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ABSTRACT: This paper considers surface gravity-capillary waves in an ideal fluid of finite depth and generalizes
exact evolution equations for free gravity waves obtained by Dyachenko et al. to those for forced gravity-
capillary waves. The model derived here describes the time evolution of the free surface and the velocity potential
evaluated at the free surface under external pressure forcing. Two integro-differential equations are written
explicitly in terms of these two dependent variables, and no extra step is required to close the system. These
equations are solved numerically for the particular case of stationary periodic waves, and the results compared
with analogous ones available in the literature.
INTRODUCTION

Highly nonlinear time-dependent wave phenomena at the
free surface of a fluid layer have been the focus of many in-
vestigations, starting with last century’s pioneering work by
Stokes (1847). Nevertheless, the understanding of this type of
complex motion is, in general, far from complete. Under cer-
tain hypotheses, e.g., small wave amplitude or long wave-
length, various simplified mathematical models to describe the
motion of the free surface are available [see Mei (1989) for a
review and Choi (1995) for recent advances]. However, by
their very nature these models cannot be consistently used
whenever the underlying simplifying assumptions cease to
hold during the time evolution of the free surface. A familiar
example is that of sea waves running up a beach, where even
the smallest waves eventually become steep and break.

A primary difficulty in any theoretical description of the
problem lies in the fact that boundary conditions are applied
at a boundary (the free surface) that is not known a priori, and
needs to be determined from the solution of the problem. This
poses a formidable task for analytical investigations. The only
practical way of studying the free surface evolution without
drastic approximations is that of numerical simulations, and
many schemes have been developed for this purpose. Among
these, the method of singularity distribution along the bound-
ary of the fluid domain of interest has been quite popular. By
placing source- and sink-type singularities on the free surface
in combination with Green’s theorem, this formulation, known
as the boundary integral method, results in an integro-differ-
ential system involving time and one spatial variable for a two-
dimensional flow field (Longuet-Higgins and Cokelet 1976).
Alternatively, Baker et al. (1982) used vortex singularities and
managed to improve the efficiency of boundary integral com-
putations. A detailed analysis for stability and convergence can
be found in Beale et al. (1996). The drawback of the boundary
integral method lies in the extra step that is required to deter-
mine the strength of singularities on the free surface. More-
over, the rather awkward form of the equations resulting from
this approach constitutes a serious obstacle against any ana-
lytical understanding that can be gained in limiting regimes,
where asymptotic techniques might apply.

Recently, for two-dimensional deep water, Dyachenko et al.
(1996a,b) showed that the Hamiltonian formulation by Zak-
harov (1968) and the conformal mapping technique used in a
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novel way can yield a much simpler set of exact evolution
equations in the form of integro-differential equations involv-
ing the Hilbert transform. Dyachenko et al. (1996b) also ex-
tended the deep water formulation to the case of finite depth
for free gravity waves. As a first step toward a comprehensive
study of the possibilities, including numerical ones, offered by
the new formalism, we present here the derivation of these
evolutionary equations starting from the original Euler system,
and include the effects of pressure forcing and surface tension.
The resulting two explicit equations describe, with no simpli-
fying assumptions, the time evolution of the free surface and
the velocity potential evaluated at the free surface. For steady
wave problems, we show that the current formulation can be
reduced to the classical conformal map method used by Byatt-
Smith (1970), Schwartz (1974), Cokelet (1977), and many oth-
ers, including a recent work by Vanden-Broeck and Miloh
(1995). We compute free traveling wave solutions of the exact
set of equations and compare them with previous results.

MATHEMATICAL FORMULATION

Governing Equations

We consider surface gravity-capillary waves in an ideal fluid
of finite depth. Introducing the two-dimensional Cartesian co-
ordinates (X, Y), the velocity potential Y, t) is governedF̄(X,
by the Laplace equation

¯ ¯ ¯F 1 F = 0 for 2h # Y # ȳ(X, t) (1)XX YY

with the kinematic boundary condition at the bottom given by

¯ ¯F = 0 at Y = 2h (2)Y

On the free surface at Y = ȳ(X, t), the following kinematic and
dynamic boundary conditions need to be imposed:

¯ ¯ȳ 1 F ȳ = F at Y = ȳ(X, t) (3)t X X Y

1 2 2¯ ¯ ¯ ¯ ¯F 1 (F 1 F ) 1 gȳ 1 S 1 P /r = C(t) at Y = ȳ(X, t)t X Y E2
(4)

where g = gravitational acceleration; P̄E(X, t) = known external
pressure applied on the free surface; r = fluid density; and
S̄(X, t) is given by

g ȳXX
S̄ = 2 (5)S D 2 3/2r (1 1 ȳ )X

with the surface tension g. In (4), an arbitrary function of time
C(t) can be absorbed into F̄ .t

