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We consider the two-layer shallow water equations in the presence of the top

free surface and find explicit conditions for which the system is hyperbolic.
It is commonly believed that, analogously to the rigid-lid case, this can only

happen for small relative speeds. Using both the root location criteria for a
quartic equation and a geometrical approach, it is shown that hyperbolicity is

held for not only small, but also large relative speeds.
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1. Introduction

We consider a two-layer system composed of two immiscible fluids of dif-
ferent constant densities ρ1 and ρ2 confined between the upper free surface
and the lower rigid boundary in which the flow is governed by the two-layer
shallow water equations (e.g., see Baines1):

(hi)t + (hi ui)x = 0,
(ui)t + ui(ui)x + g

(
h1 + h2 + δi1(ρ− 1)h2

)
x

= 0.
(1)

In these equations, u1 and u2 are the depth-averaged velocities, h1 and h2

are the layer thicknesses, δij is the Kronecker delta, g is the gravitational
acceleration, and ρ < 1 is defined by ρ = ρ2/ρ1, with 1 and 2 associated with
the lower and upper layer, respectively. By defining U = (h1, h2, u1, u2)T ,
the quasilinear system can be written in the form Ut +AUx = 0, for which
the characteristic polynomial P (λ) = det(A− λI) is given by

P (λ) = λ4− 2(u1 +u2)λ3 + (u2
1 + 4u1u2 +u2

2− gh1− gh2)λ2 + 2 (gh1u2+

+ gh2u1 − u1u
2
2 − u2u

2
1)λ+ u2

1u
2
2 − gh1u

2
2 − gh2u

2
1 + g2h1h2(1− ρ). (2)

The system (1) is hyperbolic if P (λ) = 0 admits only real roots. It seems
to be widely accepted that this can happen only if the relative speed be-
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tween the two layers is small (see Refs. 2–7). Approximate expressions for
the eigenvalues of A valid in the Boussinesq limit (ρ ≈ 1) were first obtained
by Schijf & Schönfeld2 while the exact expressions for the eigenvalues were
found by Lawrence4 without relying on the Boussinesq approximation. This
result has been recently extended in Ref. 6 with including the effects of to-
pography. It is possible to present the eigenvalues (or characteristic speeds)
in two distinct sets corresponding to the external and internal wave mo-
tions, respectively. All these authors seem to agree that the eigenvalues
corresponding to the internal wave mode become complex when the Froude
number F defined by F = (u2−u1)/

√
gh1 exceeds a critical value. However,

this seems to be in contradiction with the result obtained by Ovsyannikov,8

who showed, by means of a geometrical representation of the characteris-
tics, that the model can still be hyperbolic for large relative speeds. In this
paper, by examining carefully the criteria for the quartic equation (2) to
have real roots, we validate the result of Ref. 8 that the internal wave speeds
can indeed be complex only for a bounded range of Froude numbers.

2. Hyperbolicity of the two-layer shallow water model

2.1. Root location criteria

Before proceeding further, we summarize below some essentials of the root
distribution for the quartic equation.

2.1.1. Preliminaries

Consider the quartic equation

f(x) = a0x
4 + a1x

3 + a2x
2 + a3x+ a4 = 0, (3)

whose coefficients ai (i = 0, · · · , 4) are all real with a0 > 0. It is known that
the discriminant ∆f of (3) is given by

∆f = a0
6
∏
i<k

(xi − xj)2,

where x1, x2, x3, and x4 are the roots of the polynomial f . Since ∆f is
a symmetric polynomial, it can be polynomially expressed in terms of the
real coefficients ai (see page 80 of Ref. 9). The discriminant is a powerful
tool that can fully describe the structure of the roots for quadratic and
cubic equations. However, the same cannot be achieved for the quartic
equation since (i) ∆f > 0: four distinct real or four distinct complex roots;
(ii) ∆f = 0: at least two equal roots; (iii) ∆f < 0: two distinct real roots
and two complex roots.
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Several attempts have been made in the past to obtain conditions, in
terms of the literal coefficients of a polynomial, concerning a special root
distribution (see references therein). Among them, Jury & Mansour10 pre-
sented a series of algorithms involving characteristic expressions for a quar-
tic equation, allowing a full characterization of the root distribution in a
much more concise form than the one provided by previous approaches.
Similar criteria involving only inner determinants were also obtained by
Fuller.11 Following this elegant exposition, when considering the inner de-
terminants ∆3, ∆5, ∆7

∗:

∆7 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 a3 a4 0 0
0 a0 a1 a2 a3 a4 0
0 0 a0 a1 a2 a3 a4

0 0 0 4a0 3a1 2a2 a3

0 0 4a0 3a1 2a2 a3 0
0 4a0 3a1 2a2 a3 0 0

4a0 3a1 2a2 a3 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

with ∆3 and ∆5 being defined as the determinants of the inner matrices
with dimensions 3× 3 and 5× 5, respectively (as denoted by the two inner
squares in the definition of ∆7), we have the following result (see page 778
of Fuller11):

Theorem 2.1. Equation (3) has its roots all real if and only if one of the
two following sets of conditions holds: (a) ∆3 > 0, ∆5 > 0, ∆7 > 0; (b)
∆3 > 0, ∆5 = 0, ∆7 = 0.

