Camassa [44].
Despite their substantial simplification of the original problem, the weakly nonlinear internal

wave models have been found to be inadequate for large amplitude internal waves commonly
observed in recent field experiments. To capture finite amplitude effects accurately, under the
sole assumption that the waves are long compared with the thickness of one layer, strongly
nonlinear models have been derived by Choi and Camassa [52,53] for both shallow and deep
water configurations. In their derivation, β � 1 has been assumed, but no assumption on wave
amplitude has been made so that α = O(1).
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4.1 The strongly nonlinear model for the shallow configuration

For the shallow configuration, we assume that H2/H1 = O(1) along with H1/lp � 1 and
non-dimensionalize all physical variables as

x̃ = lpx, ỹ = H1y, t̃ =

(
lp

c0

)
t, η̃ = H1η, φ̃i =

(
glpH1

c0

)
φi, p̃i = ρ1c0

2pi, (74)

where lp is the typical horizontal wavelength and c0
2 = gH1. Notice that, for strongly nonlinear

waves, we scale the interface displacement η̃ by H1, instead of wave amplitude a that is com-
monly used for a weakly nonlinear analysis. As a result, α no longer appears in dimensionless
equations and β is the only small parameter in the problem. Then, after the velocity potentials
are expanded as

φ1 =

∞∑
n=0

(−β)n
(2n)!

(y −H1)2n
∂2nf1

∂x2n
, φ2 =

∞∑
n=0

(−β)n
(2n)!

(y +H2)
2n ∂

2nf2

∂x2n
, (75)

the kinematic and dynamic free surface boundary conditions given by (66)–(67) with (68) form
a system of four equations for η, f1, f2, and the pressure at the interface P (x, t) ≡ p(x, y = η, t).
Introducing the depth averaged velocity Ui and neglecting terms of O(β

2) lead to a system of
nonlinear evolution equations [52]:

hit + (hiUi)x = 0 , (76)

Uit + UiUix + ηx = −
ρ1

ρi
Px +

β

hi

(
1

3
hi
3Gi

)
x

+O(β2) , (77)

where the layer thickness hi and the depth-averaged velocity Ui are defined by

h1(x, t) = H1 − η(x, t), U1(x, t) =
1

h1

∫ H1
η

φ1x(x, y, t) dy, (78)

h2(x, t) = H2(x) + η(x, t), U2(x, t) =
1

h2

∫ η
−H2(x)

φ2x(x, y, t) dy. (79)

Unlike the weakly nonlinear case, it can be seen that the strongly nonlinear model contains the
nonlinear dispersive effect denoted by Gi:

Gi(x, t) = Uixt + UiUixx − (Uix)2, (80)

which comes from a non-hydrostatic pressure contribution with an error of O(β2). Alternatively,
the same system can be derived from the Euler equations without introducing the velocity
potential [52] or from physical conservation laws of mass, momentum, and energy [54].
As demonstrated in Choi and Camassa [52] and Camassa et al. [55], solitary wave solu-

tions of the strongly nonlinear model show excellent agreement with numerical solutions of the
Euler equations as well as laboratory experiments even when the wave amplitude is close to a
maximum value given by am = (H1 − H2

√
ρ1/ρ2)/(1 +

√
ρ1/ρ2) for which the solitary wave

becomes a front. This is a unique feature of internal waves and energy-conserving front solutions
are impossible for surface waves.
It is interesting to notice that, for the single layer (ρ1 = 0) case, the system given by

(76)–(77) for the lower layer (i = 2) can be reduced to that of Su and Gardner [56] (which
is also called the Green-Naghdi equations [57] in the literature). As shown in Li et al. [58], in
terms of solitary wave interactions, this strongly nonlinear system for surface waves compares
better with the Euler equations than the weakly nonlinear model up to intermediate wave
amplitudes, beyond which the local wave steepness increases with wave amplitude and the
long wave assumption becomes invalid. On the other hand, for internal solitary waves, the
characteristic wavelength increases with wave amplitude and the long wave assumption becomes
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more relevant for the large-amplitude regimes. This explains why the strongly nonlinear internal
wave model is so successful when compared with laboratory and field observations.
When solving the time-dependent equations numerically, care must be taken since the sys-

tem might suffer from the Kelvin-Helmholtz instability caused by a horizontal velocity jump
[59] and short wave perturbations could grow exponentially fast. Keeping in mind that the
system is derived under the inviscid fluid assumption where no tangential velocity continuity is
required, such instability is expected unless short wave disturbances are effectively filtered out.
A numerical regularization technique must be applied to solve the system of time-dependent
equations given by (76)–(77). Notice that this instability is not an outcome of asymptotic
expansion but that of inviscid assumption; therefore, it is still unavoidable even when solving
the full Euler equations [60].
In presence of slowly varying bottom topography with γ = O(1), the strongly nonlinear

model is further generalized to include the effect of bottom topography by adding the following
term to the right-hand side of (77) for the lower layer [59]:

B2 = −
β

η2

[
η2
2

2

(
∂

∂t
+ U2

∂

∂x

)
(U2H2x)

]
x

+ β

[
η2

2
G2 −

(
∂

∂t
+ U2

∂

∂x

)
(U2H2x)

]
H2x . (81)

For rapidly varying bottom topography with γ � 1, the same method described in
section 2 can be used for the lower layer and the evolution equations for the lower layer written
in curvilinear coordinates are expected to be coupled with those for the upper layer through
the pressure continuity condition.

4.2 The strongly nonlinear model for the deep configuration

In deep configuration, we assume that H1/lp � 1 and H2/lp = O(1) which, from the continuity
equation, results in the following scalings

w̃1/ũ1 = O(H1/lp) = O(β
1/2) , w̃2/ũ2 = O(H2/lp) = O(1), (82)

and, from continuity of normal velocity at y = η̃,

w̃2/ũ1 = O(β
1/2), ũ2/ũ1 = O(β

1/2) at ỹ = η̃, (83)

where ui and wi are the horizontal and vertical velocities, respectively. These scalings imply
that the upper layer is more active than the lower layer and nonlinear effects become more
important in the shallow upper layer. Therefore, the evolution equations for the upper layer
can be obtained from the leading order approximation to (76)–(77) as

ηt − [(1− η)U1]x = 0 , (84)

U1t + U1U1x + ηx = −Px +O(β). (85)

An expression for the pressure at the interface P can be found by solving the linear potential
theory problem for the lower layer [52] to give

ηt − [(1− η)U1]x = 0, (86)

U1t + U1U1x + (ρ2/ρ1 − 1) ηx = β1/2(ρ2/ρ1)T [(h1 − ζ)ū1]xt , (87)

where the nonlocal operator T is defined as

T [f ] = 1

2H2

∫ ∞
−∞
− f(x′) coth

[
π

2H2
(x′ − x)

]
dx′. (88)

As H2 →∞, the operator T becomes the Hilbert transform in the lower half plane. Once again,
solitary wave solutions of the strongly nonlinear model for the deep configuration are found to
compare well with laboratory experiments [52,55].
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