Derivation of Exact Evolution Equations

Here, we present the derivation of evolution equations based
on the method of series solutions. Our approach differs slightly



from that of Dyachenko et al. (1996b), in that we manipulate
the Euler equations directly and not their variational principle.
First, we find a transformation that maps the physical domain
bounded by the free surface and the flat bottom into a strip of
uniform thickness h, which might depend on time. The re-
quired transformation from (X, Y) to (j, h) can be found by
solving the Dirichlet boundary-value problem given by

Y 1 Y = 0 for 2h # h # 0 (6)jj hh

Y = y (j, t) at h = 0 (7)

¯Y = 2h at h = 2h (8)

We assume that the displacement of the free surface y(j, t) [
ȳ[X(j, 0, t), t], parametrically written in terms of j, can be
expanded as

n=`

inkjy(j, t) = a (t)e (9)nO
n=2`

where k = 2p/l; and l = period in the transformed plane. For
real y, a2n = has been assumed, where is the complex* *a an n

conjugate of an. The solution of (6)–(8) can be easily obtained
as

h̄ h 1 h sinh nk(h 1 h) inkj9Y(j, h, t) = h 1 a 1 a e0 nS D S D Oh h sinh nkh

(10)

where S9 denotes summation over n, except n = 0. By using
the Cauchy-Riemann relations, Xj = Yh and Xh = 2Yj, we can
find Xj as

¯(h 2 h) 1 a cosh nk(h 1 h)0 inkj9X = 1 1 1 nka e (11)nj Oh sinh nkh

In (11), the choice of h(t) is arbitrary. If we take

¯h(t) = h 1 a (t) (12)0

the solutions of the Euler system [(1)–(4)] will be periodic in
X, with the same (constant) period l of the transformed plane.
Then, as h → 0, (10) and (11) can be written as

x 2 1 = 27 [y ]; y = 27 [x 2 1] (13)c xj j j j

where x(j, t) = X(j, 0 t). The two integral operators, 7c and
7s, are

1 `–7 ( f ) = * f (j9)coth[p(j9 2 j)/2h] dj9 (14)c 2`2h

1 `–7 ( f ) = 2 * f (j9)cosech[p(j9 2 j)/2h] dj9 (15)s 2`2h

7 [7 ( f )] = f ; 7 [7 ( f )] = f (16)c s s c

where represents the Cauchy principal value integral; and,–*
to obtain (13), we have used

inkj inkj inkj inkj7 (e ) = i coth nkhe ; 7 (e ) = 2i tanh nkhe (17)c s

Integrating (13) once with respect to j, we can determine x(j,
t) as

x(j, t) = j 2 7 [y] 1 x (t) (18)c 0

where the choice of x0(t), or the choice of the origin of the
the X-coordinate in the physical domain, is arbitrary.

The analogous choice for the Y-coordinate defines the total
mean depth
l/2
1¯ ¯H = h 1 y dx = h 1 M[ȳ] (19)El 2l/2

By using (13) in (19), the quantity M[ȳ], the mean value of
the free surface in the physical plane, can be written as

l/2 l/2
1 1

M[ȳ] = ȳ dX = m[y] 2 y7 [y ] dj (20)cE E jl l2l/2 2l/2

where m[y](=a0) = mean value in the transformed plane (i.e.,
integration over j rather than x), given by

l/2
1

m[y] = y dj (21)El 2l/2

Notice that the total mean depth H is necessarily independent
of time because of mass conservation [(27)].

In the transformed plane, the velocity potential F(j, h, t)
[ h, t), Y(j, h, t), t] and its harmonic conjugateF̄[X(j,
C(j, h, t) satisfy the Laplace equation. For example the stream
function C can be found by solving the following boundary-
value problem:

C 1 C = 0 for 2h # h # 0 (22)jj hh

C = c(j, t) at h = 0 (23)

C = 2Q (t) at h = 2h (24)h

In (23) and (24), c(j, t ) [ C(j, 0, t) = stream function at the
free surface to be determined, while Qh(t) = function of time
only, implying that the bottom is always a streamline. Since
only the difference between the stream function at the free
surface and that at the bottom is physically meaningful, we
may set Qh = 0 without loss of generality and absorb the time
dependence into c.

Applying the same technique we used for the spatial vari-
ables (X, Y ) to the dependent variables (F, C) yields

f 2 m[c]/h = 27 (c ); c = 27 [f 2 m(c)/h] (25a,b)s sj j j j

where f(j, t) [ F(j, 0, t); and m[c] = mean value of c in
the transformed plane, as defined by (21), with c in place of
y. The freedom of choice introduced by m[c] reflects the Gal-
ilean invariance of Euler equations in physical space.

Once the time evolution of y and f is known, x and c can
be readily determined from (13) and (25) (or vice versa).