2.1.2. Real characteristic speeds of long waves

We first rewrite (2) in terms of non-dimensional variables:

Λ =
λ√
gh1

, H =
h2

h1
, F =

u2 − u1√
gh1

and assume without loss of generality that u1/
√
gh1 = 1 (by choosing a

moving reference frame such that this condition is met). Then, the charac-
teristic equation P (λ) = 0 becomes

Λ4−2(2+F ) Λ3 +[(1 + F )(5 + F )−H] Λ2 +2
[
H − (1 + F )2

]
Λ−ρH = 0,

for which the inner determinants are found as

∆3 = 2F 2 + 8(H + 1),

∗Notice that ∆7 is precisely the determinant of the Sylvester matrix, hence it consists
on the discriminant of f , i.e., ∆7 = ∆f .
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∆5 = 8(H+1)F 4−16
[
H2 − (6 + ρ)H + 1

]
F 2+8(H+1)

[
(H − 1)2 + 4ρH

)
].

We will show that, in our particular case, the set of conditions stated
in Theorem 2.1 reduces to ∆7 > 0, as the conditions ∆3 > 0 and ∆5 > 0
are automatically satisfied. First, it is clear that ∆3 > 0. Second, in order
to prove that ∆5 > 0, we look at ∆5 as a parabola in terms of the variable
y = F 2. If its discriminant is less than zero, the parabola has no real roots
and, therefore, ∆5 > 0. On the other hand, if it has real roots, it is sufficient
to prove that both roots are negative, which assures that ∆5 has no real
roots for the Froude number F . The discriminant of ∆5 becomes positive
only if

6(ρ+ 2)H2 −
[
36 + (ρ+ 2)2

]
H + 6(ρ+ 2) < 0, (4)

which holds for ρ+2
6 < H < 6

ρ+2 . For this range of H, however, the coeffi-
cient of F 2 in ∆5 is always positive and so the result follows.

We have shown that, in our particular case, a full description of the
root distribution can be achieved by means of its discriminant. Therefore,
from Theorem 2.1, we can conclude that P (λ) = 0 has four real solutions
for ∆7 > 0, while it has two complex and two real solutions for ∆7 < 0.

Straightforward calculations reveal that the discriminant ∆7 depends
only on the variable y = F 2 and the physical parameters ρ and H:

∆7 = 16H Q(y), (5)

with Q(y) defined by

Q(y) = y4+(H+1)(ρ−4) y3−
[
3(ρ− 2)− (4− 26ρ+ ρ2)H + 3(ρ− 2)H2

]
y2+

(H+1)
[
3ρ− 4 + (8 + 10ρ− 20ρ2)H + (3ρ− 4)H2

]
y+(1−ρ)

(
(H − 1)2 + 4ρH

)2
.

As shown in Fig. 1, for any prescribed values for the physical parame-
ters, the polynomial Q(y) has two positive real roots (F−

crit)
2 and (F+

crit)
2,

and the condition ∆7 > 0 is satisfied for 0 6 F 2 6 (F−
crit)

2 or F 2 > (F+
crit)

2.
The first inequality for the Froude number implies that the system (1) is
hyperbolic for small relative speeds between the two layers, as noted by
several authors. However, the figure shows clearly a new range of Froude
numbers characterized by large relative speeds, for which the flow is hyper-
bolic (cf. Ovsyannikov8).

2.1.3. Comparison with the characteristic speeds in Lawrence (1990)

We find in the Appendix of Ref. 4 an exact derivation of the characteristic
speeds of long waves, based on the Descartes-Euler solution expressed by
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(F−crit)
2 y

(F+
crit)

20

Fig. 1. A sketch of the behavior of the polynomial Q(y)

means of the solutions of the cubic resolvent (A.6). The discriminant of
this cubic resolvent given by (A.8) is denoted by D in Ref. 4 whose sign is
determined by the quantity δ (with the opposite sign of D) defined by

δ = β + (1− F 2
∆)

3∑
n=0

bnε
n,

or, alternatively, in our notation,

δ =
4

(1 +H2)4(1− ρ)
Q(y). (6)

The characteristic speeds are all real provided that D 6 0 and the roots
of the cubic resolvent are positive. In his work, Lawrence4 stated that the
requirement that D 6 0 for the solutions to be real restricts the value of the
Froude number F 2

∆ to be less than or equal to a critical value (F 2
∆)crit, which

contradicts our finding. We know from (6) that, since D has the opposite
sign of δ, D 6 0 is equivalent to Q(y) > 0, which implies the statement on
hyperbolicity in Ref. 4 is inaccurate.

2.2. A geometrical approach

The results presented so far will now become more clear. Using the approach
proposed in Ref. 8, we will be able to provide a geometrical interpretation
for the roots of ∆7 in (5). The key step is to rewrite the characteristic
polynomial in a simpler form:

P (λ) =
(
(u1 − λ)2 − gh1

)(
(u2 − λ)2 − gh2

)
− g2ρh1h2.

This form of presenting (2) is not new, but, as shown in Ref. 8, allows us to
better understand the structure of the roots for the characteristic equation.
If we define

λ− u1 = q
√
gh1, λ− u2 = p

√
gh2, (7)
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Fig. 2. Plots of the curve (8) for different physical parameters: ρ = 1/3 (left-hand side)
and ρ = 99/100 (right-hand side).

the characteristic equation yields

(p2 − 1)(q2 − 1) = ρ. (8)

On the (p, q) plane, Eq. (8) describes a fourth-order curve having four axes
of symmetry where we can distinguish an inner region (in the interior of
the unit square centered at the origin) and an outer region, as shown in
Fig. 2. The limit cases correspond to assigning to ρ the values 0 and 1. In
the first case (ρ = 0), Eq. (8) reduces to the lines |p| = 1 and |q| = 1. In
the second case (ρ = 1), the inner region confines to one single point, the
origin, confirming its tendance to shrink as the values of ρ approach 1. Both
cases reduce to a one-layer flow with a free surface, but the latter allows a
velocity discontinuity in the interior of the fluid domain.

As a consequence of (7), p and q are related by

q =
√
H p+ F. (9)

Combining these results, we conclude that the real characteristic speeds
correspond to the solutions of the system

(p2 − 1)(q2 − 1) = ρ, q =
√
H p+ F, (10)

with p, q all real. More precisely, each intersection point yielding a solu-
tion of this system corresponds to a real eigenvalue of A. Additionally, this
geometrical interpretation reveals that the system has at least two and a
maximum of four real solutions. Hence, the system is of mixed type: it is
strictly hyperbolic when we can present four real and distinct character-
istics, and a system of composite type when there are two real and two
imaginary characteristics, confirming the result obtained by using inner



July 7, 2008 16:59 WSPC - Proceedings Trim Size: 9in x 6in Barros˙Choi

7

!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

q

p
!3 !2 !1 0 1 2 3

!3

!2

!1

0

1

2

3

q

p

Fig. 3. Tangency condition for different physical parameters: ρ = 1/3, H = 1 (left-hand

side) and ρ = 99/100, H = 2 (right-hand side). The solid and dashed lines represent (8)

and (9) with F = F±crit, respectively.

determinants. The passage between the two scenarios happens when the
straight line described by (9) becomes tangent to the curve (8), as shown
in Fig. 3. Notice that the intersection points with the boundary of the in-
ner region representing the internal wave speeds disappear as the Froude
number increases, leaving only the external (or surface) wave speeds, until
it reaches F+

crit beyond which the internal wave modes reappear.
For prescribed values of ρ and H, the curve (8) and the slope of the line

(9) are completely determined. We seek the values of initial ordinates F for
which the tangency holds. From (10), it follows

H p4 + 2
√
HF p3 + (F 2 −H − 1) p2 − 2

√
HF p− F 2 + (1− ρ) = 0.

Multiple roots for this polynomial arise when its discriminant vanishes,
leading to the condition 16H Q(y) = 0. Surprisingly, this discriminant is
precisely the same as ∆7 in (5) and we now realize that the roots of ∆7 = 0
yield nothing but the condition for tangency. The results obtained can be
summarized as follows:

Proposition 2.1. For any physical parameters, there are two distinct pos-
itive real numbers F−

crit and F+
crit , with F−

crit < F+
crit , such that the system

(1) is hyperbolic if and only if |F | 6 F−
crit or |F | > F+

crit .

3. Concluding remarks

Without solving the quartic equation, we have found explicit relations for
which the system (1) is hyperbolic. In particular, in complete agreement
with Ovsyannikov,8 we perceive the effect caused by the presence of the
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free surface: the range of Froude numbers for hyperbolicity is not bounded,
which is contrary to the rigid-lid case for which it can be shown8 that the
characteristics for the rigid-lid system are real if and only if |F | 6 Fc, where

Fc
2 = (1− ρ)(H + ρ)/ρ.

Numerical computations show that Fc > F−
crit and that these two values

become almost indistinguishable in the Boussinesq limit. This could justify
the common assumption that the difference between the rigid-lid and free-
surface cases is insignificant, which we know is valid only for small relative
speeds. Moreover, it is worth noticing that for small density ratios, Fc can
actually exceed the value F+

crit.
The well-posedness of the system was not addressed in this paper, but

is a matter of great importance. It would be reasonable to expect that the
system remains hyperbolic for initial data prescribed in the first range of
Froude numbers. It is not clear yet if this is the case for the second branch.
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