The evolution equations for y and f can be found from the
two boundary conditions at the free surface [(3) and (4)] as
follows. The kinematic boundary condition [(3)] can be writ-
ten, by using the chain rule for differentiation, as

y x 2 x y = 2c (26)t tj j j

where we have used ȳt = yt 2 ȳXxt and ȳX = yj/xj. Integrating
(26) with respect to j yields

l/2
d

yx dj = 0 (27)E jdt 2l/2

which implies the conservation of mass.
Similarly, the dynamic equation [(4)] can be written as

1 1 2 2f 1 2f (y y 1 x x ) 1 c (y x 2 x y ) 1 (f 1 c )t t t t t j jF j j j j j j GJ 2

1 gy = 2P /r 1 S 1 C(t)E (28)

with the external pressure PE(j, t) = P̄E[X(j, 0, t), t]; from (5),
the surface tension term S is

x y 2 y xg j jj j jj
S = 2 (29)S D 2 2 3/2r (x 1 y )j j

As in Dyachenko et al. (1996b), we can further simplify
these implicit equations [(26) and (28)] by isolating the time-
JOURNAL OF ENGINEERING MECHANICS / JULY 1999 / 757



derivatives of the dependent variables. We first notice that (26)
can be written as

z ct jIm = 2 (30)S Dz Jj

where z = x 1 iy; and the Jacobian J is given by J = 12xj

Second, real and imaginary parts of analytic functions eval-2y .j

uated at the free surface satisfy relations of the same type as
(13) or (25). Since (zt/zj) is harmonic, we can determine the
real part of (zt/zj) by

z z ct t jRe = 27 Im 1 q(t) = 7 1 q(t) (31)c cS D F S DG F Gz z Jj j

where Re and Im = real and imaginary parts, respectively. To
obtain (31), we have used, from the analytic function theory,

= 2m[cj/J ], where represents the time derivative of h(t).˙ ˙h h
Since q(t) in (31) is related to x0(t) in (18), we can fix one of
these time-dependent functions and hence choose q(t) = 0.
Then (31) can be written as

y y = x x = J7 (c /J) (32)t t cj j j

By solving (26) and (32) for xt and yt, we have explicit evo-
lution equations for x and y as

x = x 7 [c /J ] 1 y (c /J) (33)t cj j j j

y = 2x (c /J) 1 y 7 [c /J ] (34)t cj j j j

By use of (26) and (32), the dynamic equation [(28)] can be
written as

1 1 12 2f 1 f 2 c 2 Jf 7 (c /J) 1 gy = 2P /r 1 S 1 C(t)t j j c EF j j GJ 2 2

(35)

Eqs. (34) and (35) form a complete set of evolution equations
for y and f when (13) and (25) are used for expressing x and
c in terms of y and f. Eqs. (34) and (35) with PE = 0 and g
= 0 coincide with those obtained by Dyachenko et al. (1996b)
through the Hamiltonian formulation of the free water-wave
problem. As h → `, 7c and 7s become H and 2H, respec-
tively, where H is the Hilbert transform given by

`

f (j9)
–H( f ) = dj (36)E j9 2 j2`

PERIODIC STEADY GRAVITY WAVES

Governing Equation

For steady waves (/t = 0), the kinematic equation [(26)]
reduces to

c = 0 (37)j

We can take c(j) = Q0, where Q0 is a constant, implying that
the free surface is another streamline for steady flow. Then
(25) yields

f = (Q /h) = c (38)0j

where c = wave speed defined by the following integration
carried out for a fixed Y:

l/2
1 ¯c = F dX (39)XEl 2l/2

By substituting (37) and (38) into the dynamic boundary con-
dition [(35)] with PE = S = 0, we finally have

21 c 1 21 gy = U (40)2 22 x 1 y 2j j
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where we have written C = U 2/2; and the arbitrary constant U
can be determined uniquely, once the origin is fixed, as we
shall see presently. Since xj can be expressed in terms of y by
(13), (40) is a single equation for y parameterized by j. When
we use f = cj as an independent variable instead of j, we can
recover the equation derived by Byatt-Smith (1970).

To compare the previous results by Cokelet (1977), we now
choose the origin of our coordinate system so that the mean
value m(y ) is zero and h = Then U becomes, by integratingh̄.
(40) with respect to j and imposing m(y) = 0

l/2
1 12 2U = c dj (41)S E D2 2l x 1 yj j2l/2

Eq. (40) can be written as
2c2 2x 1 y = (42)j j 2U 2 2gy

For small-amplitude waves, we can expand y and c as

y = a cos kj 1 a cos 2kj 1 ??? (43)1 2

2 2c = c (1 1 a 1 a 1 ???) (44)0 1 2

where k = wave number defined by k = 2p/l. In (43) and (44),
we have assumed that kan = O(εn) and an = O(εn), where ε is
the wave slope. By substituting (43) and (44) into (42) and
using (13) and (41), we find that

23 1 tanh kh2 2c = (g/k)tanh(kh); ka = (ka ) (45)0 2 134 tanh kh

2 49 2 6 tanh kh 1 5 tanh kh 2a = 0; a = (ka ) (46)1 2 144 tanh kh

When y is written in terms of x using (18) and h is replaced
by H using (19), (43) becomes identical to the solutions found
by Stokes (1847).

Numerical Solutions

To compute wave profiles, we look for solutions of (42) by
using the Newton-Raphson method. We take wave speed c, or
wave amplitude a defined by 2a = y(0) 2 y(l/2), as a parameter
for a given wavelength l so that the wave amplitude, or wave
speed, is determined by the solution. For example, when we
choose c as a parameter, we can write

x = x 1 x9; y = y 1 y9; U = U 1 U9 (47)0 0 0

where (x0, y0, U0) = initial guess; and (x9, y9, U 9) = correction
to be found. Then, from (42), the linearized equation for the
correction is

2c
22x x9 2 2y y9 1 (2y9 2 U9)0 j 0 jj j 2 2U 2 2y )0 0

2c2 2= x 1 y 2oj oj 2U 2 2gy0 0 (48)

where, from (13) and (41), x9 and U9 can be written as
l/222c x x9 1 y y90j j 0j j

x9 = 27 [y9]; U9 = 2 dj (49)j c j E 2 2 2l (x 1 y )oj oj2l/2

Substituting (49) into (48) yields a single equation for y9

M[x , y , U ; c]y9 = R[x , y , U ; c] (50)0 0 0 0 0 0

With the representation of y9 in terms of discrete Fourier
(cosine) series of N-modes, we can write (48) evaluated at j
= ji = il/N (i = 1, ? ? ?, N) as

M y9 = R (51)ij j i



FIG. 1. Graph of: (a) Periodic Wave Profiles in Deep Water for a/l = 0.02, 0.04, 0.06, and 0.701; (b) Wave Speed versus Wave Amplitude
[Present Calculations (? ? ?) Are Compared with Calculations (—) by Cokelet (1977)]

FIG. 2. Graph of: (a) Periodic Wave Profiles in Water of Finite Depth of = 0.366 for a/l = 0.02, 0.04, 0.06, and 0.069; (b) Wave Speedh̄/l
versus Wave Amplitude [Present Calculations (? ? ?) Are Compared with Calculations (—) by Cokelet (1977)]
and solve the algebraic equations [(51)] iteratively until
becomes smaller than an assigned error bound (typi-max uy9uj j

cally 1026). For c close to c0, we choose the initial guess for
the wave amplitude a from (44) and (46). Then we proceed
to find the solution for larger c by taking the previous result
for smaller c as the initial guess.

In Fig. 1 and 2, we show numerical results with N = 28 (for
wave amplitudes near the maximum value, we choose N = 29).
The relationship between wave speed and wave amplitude
shows good agreement with Cokelet (1977) for both deep and
finite-depth water. The maximum speed and the maximum2cmax

wave amplitude amax are found to be = 1.1946g/k (at ka =2cmax

0.435) and kamax = 0.441 for deep water, and = 1.1722g/2cmax

k (at ka = 0.427) and kamax = 0.434 for water of finite depth
of = 0.366. These results compare favorably with the re-h̄/l
sults of Cokelet (1977): = 1.1945g/k (at ka = 0.436) and2cmax

kamax = 0.443 for deep water, and = 1.1725g/k (at ka =2cmax

0.426) and kamax = 0.433 for water of finite depth of =h̄/l
0.366.

DISCUSSION

The major difference between the current formulation orig-
inally proposed by Dyachenko et al. (1996b) and others is that
the evolution equations are written explicitly in terms of two
dependent variables, and no intermediate steps are required to
close the system. This offers a good starting point for further
analysis and is advantageous for numerical simulations of
time-dependent problems. Here we have considered only the
simplest case of a traveling wave solution. The study of this
set of equations for highly nonlinear time-dependent wave
phenomena will be reported in future publications.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

a = wave amplitude;
c = wave speed;
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g = gravitational acceleration;
H = total mean depth;

H[ f ] = Hilbert transform of f;
h = thickness of transformed plane;
h̄ = water depth;
k = wave number;
l = wavelength;

m[ f ] = mean value of f in transformed plane;
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PE = external pressure applied on free surface;
7c[ f ] = integral transform of f with coth function as kernel;
7s[ f ] = integral transform of f with cosech function as kernel;

y = surface elevation;
g = surface tension;
r = density;
f = velocity potential at free surface; and
c = stream function at free surface.


